• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time-asynchrony identi fi cation between inertial sensors in SIMU

    2015-12-23 10:09:08GongminYanXiSunJunWengQiZhou2andYongyuanQin

    Gongmin Yan,*,XiSun,Jun Weng,QiZhou2,and Yongyuan Qin

    1.Schoolof Automation,Northwestern Polytechnical University,Xi’an 710072,China; 2.Xi’an Flight Automatic Control Research Institute,Xi’an 710065,China

    Time-asynchrony identi fi cation between inertial sensors in SIMU

    Gongmin Yan1,*,XiSun1,Jun Weng1,QiZhou2,and Yongyuan Qin1

    1.Schoolof Automation,Northwestern Polytechnical University,Xi’an 710072,China; 2.Xi’an Flight Automatic Control Research Institute,Xi’an 710065,China

    Traditionalstrapdown inertialnavigation system(SINS) algorithm studies are based on ideal measurements from gyros and accelerometers,while in the actual strapdown inertial measurement unit(SIMU),time-asynchrony between each inertial sensor is inevitable.Testing principles and methods for timeasynchrony parameter identi fi cation are studied.Under the singleaxis swaying environment,the relationships between the SINS platform drift rate and the gyro time-asynchrony are derived using the SINS attitude error equation.It is found that the gyro timeasynchrony error can be considered as a kind of pseudo-coning motion error caused by data processing.After gyro testing and synchronization,the single-axis tumble test method is introduced for the testing ofeach accelerometer time-asynchrony with respect to the ideal gyro triad.Accelerometer time-asynchrony parameter identi fi cation models are established using SINS speci fi c force equation.Finally,all of the relative time-asynchrony parameters between inertial sensors are well identi fi ed by using fi ber optic gyro SIMU as experimentalveri fi cation.

    strapdown inertial navigation system(SINS),timeasynchrony,pseudo-coning error,velocity error.

    1.Introduction

    The traditional strapdown inertial navigation system (SINS)algorithms mainly focus on the compensation of attitude coning error,velocity sculling error and position scrolling error[1-7],where a basic assumption is implied thatallof the measurements from inertialsensors are fully synchronized in space and in time.However,for measurements from different sensors in the actual engineering strapdown inertialmeasurementunit(SIMU),there inevitably exist spatial and temporal asynchrony errors.In recent years,many effective methods have been acquired for spatial asynchrony issues[7-12],whereas the time asynchrony problem is comparatively concealed and complicated,still remaining as a hot topic to be resolved.Researchers have proposed a bunch of correction or compensation methods for coning and sculling errors based on the analysis of the frequency characteristics of actual inertial sensors[13-16].For example,in[15],in order to achieve time synchronization between accelerometer triad and gyro triad,accelerometer sampling signals are manipulated via a speci fi c digital fi lter,which is just the same fi lter used to process the high-frequency sampling signals forring laser gyros.However,the phase-frequency characteristics of these two types of inertial sensors,gyros and accelerometers,are mutually differentin actual SIMU,so the approach presented in[15]is quite incomplete.Reference[16]gives a correction method for sculling error compensation on the basis of accelerometerphase-shifterror,but itrelies on the precondition thatthe transfer function models of accelerometers have been obtained.Even so,these models are very dif fi cult to set up accurately in most cases for a real system.Besides,some other timedelay factors,like the signal transmission delays,are not comprehensively considered in these literature.

    Based on the synchronized assumption between gyro triads and between accelerometer triads,experimental methods presented in[17]estimate the relative time-delay (or phase shift)between the accelerometer triad and the gyro triad.It has been proved that the time-delay effects are crucial in increasing the SINS velocity updating accuracy under the tumble test circumstance.However,if going a step further,itcan be concluded accordingly thatthe time asynchrony errors between gyro triads,and between accelerometer triads,have not yet been fully considered, which willseverely affecthigh-precision SINS,especially under a high-dynamic environment.These remaining issues are studied in depth in this paper,and testing methods are also broughtforward fortime-asynchrony between gyros,as well as between accelerometers.Finally,some testing experiments are carried outby using the fi ber-opticgyro(FOG)SIMUto realize time synchronization between allinertialsensors.

    2.Principles for time-asynchrony testing between gyros

    As shown in Fig.1,oxbybzbrepresents the body coordinate system of SIMU,denoted as b-frame for short.If SIMU experiences sinusoidal swaying about a fi xed axis oo'with angular rateαΩcos(Ωt),it is obvious that the projections of the angular magnitude to SIMU coordinate axes areαiΩ(i=x,y,z)Therefore,the swaying angular velocity can be expressed in a componentform:

    Fig.1 SIMU swaying along fixed axis oo'

    With the integral of(1)over time interval from 0 to t, the angular incrementis

    Due to the swaying of fi xed-axis rotation in Fig.1,the corresponding equivalentrotation vector can be obviously simpli fi ed asΦ=θ.

