• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Burgers-Korteweg-de Vries復(fù)合方程的格子Boltzmann方法模擬

    2015-12-31 21:46:09段雅麗陳先進(jìn)孔令華中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院安徽合肥3006江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院江西南昌3300
    計(jì)算物理 2015年6期
    關(guān)鍵詞:江西師范大學(xué)雅麗信息科學(xué)

    段雅麗, 陳先進(jìn), 孔令華(.中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥 3006;.江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西南昌 3300)

    Burgers-Korteweg-de Vries復(fù)合方程的格子Boltzmann方法模擬

    段雅麗1, 陳先進(jìn)1, 孔令華2
    (1.中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)科學(xué)學(xué)院,安徽合肥 230026;2.江西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,江西南昌 330022)

    針對(duì)Burgers-Korteweg-de Vries(cBKdV)復(fù)合方程提出一種格子Boltzmann模型.通過恰當(dāng)?shù)靥幚砩㈨?xiàng)uxxx并運(yùn)用Chapman-Enskog展開從格子Boltzmann方程推導(dǎo)出宏觀方程,從而得到聯(lián)系微觀量與宏觀量的局部平衡分布函數(shù).對(duì)不同微分方程進(jìn)行數(shù)值實(shí)驗(yàn),數(shù)值解與解析解非常吻合,相比于其它數(shù)值結(jié)果,該格子Boltzmann模型的數(shù)值結(jié)果更精確,說明該數(shù)值模型的高效性.

    格子Boltzmann模型;Burgers-KdV復(fù)合方程;Chapman-Enskog展開

    0 Introduction

    In the simulation of radiation hydrodynamic Lagrange problems,diffusion problem often appears as a crucial subproblem.It is important to study discrete schemes with high accuracy for these problems,especially for those with large deformation.

    In recent years,to avoid difficulties in mesh generation for complex problems,meshless methods have received intensive attention,and some of them have been applied to solve diffusion problems.Shen et al[1].solved the Poisson equation as an example of application to awell-designed algorithm for selecting neighboring points.Reference[2]constructed minimal positive stencils in meshfree finite difference methods for the Poisson equation by a linear minimization approach.Reference[3]presented adaptive meshless discretization for the Poisson equation based on radial basisfunctionmethods(RBFs).Reference[4]extended a numerically stable RBF-QR formulation of RBF approximation in the aspects of computing differentiation matrices and stencil weights,in which the Poisson equation was solved as an example of numerical implement.Reference[5]gave a generalized finite difference discretization to the Poisson equation with piecewise constant diffusion conductivity,which was based on an MLSapproach.Thismethod used a constrain condition for flux rather than governing equation at interface to derive a discrete scheme.More recently,Ref.[6] proposed a space-time diffuse approximation method,in which a weight function was introduced to remove some spurious oscillations in computation for problems with high temporally discontinuous heat sources.

    In the present paper,we consider diffusion problems with nonlinear and/or discontinuous conductivity by a finite directional difference method(FDDM).The FDDM is a meshlessmethoddefined on scattered point distributions,which is first proposed in Ref.[1]as a finite pointmethod (FPM)based on directional differences,and renamed as FDDM to distinguish from FPM proposed in Ref.[7].The FPM[7]is based on a weighted least square interpolation of point data and point collocation for evaluating approximation integrals,while the FDDM can be viewed as a generalization of classical finite differencemethod defined on uniform point distribution,which ismore difficult to perform due to disorders of scattered point distributions.In Refs.[1,8],explicit numerical formulae for approximations to directional differentialswere derived with expected accuracy by using information of proper scattered points.Above all,by virtue of explicit expressions,solvability conditions of numerical derivativeswere rigorously given,which gave a general guiding principle for selecting neighboring points avoiding singularity in computing derivatives.

    In the FDDM regime,the present paper develops an approach to solving diffusion problemswith nonlinear conductivities,which has advantages as follows:It leads tominimal stencils,coefficients of the resulted scheme are given explicitly avoiding solving matrix equations,and well-designed method for selecting neighboring points guarantees that the issue of singularity never emerges.Reference[9]also investigated this problem.However,the present paper deals with the diffusion operator and the nonlinear term more rigorously than Ref.[9].

    Furthermore,when the diffusion conductivity is discontinuous,we propose a scheme for discretizingmultimedia interface condition by the FDDM method.To discretize flux on interface, Ref.[5]employsmore neighbors of the master point,while we employ only five neighbors of the master point on each side of the interface,resulting flux with second-order accuracy.This idea is also explored to discretize energy flux of diffusion equation on unstructured meshes(for details see Ref.[10]).

    The rest of this paper is arranged as follows:Section 1 presents some preliminaries.Section 2 formulates numerical differentials on scattered point distributions.Section 3 constructsmethodology for solving nonlinear diffusion problems and discontinuous problems,and gives several numerical validations.Finally,concluding remarks aremade in Section 4.

    1 Prelim inaries

    To simplify presentation,we first introduce denotations and definitions as defined in Ref.[1].Let us denote

    ·i the index of point(xi,yi)and“O”a specific point(x0,y0);

    ·ljthe j-th direction vector from point O and ejthe corresponding unit vector;·Δlithe distance between point“O”and i;

    ·ui=u(xi,yi)the function value of u(x,y)at point i;and

    ·Δui=ui-u0the difference of function u(x,y).