    Under a small swaying angle assumption and according to the relationship between the attitude transformation matrix and the equivalent rotation vector,an approximation could be given by

    where I is a 3×3 identity matrix,Φ=|Φ|is the magnitude of equivalent rotation vectorΦ,anddenotes the transformation matrix from time t to 0.

    The time-asynchrony effect of angular rate outputs between gyro triads should be considered in actual SIMU. Taking the navigation computer sampling time t as reference and assuming each time delay in the gyro triad to be τG,i(i=x,y,z),the actual outputs of the gyro angular velocity can be obtained by rewriting(1)as follows:

    Subtracting(1)from(4),the gyro angular outputerrors can be obtained,as

    If the‘East-North-Up’(E-N-U)local-level-northslaved coordinate system is selected as the navigation reference coordinate system,denoted as n-frame for short, the differential equation of SINS platform misalignment anglesφ=[φxφyφz]Tis given by[18]

    After SINS initial fi ne alignmentand within a shortperiod of pure inertial navigation,the fi rst two terms in(6),i.e.are reasonably smallenough to neglect, so the following emphasis is puton the analysis of the last term.

    Assume that b-frame is coincident with n-frame at the initialnavigation time 0.Replacingandδωrespectively in(6),and inserting with(3)and(5), yield

    Expanding(7)and analyzing the x-component,it is found that

    Assuming a small product valueΩτG,ibetween the swaying frequency and the time-asynchrony delay,there is the approximation

    Substituting(9)into(8),the DC componentin˙φxcan be given by

    Similarly,the DC components of˙φyand˙φzin(7)are respectively shown as

    Itis wellknown thatthere existnoncommutativity errors in SINS attitude updating for fi nite rotation,which means the SINS attitude updating is highly affected by the rotation orderofangularmovements.Underan angularmotion environment,the time-asynchrony outputs from gyros will result in a false attitude updating,which is not well consistent with actual angular motion sequence and will lead to attitude noncommutativity errors.Therefore,the timeasynchrony error can be essentially seen as a kind of noncommutativity errors caused by attitude computation,or it can be regarded as a pseudo-coning motion error[19,20]. Thus,in this paper,this error is called time-asynchrony pseudo-coning error due to phase-shiftintroduced by nonidealgyro outputs.

    In particular,assumeα=10?,Ω=2πrad/s(or 1 Hz) andτG,x-τG,y=0.01 ms in(13),then an average misalignment drift rate of˙ˉφz=0.62(?)/h can be obtained, which is much larger than the drift error of the inertialgrade gyro(0.01(?)/h).This numericalexample shows that much more attention should be paid to high precision SINS especially underan intense circumstance.

    Conversely,the above analyses also provide a perfect idea for the time-asynchrony error identi fi cation between gyros,which can be implemented by introducing timeasynchrony pseudo-coning errors through experimental methods.If SIMU undergoes fi xed-axis swaying motion using the turntable under the laboratory condition,then with no much arrangement from(10)-(12),the following matrix equation can be easily gotten where sinusoidalswaying frequencyΩ,amplitudeαi,and misalignmentangle drift rateare all known parameters in the experiment.

    Unfortunately,in(14)the rank of the coef fi cientmatrix aboutthe unknown time-asynchrony parameters is 2.As a result,only the relative time-asynchrony,τG,i-τG,j(i,j= x,y,z;i/=j),between any two gyros will be calculated, but none of the absolute time-asynchronyτG,ican be separately identi fi ed.

    When obtaining the time-asynchrony parameters between gyro triads,a linear extrapolation or interpolation algorithm can be used to exactly adjustthe outputtimes of any two gyros to the third gyro,so that all of the output times in gyro triads will be well synchronized.The synchronization algorithms were derived in[17].In the following section for accelerometer time-asynchrony analysis,we assume thatthe time-asynchrony between gyros has been fully tested and compensated,thatis to say,the gyro outputs are considered to be ideally synchronized.

    3.Principles for time-asynchrony testing between accelerometers

    As shown in Fig.2,the SIMU oybaxis lies in horizontal and north directions,pointing inside and being perpendicularto the paperplane in this diagram.If b-frame coincides with n-frame atthe initialnavigation time 0,and SIMU rotates around the oybaxis with a constantangular rateωyto rollangleγ,then oxbzbrepresents the new orientation of b-frame computed and determined by the ideal gyro triad. Thus,the SIMUattitude direction cosine matrix can be described as

    Fig.2 Time-delay diagram for accelerometer rolling motion

    Atthe angularposition oxbzb,the idealspeci fi c force,or named as virtual speci fi c force,projecting in b-frame can be calculated via transformation matrix Cnb,with the result beingwhere gn=[0 0-g]Tand g is the magnitude of local gravity,which is approximately 9.8 m/s2.

    However,because ofthe time-asynchrony ofaccelerometeroutputs with respectto gyro triads,the sensitive axis of the oxb-axis accelerometeris actually along the oxAorientation,as shown in Fig.2.Hence,there exists a small roll angle errorδγx=∠x(chóng)Aoxb=γ-?γx,and then the actually sensed output of the oxb-axis accelerometer is expressed by

    where sinδγx≈δγxand cosδγx≈1.

    Similarly,the actual sensitive axis of the ozb-axis accelerometer is along the ozAorientation.By de fi ning anotherrollangle errorδγz=∠zAozb=γ-?γz,the ozb-axis accelerometeroutputis given by

    Whereas,for the oyb-axis accelerometer,its sensitive axis is always along the horizontaldirection with zero output,?fbsf,y≡0,so the oyb-axis accelerometer is absolutely insensitive to the time-asynchrony in the oyb-axis tumble test.

    In the following partofthis section,two data processing methods for deriving accelerometer time-asynchrony parameters willbe introduced.For convenience and simpli fication,the symbolτA,iis denoted as the time-asynchrony of the oib-axis(i=x,y,z)accelerometer with respect to gyro triads.

    3.1 Method I

    By combining actual speci fi c force outputfrom the oxb-axis accelerometer with the virtual speci fi c forcesfrom the other two axes,here a new speci fi c force vector is de fi ned as

    Let roll angleγ=ωyt and the roll angle error of the oxb-axis accelerometerδγx=ωyτA,x.After m cycles of uniform rolling,i.e.a rotation of m×360?,the variation of the SINS eastern velocity can be obtained from the integral of(20),with the following result

    Equations(21)and(22)show thatif SIMU rotates about an axis along the horizontaland north orientations,the accelerometer time-asynchrony parameters of the other two axes can be identi fi ed from the SINS eastern velocity errors by constructing new speci fi c force vectors and implementing SINS velocity updating.

    3.2 Method II

    In contrastwith Method I,directly applying the actualspec i fi c force output vector

    Similar to(21),assuming m cycles of uniform rolling rotation and integrating(23),the variation of SINS eastern velocity errors is given by

    For example,if m=1 andτA,x=1 ms,the velocity variation is approximately

    On the other hand,if the new speci fi c force vector is constructed as,by using the same data processing method shown in(20)and(21),it can be easily obtained thatObviously,parametersτA,xandτA,zcannot be separated in(24)by only one single-axis rotation testing.Assuming τA,x=τA,z,(24)is completely consistentwith the result in[17].Therefore,the research in[17]can be seen as a specialcase study in this paper.

    Itis noted thatthere are some differences between these two data processing methods.In Method II,actualspeci fi c force outputs are directly used for the navigation velocity updating.It avoids the inconvenience of constructing virtualspeci fi c forces,butthree rotation tests,by placing oxb, oyband ozbaxes in the horizontal and the north orientations respectively,are demanded to separately identify all ofthe time-asynchrony parameters.While in Method I,two time-asynchrony parameters can be obtained within the individual rotation test.Therefore,only two rotation tests, such as rotations about oxb-axis and oyb-axis,are enough to solve allof the three parameters.

    4.Testing and analyses

    The fi ber optic gyro(FOG)SIMU and the swaying turntable are two kinds of main equipmentused in the following laboratory experiments,where the FOG-SIMU is close to inertial-grade with a gyro bias stability of about 0.01(?)/h and an accelerometer bias repeatability of about 5×10?5g.Although the gyro and accelerometer outputs for this FOG-SIMU are in angular and velocity increment mode,it can be proved easily that the results from(14), (22)and(24)are stillapplicable.

    The main performances of the turntable are as follows: angular position accuracy 2',angular rate accuracy and smoothness 5×10?5(within 360?),swaying amplitude≥10?,swaying frequency≤1 Hz.

    4.1 Gyro testing

    Firstly,the FOG-SIMU is installed on the swaying turntable with xbybzbcoordinate axes approximately pointing to E-N-U geographic orientations respectively. Aftera 10 min initial fi ne alignmenton the stationary base, FOG-SIMU goes into a navigation mode of attitude updating,and the velocity updating can be negligible ordirectly setto 0.Record the turntable’s initialangular position and keep stationary for a shorttime,then undertake sinusoidal swaying about the diagonal of FOG-SIMU oxband oybaxes with swaying amplitude 10?and frequency 1 Hz.The swaying duration is about33 s.When it stops,restore the turntable to its initialposition and keep stationary forshort time.

    Fig.3 shows the azimuth variation in the SINS attitude updating process.It indicates that azimuth variation changes very slowly in both stationary stages,butan obvious and linear drifttrend occurs during the swaying stage, which is obviously caused by the time-asynchrony error between oxband oybgyros.

    Fig.3 Relative azimuth variation for gyro testing

    In Fig.3,the azimuth variation between two stationary stages is about-0.016?,which is equivalent to the misalignment drift angleSubstituting the aforementioned experimental parameters into(13),yields then gives the solution with arrangementτG,x-τG,y= -0.028 ms.

    Due to the gyro random drift error,about 0.001?variation in Fig.3 during stationary stages,plus the turntable accuracy 2'',the uncertainty of the gyro time-asynchrony error is estimated by 0.028 ms×(0.001?+2'')/0.016?≈0.003 ms.