    We also have

    ·〈ij〉∶=〈ijO〉,i.e.,k is a special point as“O”in the expression〈i jk〉.

    Here,there is a little changemade from Ref.[1]in that the denotation(·,·)is changed into〈·,·〉0, because(·,·)is just a special case of〈·,·〉.

    In this paper,since a large amount of operations for indices denoting direction vectors are required,we introduce an operation for indices defined as in Ref.[1]:

    Definition 1 (Algorithm○k)Given i,j,k(k≥3)positive integers,an addition of i and j with period of k is defined by

    where s is a nonnegative integer satisfying inequality sk<i+j≤(s+1)k.The operation○k can be also expressed by

    where(i+j-1)(mod k)represents the remainder of(i+j-1)modulo k.

    Remark 1.1 The operation○k is defined only for indices i,j,…,which is irrelevant to the numbering and ordering of the directions denoted by these indices(See Fig.1).

    Fig.1 Illustration for k directions

    Since the FDDM is based on directional differences,we need relations between directional derivatives,which will significantly help numerical discretization in the FDDM regime.

    Firstwe state relevant resultswith constant coefficients.

    Lemma 1 (see Ref.[1])Given three unit vectors e1,e2,e3at point(x,y),for a smooth function u(x,y)on domainΩ?R2,it follows that

    Lemma 2 (see Ref.[1])Given four unit vectors ei(i=1,2,3,4)at point(x,y),for secondorder directional derivatives of a smooth function u(x,y)on the domainΩ?R2,it follows that

    To handle practical problems,more general results are mandatory.By simple deduction,wederive relations between directional derivatives with variable coefficients as follows.

    Theorem 1 Given four arbitrary unit vectors ei(i=1,2,3,4),for smooth functions u(x,y)and κ(x,y)on domainΩ?R2,it follows that

    2 Numerical differentials and solvability

    Before constructing a discrete scheme for PDEs,we first deal with the basic issue,i.e.,the approximations to directional derivatives.

    Suppose that for a given point O and its five neighboring points(xi,yi)(i=1,…,5)whose indices i=1,…,5 are numbered freely(see Fig.2),the differencesΔui(i=1,…,5)of the smooth function u(x,y)are available.

    Fig.2 Point O and its five neighbors

    Let us denote by

    We also have

    and

    where

    With detailed analysis on the five-point formulae presented in Ref.[1],we formulatenumerical approximations for the first-order and second-order directional derivatives of the smooth function u(x,y)at point O in thematrix forms

    where

    E is a unitmatrix,and

    We call

    as the solvability condition.

    According to the result of Ref.[1],we note that Eq.(8)is second-order accurate as to the approximation to the first-order derivatives,and Eq.(9) is first-order accurate as to the approximation to the second-order derivatives.

    We also notice that whether solvability condition(11)is satisfied or not is a key issue.Reference[1]dealtwith this issue,and presented an algorithm of selecting neighboring points for solving diffusion problems,which will be employed in the present paper.

    From the above formulation we can learn that for the second-order directional derivatives,only information of themaster point and its five neighbors were used.One knows that five neighboring points are of the least number for approximating the second-order directional derivatives as consider the consistency.This is important to construct schemeswithminimal stencils.

    3 Discretization methodology

    In this section,we restrict our attention to constructing the discretization methodology for numerically solving diffusion equations,which have the form

    with initial condition

    and boundary condition

    whereΩis an open bounded domain with smooth boundary?Ω,T is the final time,κis the nonlinear diffusion coefficient and maybe discontinuous,and f,g1and g2are given functions.

    Hereafter,we always impose discretization toΩand?Ωby scattered point distribution,and denote the resulted discrete point set byΩhand?Ωh,respectively,and=Ωh∪?Ωh.

    It is obvious that discretization of the diffusion operator?·(κ(x,y,u)?u)is a key issue.The first step to employ FDDM is to express the diffusion operator by directional differentials.

    3.1 Expression of?·(κ?u)by directional differentials

    In this section and Section 3.2,we consider the case thatκis a smooth function.

    Given e1,e2,e3,three nonparallel unit vectors from point O(see Fig.3),and eI,eJ,unitvectors in x,y axis directions,respectively,then by means of Eq.(5),?·(κ?u)can be expressed by

    Fig.3 Three nonparallel unit vectors

    which can be simplified into

    3.2 Discretization of?·(κ?u)

    Fig.4 Point O and its five neighbors

    We suppose that every point inΩhhas five steady distribution neighbors satisfying solvability condition(11).

    Given a point O(x0,y0)and its five neighbors(xi,yi)(i=1, …,5)(see Fig.4),denote“i′”as themiddle pointof the segment,κ0=κ(x0,y0,u0),κi=κ(xi,yi,ui),=(κ0+κi)/2, andκi′=κ(ui′),i=1,2,…,5.It is obvious that

    Motivated by the technique in constructing numerical formula (9)for the second-order directional differentials,we have

    To simplify presentation,we denote by

    Moreover,noticing that“i′”is themiddle point of,togetherwith Eq.(16)we have

    By Eq.(17),it consequently follows that

    Therefore,by Eq.(15),we have

    Remark 3.1 (1)Note that scheme(21)reduces to a classical finite difference on uniform point distribution.