    Similarly,when the turntable sways about the diagonal of FOG-SIMU ybzbaxes,the resultofτG,y-τG,z= 0.039 ms can be obtained from the testing.While swaying aboutthe diagonalof SIMU ybzbaxes,τG,z-τG,x= -0.017 ms is gotten.

    Finally,it is easy to verify that the above three timeasynchrony error values in these tests can almost form a closed-loop relationship,as(τG,x-τG,y)+(τG,y-τG,z)+ (τG,z-τG,x)=(-0.028 ms)+0.039 ms+(-0.017 ms)= -0.006 ms≈0.

    4.2 Accelerometer testing

    In the previous subsection ofgyro time-asynchrony testing and compensation,the ozb-axis gyro output time is taken as synchronization reference,so the gyro triad is considered to be well synchronized.In this subsection,assume that inner lever arm errors for accelerometers have been pre-compensated before the time-asynchrony testing.

    Similar to the FOG-SIMU installation for gyro testing,let xbybzbcoordinate axes approximately point to E-N-U geographic orientations respectively.After a 10 min initial fi ne alignmenton the stationary base,FOGSIMU carries out both attitude and velocity updating simultaneously.In the attitude updating algorithm,it takesadvantage of the gyro data with time-asynchrony compensation to minimize attitude errors.While in the velocity updating algorithm,it utilizes the new speci fi c force vector constructed by(19)as the input.Rotate the turntable about FOG-SIMU oyb-axis with an angular rate 50(?)/s. After each cycle of turntable rotations,keep it stationary for a short time,and a total rotation of three cycles is experienced.Using the data processing method presented in Subsection 3.1,the SINS eastern velocity variation is obtained and shown in Fig.4.

    Fig.4 Eastern velocity variation for accelerometer testing

    In Fig.4,the totaleastern velocity variation within three cycles of turntable rotation is 0.262 m/s.Substituting the above experimental parameters into(21),we will get the solution.

    In a similar way as gettingτA,x,we will haveτA,y= 2.262 ms andτA,z=2.442 ms according to more laboratory experiments,butwith no detailnecessarily repeated here.

    To sum up allthe testing results ofgyros and accelerometers,a schematic diagram for time-asynchrony relationships between FOG-SIMU sensors is shown in Fig.5, where Gx,Gy,Gz,Ax,Ay,Azare denoted as gyros and accelerometers respectively,

    Fig.5 Time-asynchrony diagram for FOG-SIMU

    It shows that the time-asynchrony errors between gyros are relatively small,only in the order of 0.01 ms,and the time-asynchrony errors between accelerometers are in the order of 0.1 ms,while the time-asynchrony errors between gyros and accelerometers are comparatively large, in the order of 1 ms.Note that the time interval between the gyro Gzoutputand the navigation computer sampling time tihas not yet been solved by the testing method in this paper.Surely,this time difference affects little on the accuracy of the pure inertial navigation algorithm,but it is likely to bring negative impactwhen SIMU is integrated with otherdevices,such as in high-precision SINS/GPS integrated navigation solution,which needs further studies.

    5.Conclusions

    In actual SIMU,in addition to the time-asynchrony between the gyro triad and the accelerometer triad,the timedelay characteristics of each gyro or each accelerometer are always notidentical,and these will also lead to corresponding time-asynchrony errors in SINS attitude and velocity updating algorithms.In this paper,the formulas between time-asynchrony parameters and platform misalignmentangles,and between time-asynchrony parameters and navigation velocity errors,are derived in detail,which provides a theoretical basis for laboratory testing design and also provides methods for time-asynchrony parameter identi fi cation.Finally,relative time-asynchrony parameters between inertialsensors are obtained in experimental testing using FOG-SIMU.The testing results show thatthe time-asynchrony parameters between gyros or between accelerometers are much smaller than thatbetween the gyro triad and the accelerometertriad.Even so,more attention is worthy to be paid to these small parameters especially for high-precision SINS under the severe environment.Carefultesting and compensation is of greatimportance for the improvementof SINS navigation accuracy.

    [1]R.B.Miller.A new strapdown attitude algorithm.Journal of Guidance,Control,and Dynamics,1983,6(4):287-291.

    [2]C.G.Park,K.J.Kim,J.G.Lee,et al.Formalized approach to obtaining optimalcoef fi cients for coning algorithms.Journal ofGuidance,Control,and Dynamics,1999,22(1):165-168.

    [3]P.G.Savage.Strapdown inertial navigation integration algorithm design,part II:velocity and position algorithm.Journal of Guidance,Control and Dynamics,1998,21(2):208-221.

    [4]M.B.Ignagni.Optimal sculling and coning algorithms for analog-sensor systems.Journal of Guidance,Control,and Dynamics,2012,35(3):851-860.

    [5]Y.Chen,Y.Zhao,Q.S.Li,etal.Coning compensation algorithm with angularrate considering gyroscope frequency characteristics.Journal of Beijing University of Aeronautics and Astronautics,2013,39(9):1228-1232.(in Chinese)

    [6]P.G.Savage.Strapdown analytics.2nd ed.Maple Plain:Strapdown Associates Inc,2007.