    (2)It is obvious that Eq.(21)yields stencils ofminimal size.

    3.3 Scheme for discretizing multimedia interface condition

    In this section,we construct discrete schemes for discontinuous diffusion problems.

    For simplicity,we consider the case of two subdomains,Ω1andΩ2,separated by an interface Γ,and suppose thatκis discontinuous throughΓwith respect to spatial variables x and y,but is continuous with respect to u.Denote the inward and outward unit normal vectors ofΓby n-and n+, and the associated conductivities byκ-andκ+,respectively.

    Aswe have derived the scheme proposed in Section 3.2 for the case thatκis continuous,now we need only to focus on constructing discrete scheme for the interface condition.We first place appropriate points onΓ.For any given point O belonging toΓand corresponding functional values u0,the procedure of ourmethod can be outlined as follows:

    1)Choose five neighbors of O on each side ofΓ,respectively,and denote them by1,2,3,4, 5 corresponding to n+side,1′,2′,3′,4′,5′corresponding to n-side(see Fig.5,the selected neighbors are marked bold,and other points are indicated by white circles),and their function values ui(i=1,…,5;1′,…,5′).In this step,we choose the nearest five points satisfying the solvability condition on each side.

    Fig.5 Illustration of selecting neighboring points for a point on interface

    The detailed procedure is as follows.

    By the relation between the first-order directional derivatives(3),we have

    Here,Δl+is an auxiliary quantity,which will be eliminated in the following deduction,M+is defined following Eq.(10),and a1j,a2j(j=1,2,…,5)are as given in Eq.(18).Therefore,wehave

    Likewise,we have

    Here,Δl-is also an auxiliary quantity similar toΔl+,and M-,a′1jand a′2j(j=1,2,…,5)are similar to M+,a1jand a2j(j=1,2,…,5).

    LetΔl+=Δl-,and denote by

    Applying Eqs.(24)and(25)to the continuous condition of energy flux Eq.(22),and eliminating Δl+andΔl-,we have

    which results in the discrete scheme for the interface condition as follows:

    To summarize,for a point belonging toΩ1(orΩ2),select its five neighbors from those belonging toΩ1∪Γ(orΩ2∪Γ),and then discretize the control equation(12)by the scheme(21);For a point belonging toΓ,the above scheme constructed for the interface condition is employed.After the discretization,we derive a large sparse system of algebraic equations,which can be solved by various iterativemethods.

    3.4 Numerical Results

    This section presents several numerical examples with different computational domains and different point distributions to investigate the accuracy and efficiency of the proposed approach.

    In the subsequent computation,the resulted nonlinear systems are solved by a classical Picard iterative process.And the linear systems are solved by a biconjugate gradient stabilized algorithm.

    To investigate convergence results of the proposed method,we define discrete norm errors as

    The convergence rate is

    where h1and h2are average distances corresponding to N1and N2,respectively.

    Exam p le 1 Consider the problem

    Fig.6 Point distribution on computational domain

    where f(x,y)=2(ey-x-ex-y),Ωis a semi-circle with two semi-circles cut out as shown in Fig.6.

    Note that discretizingΩby a good-quality mesh is a complex work as consider the corners (see e.g.the left bottom ofΩ),meanwhile distributing scattered points on it is rather easy.We employ this example to investigate the proposed method on an irregular computational domain. Corresponding numerical results are presented in Table 1.

    From Table 1, we can see that the approximation to the solution is almost secondorder accurate,and to the first-order directional derivatives of the solution is higher than first-order accurate.This indicates that the proposed method workswell on irregular computational domain.

    Table 1 Errors of u and its first-order derivatives

    Exam ple 2 Solve an nonlinear boundary problem

    whereκ(u)=u,and f(x,y),g(x,y)are given by the exact solution u(x,y)=2+cos(πx)+sin(πy).Ωis a unit square,which is discretized by three types of scattered points as shown in Fig.7.

    In this example,the tolerance of nonlinear iterative is‖Us+1-Us‖≤10-8,where Usand Us+1represent the numerical solution of two neighboring iterative steps,respectively.

    Corresponding numerical results are presented in Table 2.From this table,we see that approximations to the solution in the-norm and the-norm are almost second-order accuracy, except that the convergence rate in the-norm on Z-type point distribution is slightly low,which is also satisfactory as taking account of the highly anisotropic point distribution in this case.

    Fig.7 Three types of point distributions in square domain,left:uniform;middle:random;right:Z-type

    Table 2 Convergence results for nonlinear diffusion problem on three types of point distributions

    Fig.8 Random point distribution

    Exam ple 3 Solve a parabolic problem

    where T=10-3,and f(x,y,t),g1(x,y)and g2(x,y,t)are given by the exact solution u(x,y,t)=e-π2 t(2+cos(πx)+sin(πy)).Ωis a unit square,which is discretized as shown in Fig.8.

    Objective of this example is to compare FDDM with the classical least squaremethod(LSQ).The time step is chosen asΔt=10-5,and utis discretized by a backward difference formula.In LSQ,neighboring points are the nearest ones,the numbers of which are selected as 10,20,and 40,respectively.The numerical results are graphically depicted in Fig.9.

    One can observe the following:

    · Both methods have almost the same convergence rate.Errors of the LSQ are higher than those of the FDDM.

    ·For LSQ,the accuracy does not increase with increasing numbers of neighboring points.

    By this test problem,FDDM is also compared with LSQmethod in terms of computational cost.For a sequence of point distributions,Fig.10 shows CPU times for setting up and solving the systemmatrices.One can observe that the LSQ method has lower computational efficiency due to more neighboring points resulting in large discrete stencils,while the FDDM greatly benefits from the sparsity of its stencils when the number of unknowns increases.

    Fig.9 LSQ vs.FDDM,left:error,right:error

    Fig.10 Computational cost for setting up and solving system matrices:LSQ vs.FDDM

    Example 4 Solve a discontinuous coefficient problem(originally coming from Ref.[11])in the form

    whereΩ=[0,1]×[0,1],the conductivityκis discontinuous and given by

    and f,g are directly deduced from the exact solution

    Fig.11 Random point distribution

    It is obvious that this solution and its normal component of flux are continuous at x=0.5.

    The point distribution is almost the same as that in Example 3,but at x=0.5 uniformly distributed points are placed to coincide with the multimedia interface(shown in Fig.11).

    Here,we takeκ=10-3,10-6,and the corresponding results are shown in Fig.12 and Tables 3,4.

    Figure 12 displays results on the interface for the caseκ =10-3,which indicates that the numerical solutions and energy fluxes are very close to the exact values;Table 3gives corresponding convergent results,where NIis the total number of interface points.It is obvious that both numerical solutions and energy fluxes on the interface are second-order accurate.Results for the caseκ=10-6are similar to the above case,hence they are not displayed here.Table4 shows us that the solutions to the discontinuous coefficient problem with different coefficients are almost second-order accurate,which verifies good performance of the proposed method.

    Fig.12 Results on interface asκ=10-3,and N=289,NI=15,left:solutions:right:energy flux

    Table 3 Convergence results of solutions and energy fluxes on interface of discontinuous coefficient problem asκ=10-3

    Table 4 Convergence results for discontinuous coefficient problem

    4 Conclusions

    We present an approach for numerically solving nonlinear diffusion equations in the FDDM regime.Taking advantage of a proper method for selecting steady neighboring point set in the procedure,the approach leads tominimal stencils,avoiding singularity in computing process.

    Moreover,when the diffusion conductivity is discontinuous,discrete points are placed on the interface,and a scheme based on five-point formulae of the FDDM is proposed for discretizingmultimedia interface condition.In consequence,approximation to energy fluxes on interface is second-order accurate.

    Finally,the approaches are demonstrated to have good accuracy and efficiency by numerical exampleswith different computational domains and different point distributions.

    [1] Shen L J,Lv G X,Shen Z J.A finite pointmethod based on directional differences[J].SIAM JNumer Anal, 2009,47(3):2224-2242.

    [2] Seibold B.Minimal positive stencils inmeshfree finite differencemethods for the Poisson equation[J].Comput Methods Appl Mech Eng,2008,198(3-4):592-601.

    [3] Davydov O,Oanh D T.Adaptivemeshless centres and RBF stencils for Poisson equation[J].JComput Phys, 2011,230(2):287-304.

    [4] Larsson E,Lehto E,Heryudono A,Fornberg B.Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions[J].SIAM JSci Comput,2013,35(4):2096-2119.

    [5] Iliev O,Tiwari S.A generalized(meshfree)finite differnce discretization for elliptic interface problems, numericalmethods and applications[C]∥Hutchison D.Lecture Notes in Computer Science.German:Springer, 2003:488-497.

    [6] Sophya T,Silva A D,Kribèchea A.A space-time meshlessmethod that removes numerical oscillations when solving PDEswith high discontinuities[J].Numerical Heat Transfer,Part B,2012,62(1):50-70.

    [7] O?ate E,Idelsohn S,ZienkiewiczOC,Taylor R L.A finite pointmethod in computingmechanicsapplication to convective transport and fluid flow[J].Internat JNumer Methods Engrg,1996,39:3839-3866.

    [8] Lv GX,Shen L J,Shen Z J.Study on finite pointmethod[J].Chinese Journal of Computational Physics,2008, 25(5):505-524.

    [9] Lv G X,Shen L J.A finite pointmethod based on directional derivatives for diffusion equation[C]∥Cemal A.World Academy of Science Engineering and Technology.Singapore:International Scientific Research and Experimental Development,2011:211-216.

    [10] Lv G X,Shen L J,Shen Z J.Numerical methods for energy flux of temperature diffusion equation on unstructured meshes[J].Int JNumer Meth Biomed Engng,2010,26(5):646-665.

    [11] Shashkov M,Steinberg S.Solving diffusion equationswith rough coefficients in rough grids[J].JComput Phys, 1996,129:383-405.