    [7]Y.X.Wu,J.L.Wang,D.W.Hu.A new technique for INS/GNSS attitude and parameter estimation using online optimization.IEEE Trans.on Signal Processing,2014,62(10): 2642-2655.

    [8]J.S.Xu,Y.J.Wang,Z.C.Xiao.Rapid transfer alignment for SINS of carrier craft.Journal ofSystems Engineering and Electronics,2013,24(2):303-308.

    [9]G.M.Yan,W.S.Yan,D.M.Xu.Analysis and compensation on inner lever arm effect of strapdown inertial measurement unit.Journal of Chinese Inertial Technology,2008,16(2): 148-153.(in Chinese)

    [10]G.M.Yan,Q.Zhou,J.Weng,etal.Inner lever arm compensation and its testveri fi cation for SINS.Journal ofAstronautics, 2012,33(1):62-67.(in Chinese)

    [11]L.Ren,J.B.Du,M.E.Wang.Error analysis and compensation ofsize effectin INS with IMU rotation.Acta Aeronautica etAstronautica Sinica,2013,34(6):1424-1435.(in Chinese)

    [12]C.W.Tan,S.Park.Design of accelerometer-based inertial navigation systems.IEEE Trans.on Instrumentation and Measurement,2005,54(6):2520-2530.

    [13]J.G.Mark,D.A.Tazartes.Tuning of coning algorithms to gyro data frequency response characteristics.Journal of Guidance,Control,and Dynamics,2001,24(4):641-647.

    [14]P.G.Savage.Coning algorithm design by explicit frequency shaping.Journal of Guidance,Control,and Dynamics,2010, 33(4):1123-1132.

    [15]X.F.Pan,W.Q.Wu,M.P.Wu.Optimization of sculling algorithms considering the signal process characteristics.JournalofChinese InertialTechnology,2007,15(5):536-541.(in Chinese)

    [16]P.G.Savage.Strapdown sculling algorithm design for sensor dynamic amplitude and phase-shifterror.JournalofGuidance, Control,and Dynamics,2012,35(6):1719-1729.

    [17]G.M.Yan,Q.Zhang,K.P.He,etal.Study on time-delay compensation of accelerometers in SINS.Journal of Astronautics, 2013,34(12):1578-1583.(in Chinese)

    [18]Y.Y.Qin.Inertial navigation.2nd ed.Beijing:Science Press, 2014.(in Chinese)

    [19]Y.Yu,H.Y.Zhang.Coning motion and pseudo-coning motion of SINS.Journal of Chinese Inertial Technology,2006,4(5): 1-4.(in Chinese)

    [20]P.G.Savage.Explicitfrequency shaped coning algorithms for pseudoconing environments.Journal of Guidance,Control, and Dynamics,2011,34(3):774-782.

    Biographies

    Gongmin Yan was born in 1977.He received his B.S.degree in automatic controland Ph.D.degree in navigation,guidance and control in Northwestern Polytechnical University in 2000 and 2006,respectively.Now he is an associate professor in the School of Automation,Northwestern Polytechnical University.He has authored more than 30 scienti fi c publications including one book.His research interests include inertial navigation,integrated navigation and data fusion.

    E-mail:yangongmin@163.com

    Xi Sun was born in 1990.She received her B.S. degree in automation in Northwestern Polytechnical University in 2012.Now she is a postgraduate student in the School of Automation,Northwestern Polytechnical University.Her research interests are inertialnavigation and IMU calibration.

    E-mail:susanxi2008@163.com

    Jun Weng was born in 1988.He received his M.S.degree in precise instrument and mechanics from Northwestern Polytechnical University in 2013.Now he is a Ph.D.candidate in the School of Automation,Northwestern Polytechnical University.His research interests mainly include inertial navigation and integrated navigation.

    E-mail:npu wengjun@sina.com

    QiZhou was born in 1984.He received his B.S.and Ph.D.degrees in Northwestern Polytechnical University in 2007 and 2013,respectively.Now he is an engineer in Xi’an Flight Automatic Control Research Institute,Aviation Industry Corporation of China.His research interests are inertial navigation and integrated navigation.

    E-mail:zhouqis@139.com

    Yongyuan Qin was born in 1946.He received his M.S.degree of engineering in Northwestern Ploytechnical University in 1981.He is a professor and a Ph.D.supervisor in the Schoolof Automation, Northwestern Polytechnical University.His research interests include gyro technology,inertial navigation,Kalman fi ltering,data fusion and fault detection.

    E-mail:qinyongyuan@nwpu.edu.cn

    10.1109/JSEE.2015.00040

    Manuscriptreceived April18,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61273333).