    A Finite Directional Difference M eshless M ethod for Diffusion Equations

    LV Guixia, SUN Shunkai
    (Laboratory ofComputational Physics,Institute of Applied Physics and Computational Mathematics,P.O.Box 8009-26,Beijing 100088,China)

    1001-246X(2015)06-0649-13

    An approach for numerically solving nonlinear diffusion equations on 2D scattered point distributions is developed with finite directional difference method.The approach yields stencils of minimal size using five neighboring points.And coefficients of discretization have explicitexpressions.A scheme employing five-point formulae is proposed to discretizemultimedia interface condition for discontinuous problems in which approximation to flux on interface is second-order accurate.The discretizationmethods show good performance in numerical exampleswith different computational domains and different point distributions.

    meshless;finite directional differencemethod;nonlinear diffusion equations;multimedia interface;minimal stencil

    O241.82 Document code:A

    Received date:2014-12-17;Revised date:2015-02-05

    Foundation items:Supported by National Natural Science Foundation of China(11371066,11372050)and Foundation of Laboratory of Computational Physics

    Biography:Lv Guixia(1972-),female,Dr.,professor,engaged in numerical solution of partial differential equations,E-mail:lvguixia@126.com

    猜你喜歡
    江西師范大學(xué)雅麗信息科學(xué)
    勞動(dòng)贊歌
    Temperature-Dependent Growth of Ordered ZnO Nanorod Arrays
    Hydrothermal Synthesis of Ordered ZnO Nanorod Arrays by Nanosphere Lithography Method
    山西大同大學(xué)量子信息科學(xué)研究所簡(jiǎn)介
    SPECTRAL PROPERTIES OF DISCRETE STURM-LIOUVILLE PROBLEMS WITH TWO SQUARED EIGENPARAMETER-DEPENDENT BOUNDARY CONDITIONS*
    三元重要不等式的推廣及應(yīng)用
    光電信息科學(xué)與工程專業(yè)模塊化課程設(shè)計(jì)探究
    基于文獻(xiàn)類型矯正影響因子在信息科學(xué)與圖書館學(xué)期刊中的實(shí)證分析
    對(duì)旅游專業(yè)外語的理想教學(xué)模式的思考——以江西師范大學(xué)為例
    Younger and Older learners’Advantages on Language Acquisition in Different Learning Settings
    成人国产麻豆网| 一个人免费看片子| 天天躁夜夜躁狠狠久久av| 国产精品一区二区在线观看99| 99视频精品全部免费 在线| 中文字幕久久专区| 在线观看www视频免费| 久久人人爽av亚洲精品天堂| 久久精品久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 久久99蜜桃精品久久| 观看美女的网站| 九色成人免费人妻av| 国产精品女同一区二区软件| 国产日韩欧美视频二区| 91精品一卡2卡3卡4卡| 天天操日日干夜夜撸| www.色视频.com| 久久97久久精品| 亚洲人与动物交配视频| 在线播放无遮挡| 在线观看av片永久免费下载| av一本久久久久| 国产精品久久久久久精品电影小说| tube8黄色片| 成人亚洲精品一区在线观看| 国产成人91sexporn| 卡戴珊不雅视频在线播放| 亚洲av综合色区一区| 蜜桃在线观看..