    免费看光身美女| 国产无遮挡羞羞视频在线观看| 下体分泌物呈黄色| 国产欧美另类精品又又久久亚洲欧美| 在线天堂最新版资源| 精品视频人人做人人爽| 97精品久久久久久久久久精品| 成人国产av品久久久| 久久久久人妻精品一区果冻| 免费高清在线观看日韩| 欧美日韩成人在线一区二区| 中文字幕精品免费在线观看视频 | 青春草视频在线免费观看| www.熟女人妻精品国产 | 综合色丁香网| 日韩人妻精品一区2区三区| 一个人免费看片子| 嫩草影院入口| 免费久久久久久久精品成人欧美视频 | 少妇的逼好多水| 久久精品久久精品一区二区三区| 另类精品久久| 色5月婷婷丁香| 成人毛片60女人毛片免费| 色婷婷av一区二区三区视频| 午夜91福利影院| 麻豆乱淫一区二区| 欧美激情 高清一区二区三区| 男女免费视频国产| 国产成人精品婷婷| 性色avwww在线观看| 欧美成人精品欧美一级黄| 97超碰精品成人国产| 久久99一区二区三区| 美女国产视频在线观看| 欧美日韩国产mv在线观看视频| 999精品在线视频| 国产成人午夜福利电影在线观看| 22中文网久久字幕| 国产精品三级大全| 国产精品.久久久| 日韩av不卡免费在线播放| 亚洲精品色激情综合| 亚洲婷婷狠狠爱综合网| 精品亚洲成a人片在线观看| 久久精品夜色国产| 一区二区三区精品91| 一个人免费看片子| 欧美激情国产日韩精品一区| 宅男免费午夜| 两个人看的免费小视频| 午夜福利在线观看免费完整高清在| 丝袜脚勾引网站| 搡女人真爽免费视频火全软件| 十八禁高潮呻吟视频| 午夜免费鲁丝| 亚洲国产欧美在线一区| 亚洲,一卡二卡三卡| 精品国产国语对白av| 成年人午夜在线观看视频| 久久久久国产精品人妻一区二区| 狠狠精品人妻久久久久久综合| 丁香六月天网| 国产成人午夜福利电影在线观看| 久久99一区二区三区| 中文字幕人妻熟女乱码| 国产成人精品久久久久久| 18禁在线无遮挡免费观看视频| 日韩av免费高清视频| 欧美日本中文国产一区发布| 18禁观看日本| 欧美人与性动交α欧美软件 | 国产国拍精品亚洲av在线观看| 边亲边吃奶的免费视频| 久久精品aⅴ一区二区三区四区 | 午夜老司机福利剧场| 亚洲成人一二三区av| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 一级a做视频免费观看| 日本av手机在线免费观看| 五月天丁香电影| 妹子高潮喷水视频| 国产一区有黄有色的免费视频| 国产色爽女视频免费观看| 亚洲精华国产精华液的使用体验| 天天操日日干夜夜撸| 亚洲精品aⅴ在线观看| 婷婷色综合大香蕉| 伦理电影免费视频| 老司机影院成人| 秋霞在线观看毛片| 又粗又硬又长又爽又黄的视频| av在线播放精品| 国产精品国产三级国产av玫瑰| 免费播放大片免费观看视频在线观看| 亚洲精品日韩在线中文字幕| 欧美人与性动交α欧美软件 | 中文欧美无线码| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 一区二区av电影网| 九九在线视频观看精品| 18禁国产床啪视频网站| 久久国内精品自在自线图片| 少妇猛男粗大的猛烈进出视频| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 久久女婷五月综合色啪小说| av免费观看日本| 夫妻午夜视频| 欧美 亚洲 国产 日韩一| 妹子高潮喷水视频| 亚洲三级黄色毛片| 在线天堂最新版资源| 亚洲国产av影院在线观看| 国产一区二区在线观看av| 精品一品国产午夜福利视频| 18禁国产床啪视频网站| 午夜91福利影院| 亚洲国产欧美在线一区| 99视频精品全部免费 在线| 妹子高潮喷水视频| 日本av手机在线免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲精品第二区| 日韩欧美精品免费久久| 亚洲成人手机| 中国三级夫妇交换| 国产精品三级大全| 日韩不卡一区二区三区视频在线| 寂寞人妻少妇视频99o| 91午夜精品亚洲一区二区三区| 国产精品无大码| a级毛片在线看网站| 天天躁夜夜躁狠狠躁躁| 亚洲成人一二三区av| 日韩免费高清中文字幕av| 男人操女人黄网站| 亚洲成色77777| 夜夜爽夜夜爽视频| 日韩 亚洲 欧美在线| 国产成人av激情在线播放| 国产一区二区三区av在线| 国产又爽黄色视频| 欧美成人午夜精品| 久久青草综合色| 色吧在线观看| 人人妻人人澡人人看| 如日韩欧美国产精品一区二区三区| 大香蕉久久网| 熟妇人妻不卡中文字幕| 日本爱情动作片www.