| 亚洲av日韩在线播放| 97超视频在线观看视频| 久久久久网色| 人妻 亚洲 视频| 亚洲av日韩在线播放| 各种免费的搞黄视频| 能在线免费看毛片的网站| 亚洲精品乱码久久久v下载方式| 久久鲁丝午夜福利片| 亚洲欧美精品专区久久| 最近中文字幕高清免费大全6| a级毛色黄片| 赤兔流量卡办理| 伊人亚洲综合成人网| 国产成人精品婷婷| 亚洲人与动物交配视频| 久久毛片免费看一区二区三区| 在线看a的网站| 18禁裸乳无遮挡动漫免费视频| 久久午夜福利片| 纯流量卡能插随身wifi吗| 免费看光身美女| 日本av免费视频播放| 美女xxoo啪啪120秒动态图| 女性被躁到高潮视频| 精品99又大又爽又粗少妇毛片| 特大巨黑吊av在线直播| 韩国高清视频一区二区三区| 又爽又黄a免费视频| a级片在线免费高清观看视频| 夜夜看夜夜爽夜夜摸| 街头女战士在线观看网站| 精品午夜福利在线看| 亚洲精品久久午夜乱码| 王馨瑶露胸无遮挡在线观看| 中文乱码字字幕精品一区二区三区| 国产中年淑女户外野战色| 99久久人妻综合| 蜜桃在线观看..| 亚洲第一区二区三区不卡| 人人妻人人澡人人看| 色哟哟·www| 精品国产国语对白av| 亚洲国产精品成人久久小说| 三上悠亚av全集在线观看 | 黄色欧美视频在线观看| 精品一品国产午夜福利视频| h视频一区二区三区| 伦理电影免费视频| 免费观看无遮挡的男女| 一区二区三区免费毛片| 国产精品一区www在线观看| 高清av免费在线| 日韩中文字幕视频在线看片| 亚洲精品国产成人久久av| 国产精品欧美亚洲77777| 久久ye,这里只有精品| 天堂8中文在线网| 91久久精品电影网| 日韩,欧美,国产一区二区三区| 亚洲久久久国产精品| 高清欧美精品videossex| 精品国产国语对白av| 久久国内精品自在自线图片| 激情五月婷婷亚洲| 亚洲综合色惰| 日韩强制内射视频| 美女福利国产在线| 国产精品一区www在线观看| 美女视频免费永久观看网站| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 少妇的逼好多水| 男女边吃奶边做爰视频| 丰满乱子伦码专区| 国产男女内射视频| 免费观看无遮挡的男女| av女优亚洲男人天堂| 亚洲国产欧美日韩在线播放 | av免费观看日本| 偷拍熟女少妇极品色| 亚洲综合精品二区| 国产一级毛片在线| 一本大道久久a久久精品| 一区二区三区乱码不卡18| 最近的中文字幕免费完整| 久久久久久久久久久丰满| 久久久精品免费免费高清| av有码第一页| 一级,二级,三级黄色视频| 女人精品久久久久毛片| 午夜免费鲁丝| 啦啦啦中文免费视频观看日本| 欧美少妇被猛烈插入视频| av免费在线看不卡| 一区二区av电影网| 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 三级国产精品片| 男人添女人高潮全过程视频| 国产有黄有色有爽视频| 哪个播放器可以免费观看大片| 久久99精品国语久久久| 国产成人精品无人区| 日韩,欧美,国产一区二区三区| 久久久午夜欧美精品| 久久人人爽av亚洲精品天堂| 久久久久久久国产电影| 永久免费av网站大全| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 亚洲精品亚洲一区二区| 精品卡一卡二卡四卡免费| 性色av一级| 免费看日本二区| 免费看日本二区| 亚洲不卡免费看| 欧美激情极品国产一区二区三区 | 伦理电影大哥的女人| www.色视频.com| 一本一本综合久久| 日韩在线高清观看一区二区三区| 看非洲黑人一级黄片| 午夜久久久在线观看| 久久久久久久精品精品| 99九九在线精品视频| 丝袜脚勾引网站| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| 国产激情久久老熟女| 一区二区三区激情视频| 欧美激情高清一区二区三区| 欧美少妇被猛烈插入视频| 老司机靠b影院| 欧美激情极品国产一区二区三区| 最近最新免费中文字幕在线| 色精品久久人妻99蜜桃| 中国美女看黄片| 久久精品成人免费网站| 久久国产亚洲av麻豆专区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美成狂野欧美在线观看| 中文字幕高清在线视频| 久久亚洲精品不卡| 日本wwww免费看| 成年人午夜在线观看视频| 国产精品香港三级国产av潘金莲| 天天添夜夜摸| 人成视频在线观看免费观看| 欧美日韩视频精品一区| 99热网站在线观看| 国产精品免费视频内射| 99国产综合亚洲精品| 午夜久久久在线观看| 婷婷成人精品国产| 男女下面插进去视频免费观看| 欧美久久黑人一区二区| 精品一区二区三卡| 三级毛片av免费| 岛国在线观看网站| 成人亚洲精品一区在线观看| 一级毛片电影观看| 丝袜喷水一区| 欧美人与性动交α欧美精品济南到| 亚洲欧美一区二区三区久久| 深夜精品福利| 国产亚洲欧美精品永久| 日韩制服丝袜自拍偷拍| 国产精品偷伦视频观看了| 国产免费一区二区三区四区乱码| 考比视频在线观看| 在线av久久热| 午夜精品国产一区二区电影| 久久人妻熟女aⅴ| 精品第一国产精品| 日本欧美视频一区| 国产精品秋霞免费鲁丝片| 色老头精品视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲av男天堂| 老汉色∧v一级毛片| 久久中文字幕一级| 69av精品久久久久久 | 日日摸夜夜添夜夜添小说| tube8黄色片| 青草久久国产| 国产精品99久久99久久久不卡| 亚洲国产日韩一区二区| www.