在线观看| 免费高清在线观看视频在线观看| 一级爰片在线观看| 午夜激情av网站| 亚洲欧美日韩卡通动漫| 2018国产大陆天天弄谢| 街头女战士在线观看网站| 欧美激情极品国产一区二区三区 | av线在线观看网站| 美女福利国产在线| 亚洲成国产人片在线观看| 亚洲熟女精品中文字幕| 欧美精品av麻豆av| 性色av一级| 久久久久精品人妻al黑| 伊人亚洲综合成人网| 精品人妻熟女毛片av久久网站| 女人被躁到高潮嗷嗷叫费观| 又黄又粗又硬又大视频| 欧美日韩国产mv在线观看视频| 在线观看美女被高潮喷水网站| 亚洲情色 制服丝袜| 亚洲av成人精品一二三区| 国产精品久久久久久久电影| 欧美日本中文国产一区发布| 尾随美女入室| 丝瓜视频免费看黄片| 韩国高清视频一区二区三区| 亚洲四区av| 精品少妇内射三级| 久久韩国三级中文字幕| 免费不卡的大黄色大毛片视频在线观看| 久久久亚洲精品成人影院| 亚洲欧美成人精品一区二区| 国产av一区二区精品久久| av线在线观看网站| 欧美丝袜亚洲另类| 18禁动态无遮挡网站| 欧美3d第一页| 久久久精品区二区三区| 又粗又硬又长又爽又黄的视频| 成人毛片a级毛片在线播放| 少妇被粗大的猛进出69影院 | 女性生殖器流出的白浆| 亚洲经典国产精华液单| 精品人妻熟女毛片av久久网站| 久久鲁丝午夜福利片| 熟妇人妻不卡中文字幕| 成人二区视频| 高清视频免费观看一区二区| 777米奇影视久久| 老司机影院成人| 狂野欧美激情性bbbbbb| 久久亚洲国产成人精品v| 视频在线观看一区二区三区| av天堂久久9| 乱人伦中国视频| 欧美日韩综合久久久久久| 精品一区二区三区四区五区乱码 | av免费观看日本| 观看美女的网站| 啦啦啦啦在线视频资源| 深夜精品福利| 成人国产麻豆网| av播播在线观看一区| 九色成人免费人妻av| 日本欧美国产在线视频| 久久这里有精品视频免费| 99国产综合亚洲精品| 九九爱精品视频在线观看| av电影中文网址| 最近中文字幕高清免费大全6| 男人爽女人下面视频在线观看| 亚洲,一卡二卡三卡| 少妇猛男粗大的猛烈进出视频| 亚洲av.av天堂| 激情五月婷婷亚洲| 精品人妻偷拍中文字幕| 国产免费福利视频在线观看| 日韩一本色道免费dvd| 街头女战士在线观看网站| 国产精品国产三级专区第一集| 国产 一区精品| 精品福利永久在线观看| 中文字幕人妻丝袜制服| 午夜福利网站1000一区二区三区| 亚洲国产精品一区二区三区在线| www.av在线官网国产| av有码第一页| 岛国毛片在线播放| 亚洲欧美成人精品一区二区| 在线亚洲精品国产二区图片欧美| 2021少妇久久久久久久久久久| 啦啦啦中文免费视频观看日本| 天堂8中文在线网| 日日撸夜夜添| 亚洲熟女精品中文字幕| 最黄视频免费看| a级片在线免费高清观看视频| 欧美精品亚洲一区二区| 亚洲高清免费不卡视频| 一区二区三区四区激情视频| 国产成人a∨麻豆精品| 成人无遮挡网站| 国产黄色视频一区二区在线观看| 麻豆乱淫一区二区| 欧美日韩亚洲高清精品| 十八禁高潮呻吟视频| 久久久久久人妻| 一级爰片在线观看| 丝袜喷水一区| 久久久久久久亚洲中文字幕| 欧美3d第一页| 日韩精品免费视频一区二区三区 | av有码第一页| 亚洲av中文av极速乱| 一本色道久久久久久精品综合| 国产免费视频播放在线视频| 久久精品国产综合久久久 | 美女内射精品一级片tv| 在线观看免费高清a一片| 亚洲欧美日韩卡通动漫| 久久国产亚洲av麻豆专区| 午夜激情av网站| 久久久a久久爽久久v久久| 久久精品国产亚洲av天美| 丝袜喷水一区| 欧美变态另类bdsm刘玥| 欧美激情 高清一区二区三区| 亚洲,欧美,日韩| 满18在线观看网站| 午夜av观看不卡| 777米奇影视久久| 国产免费一区二区三区四区乱码| a级毛片黄视频| 亚洲精品中文字幕在线视频| 老女人水多毛片| 免费看不卡的av| 久久精品人人爽人人爽视色| 国产福利在线免费观看视频| 成人黄色视频免费在线看| 久久99一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 纯流量卡能插随身wifi吗| 夜夜爽夜夜爽视频| 亚洲精品一区蜜桃| 日韩视频在线欧美| 亚洲,欧美精品.