熟女人妻精品国产| 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| 一本久久精品| 91精品三级在线观看| 狂野欧美激情性xxxx| 啦啦啦啦在线视频资源| 最近最新中文字幕大全免费视频| 精品高清国产在线一区| 人妻 亚洲 视频| 日本wwww免费看| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| 多毛熟女@视频| 成年av动漫网址| 男女边摸边吃奶| 91精品国产国语对白视频| 国产淫语在线视频| 欧美成狂野欧美在线观看| 一级毛片精品| 桃花免费在线播放| 大码成人一级视频| www日本在线高清视频| 波多野结衣av一区二区av| 99精国产麻豆久久婷婷| a在线观看视频网站| 午夜激情久久久久久久| 丰满少妇做爰视频| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 另类精品久久| 十八禁网站网址无遮挡| 久久精品久久久久久噜噜老黄| 9191精品国产免费久久| 三上悠亚av全集在线观看| 人妻一区二区av| 18禁黄网站禁片午夜丰满| av在线播放精品| 老司机靠b影院| 99re6热这里在线精品视频| 伊人亚洲综合成人网| 热99re8久久精品国产| 中国国产av一级| 99热全是精品| 欧美激情 高清一区二区三区| 十八禁人妻一区二区| 午夜免费鲁丝| 纯流量卡能插随身wifi吗| 人人妻人人澡人人爽人人夜夜| 国产区一区二久久| 一级黄色大片毛片| 性色av乱码一区二区三区2| 午夜免费鲁丝| 精品乱码久久久久久99久播| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 亚洲av成人一区二区三| 亚洲成av片中文字幕在线观看| 美女扒开内裤让男人捅视频| 午夜影院在线不卡| 国产区一区二久久| 精品人妻1区二区| 亚洲色图 男人天堂 中文字幕| 亚洲一区中文字幕在线| 久久人妻福利社区极品人妻图片| 99久久综合免费| 久久av网站| 成人三级做爰电影| 国产在线观看jvid| 国产成人欧美在线观看 | 美女福利国产在线| 捣出白浆h1v1| 精品一区二区三区av网在线观看 | 欧美变态另类bdsm刘玥| 成人黄色视频免费在线看| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美软件| 成年动漫av网址| 美女大奶头黄色视频| 国产人伦9x9x在线观看| 狂野欧美激情性bbbbbb| 考比视频在线观看| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区| 国产色视频综合| 天堂8中文在线网| 久久久久久久国产电影| 99re6热这里在线精品视频| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 大香蕉久久成人网| 日韩大片免费观看网站| 国产成+人综合+亚洲专区| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 亚洲欧美精品综合一区二区三区| 亚洲国产精品999| a在线观看视频网站| 精品国产乱子伦一区二区三区 | 中亚洲国语对白在线视频| 欧美久久黑人一区二区| 午夜视频精品福利| 天堂中文最新版在线下载| 夫妻午夜视频| 悠悠久久av| 国内毛片毛片毛片毛片毛片| 男女高潮啪啪啪动态图| 亚洲成人免费电影在线观看| 午夜福利一区二区在线看| 最新在线观看一区二区三区| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 免费在线观看黄色视频的| 老司机亚洲免费影院| 1024香蕉在线观看| 精品国产乱码久久久久久小说| 欧美乱码精品一区二区三区| 一边摸一边做爽爽视频免费| 激情视频va一区二区三区| 久久久久久久精品精品| 日韩视频在线欧美| 国产免费福利视频在线观看| 国产日韩一区二区三区精品不卡| 亚洲成人免费电影在线观看| 精品人妻在线不人妻| 亚洲国产毛片av蜜桃av| 日韩大码丰满熟妇| 亚洲专区字幕在线| 午夜福利乱码中文字幕| 久久天躁狠狠躁夜夜2o2o| 国产成人精品久久二区二区免费| 久久精品熟女亚洲av麻豆精品| 日本av免费视频播放| 久久精品熟女亚洲av麻豆精品| 18在线观看网站| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 日本wwww免费看| 国产亚洲精品一区二区www | 18禁黄网站禁片午夜丰满| 亚洲一区中文字幕在线| 亚洲中文av在线| 一级毛片电影观看| 老熟女久久久| 久久精品成人免费网站| 9色porny在线观看| 亚洲av电影在线观看一区二区三区| 久久久久久久大尺度免费视频| 久久精品国产亚洲av高清一级| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 嫁个100分男人电影在线观看| 午夜91福利影院| 一区二区日韩欧美中文字幕| 久久九九热精品免费| 久久国产精品人妻蜜桃| 男女无遮挡免费网站观看| 国产欧美日韩综合在线一区二区| av不卡在线播放| 日韩欧美一区视频在线观看| av福利片在线| 国产精品久久久久久精品电影小说| 日本精品一区二区三区蜜桃| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 国产不卡av网站在线观看| 一级片'在线观看视频| 免费在线观看影片大全网站| 黄频高清免费视频| 久久午夜综合久久蜜桃| 精品亚洲乱码少妇综合久久| 亚洲熟女精品中文字幕| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 免费在线观看完整版高清| √禁漫天堂资源中文www| 亚洲专区中文字幕在线| 亚洲av国产av综合av卡| 欧美 亚洲 国产 日韩一| 国产不卡av网站在线观看| 夜夜夜夜夜久久久久| 999精品在线视频| 51午夜福利影视在线观看| 午夜日韩欧美国产| av视频免费观看在线观看| 精品欧美一区二区三区在线| 亚洲伊人色综图| 亚洲一区二区三区欧美精品| 国产精品1区2区在线观看. | 又大又爽又粗| 欧美人与性动交α欧美软件| 久久精品aⅴ一区二区三区四区| 国产精品秋霞免费鲁丝片| 不卡一级毛片| 亚洲av欧美aⅴ国产| 91精品伊人久久大香线蕉| av有码第一页| 9色porny在线观看| 乱人伦中国视频| 亚洲人成电影观看| 天天躁日日躁夜夜躁夜夜| 亚洲第一青青草原| 国产精品一区二区在线不卡| avwww免费| 精品久久久久久电影网| 亚洲精品在线美女| 交换朋友夫妻互换小说| 欧美日韩国产mv在线观看视频| 99精品欧美一区二区三区四区| 各种免费的搞黄视频| 久久久久久久大尺度免费视频| 在线看a的网站| 久久 成人 亚洲| 欧美老熟妇乱子伦牲交| 热99re8久久精品国产| 亚洲国产欧美一区二区综合| 法律面前人人平等表现在哪些方面 | 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 人人妻人人澡人人看| 狠狠精品人妻久久久久久综合| 99香蕉大伊视频| 中文字幕制服av| 日本一区二区免费在线视频| 飞空精品影院首页| 欧美日韩福利视频一区二区| 热re99久久精品国产66热6| 十八禁人妻一区二区| 不卡av一区二区三区| 涩涩av久久男人的天堂| 欧美日韩成人在线一区二区| 国产精品熟女久久久久浪| 捣出白浆h1v1| 亚洲国产中文字幕在线视频| 在线观看人妻少妇| 男女无遮挡免费网站观看| 亚洲性夜色夜夜综合| 免费av中文字幕在线| 性色av一级| 国产亚洲av高清不卡| 宅男免费午夜| 成人影院久久| 久久久精品免费免费高清| 操出白浆在线播放| 精品国产超薄肉色丝袜足j| 国产不卡av网站在线观看| 性高湖久久久久久久久免费观看| 69精品国产乱码久久久| 午夜91福利影院| 90打野战视频偷拍视频| 亚洲av片天天在线观看| 少妇 在线观看| 久久久久久久久久久久大奶| 亚洲自偷自拍图片 自拍| 99精国产麻豆久久婷婷| 国产1区2区3区精品| 深夜精品福利| 91老司机精品| 一本一本久久a久久精品综合妖精| 国产高清国产精品国产三级| 欧美变态另类bdsm刘玥| 男女高潮啪啪啪动态图| 午夜福利一区二区在线看| 欧美国产精品一级二级三级| 两个人免费观看高清视频| 欧美另类一区| 国产精品久久久人人做人人爽| 黑人猛操日本美女一级片| 日韩欧美一区视频在线观看| 国产成人啪精品午夜网站| 精品视频人人做人人爽| 美女扒开内裤让男人捅视频| 青春草视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 国产在线观看jvid| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 国产欧美日韩一区二区精品| av天堂在线播放| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 久久久精品国产亚洲av高清涩受| 啦啦啦啦在线视频资源| 最新的欧美精品一区二区| 国产精品免费视频内射| 纵有疾风起免费观看全集完整版| 黑人操中国人逼视频| 日本精品一区二区三区蜜桃| 国产精品一区二区免费欧美 | 亚洲欧美一区二区三区黑人| 免费日韩欧美在线观看| 亚洲性夜色夜夜综合| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| av不卡在线播放| 男女下面插进去视频免费观看| 老司机在亚洲福利影院| 亚洲精华国产精华精| 国产精品一二三区在线看| tocl精华| 欧美 日韩 精品 国产| 国产麻豆69| 国产深夜福利视频在线观看| 女人精品久久久久毛片| 国产又爽黄色视频| 久久久久国产一级毛片高清牌| 免费黄频网站在线观看国产| 日本撒尿小便嘘嘘汇集6| videos熟女内射| 亚洲免费av在线视频| 国产精品影院久久| av福利片在线| 婷婷色av中文字幕| av福利片在线| 亚洲精品国产av蜜桃| 大片电影免费在线观看免费| 亚洲精品美女久久av网站| 欧美精品啪啪一区二区三区 | 成年人午夜在线观看视频| 久9热在线精品视频| 精品一区二区三卡| 国精品久久久久久国模美| 亚洲av日韩在线播放| 成人av一区二区三区在线看 | 久久中文看片网| 美国免费a级毛片| 黄片大片在线免费观看| tube8黄色片| 黑人欧美特级aaaaaa片| 香蕉丝袜av| 亚洲熟女毛片儿| 久久久久久亚洲精品国产蜜桃av| 精品乱码久久久久久99久播| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品av麻豆狂野| 国产成人精品无人区| 999久久久国产精品视频| 国产亚洲午夜精品一区二区久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 丝瓜视频免费看黄片| 久久ye,这里只有精品| 亚洲性夜色夜夜综合| 激情视频va一区二区三区| 精品久久蜜臀av无| 在线天堂中文资源库| 欧美日韩av久久| 三级毛片av免费| kizo精华| 美国免费a级毛片| 亚洲色图 男人天堂 中文字幕| 精品一区二区三卡| 美女福利国产在线| 亚洲人成电影观看| 亚洲第一av免费看| 91精品国产国语对白视频| 免费看十八禁软件| av在线老鸭窝| 国产99久久九九免费精品| 母亲3免费完整高清在线观看| 乱人伦中国视频| 9色porny在线观看| 高清黄色对白视频在线免费看| 纯流量卡能插随身wifi吗| av一本久久久久| 中文字幕另类日韩欧美亚洲嫩草| 999久久久精品免费观看国产| 国产男人的电影天堂91| 国产欧美亚洲国产| 亚洲精品一卡2卡三卡4卡5卡 | 女人被躁到高潮嗷嗷叫费观| svipshipincom国产片| 亚洲性夜色夜夜综合| 999精品在线视频| 亚洲欧洲日产国产| 女人久久www免费人成看片| 一边摸一边做爽爽视频免费| 中文字幕色久视频| 19禁男女啪啪无遮挡网站| 久久国产精品影院| 一本色道久久久久久精品综合| 国产欧美亚洲国产| 久久人人爽人人片av| 老司机午夜福利在线观看视频 | 精品免费久久久久久久清纯 | 亚洲精品在线美女| www.精华液| 成在线人永久免费视频|