| 全区人妻精品视频| 欧美精品人与动牲交sv欧美| 婷婷色麻豆天堂久久| 最新中文字幕久久久久| 国产亚洲午夜精品一区二区久久| 夫妻午夜视频| 久久精品国产综合久久久 | 久久久久久久精品精品| 免费观看性生交大片5| 一区二区三区四区激情视频| 久久久久网色| 18禁动态无遮挡网站| 伊人久久国产一区二区| kizo精华| 人人妻人人爽人人添夜夜欢视频| 亚洲av日韩在线播放| 黄片播放在线免费| 欧美日韩视频高清一区二区三区二| 一级毛片电影观看| 亚洲情色 制服丝袜| 久久久久久久精品精品| 久久久精品94久久精品| 人人妻人人添人人爽欧美一区卜| 女性被躁到高潮视频| 久热久热在线精品观看| 国产日韩欧美在线精品| 久久精品熟女亚洲av麻豆精品| 亚洲国产看品久久| 久久毛片免费看一区二区三区| 精品国产露脸久久av麻豆| 国产精品麻豆人妻色哟哟久久| 韩国精品一区二区三区 | 在线免费观看不下载黄p国产| 在线免费观看不下载黄p国产| 国产日韩欧美亚洲二区| av在线老鸭窝| 午夜福利视频在线观看免费| av视频免费观看在线观看| 成人亚洲欧美一区二区av| 成人免费观看视频高清| 满18在线观看网站| 日产精品乱码卡一卡2卡三| 七月丁香在线播放| 黄色怎么调成土黄色| www日本在线高清视频| 国产片特级美女逼逼视频| 最后的刺客免费高清国语| 一本久久精品| 国产成人a∨麻豆精品| 热re99久久国产66热| 精品国产国语对白av| 高清欧美精品videossex| 午夜免费鲁丝| 亚洲欧美中文字幕日韩二区| 久久久久国产精品人妻一区二区| 亚洲成人一二三区av| 久久久久久久亚洲中文字幕| 亚洲经典国产精华液单| 一级,二级,三级黄色视频| 国产成人91sexporn| 校园人妻丝袜中文字幕| 国产视频首页在线观看| 久久久久网色| 少妇人妻精品综合一区二区| 欧美丝袜亚洲另类| 亚洲三级黄色毛片| 亚洲中文av在线| 国产黄色免费在线视频| 高清av免费在线| 又黄又粗又硬又大视频| 高清毛片免费看| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 亚洲精品乱久久久久久| 欧美 亚洲 国产 日韩一| av在线app专区| 看免费成人av毛片| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看| 九色成人免费人妻av| 婷婷色综合www| 国产欧美日韩一区二区三区在线| 亚洲av在线观看美女高潮| 亚洲精品美女久久久久99蜜臀 | 国产在线免费精品| 国产 一区精品| 黑人欧美特级aaaaaa片| 2021少妇久久久久久久久久久| 国产黄色视频一区二区在线观看| 国产色婷婷99| 日韩中字成人| 人妻少妇偷人精品九色| 国产精品一区二区在线观看99| 精品久久国产蜜桃| 久久精品国产鲁丝片午夜精品| 欧美精品人与动牲交sv欧美| 免费黄色在线免费观看| 波多野结衣一区麻豆| 亚洲国产欧美日韩在线播放| 日韩不卡一区二区三区视频在线| 少妇人妻精品综合一区二区| 99视频精品全部免费 在线| 黑人欧美特级aaaaaa片| 男女无遮挡免费网站观看| 五月伊人婷婷丁香| 国产1区2区3区精品| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 欧美精品一区二区免费开放| 人妻少妇偷人精品九色| 日本-黄色视频高清免费观看| 高清不卡的av网站| 蜜桃在线观看..| 在线观看三级黄色| 天天躁夜夜躁狠狠躁躁| 街头女战士在线观看网站| 在现免费观看毛片| 国产精品.久久久| 国产精品欧美亚洲77777| 九九爱精品视频在线观看| 国产成人精品久久久久久| 国精品久久久久久国模美| 欧美变态另类bdsm刘玥| 成人国产av品久久久| 少妇人妻久久综合中文| 久久久精品区二区三区| 纵有疾风起免费观看全集完整版| 亚洲婷婷狠狠爱综合网| 日本黄色日本黄色录像| 两个人看的免费小视频| 少妇被粗大的猛进出69影院 | 亚洲一级一片aⅴ在线观看| 青春草国产在线视频| 在线天堂最新版资源| av国产精品久久久久影院| 少妇被粗大的猛进出69影院 | 两个人看的免费小视频| 亚洲国产毛片av蜜桃av| 国产成人91sexporn| 高清欧美精品videossex| 十八禁网站网址无遮挡| 9色porny在线观看| 午夜免费观看性视频| 亚洲国产av影院在线观看| 青春草国产在线视频| 男女下面插进去视频免费观看 | 日韩 亚洲 欧美在线| 成人亚洲精品一区在线观看| 久久人人爽av亚洲精品天堂| 午夜福利乱码中文字幕| 国产麻豆69| 久久99热这里只频精品6学生| 亚洲国产毛片av蜜桃av| 极品人妻少妇av视频| 久热久热在线精品观看| 欧美精品一区二区免费开放| 国产精品99久久99久久久不卡 | 日韩av免费高清视频| 日本与韩国留学比较| 国产精品一区二区在线不卡| 三级国产精品片| 考比视频在线观看| 大话2 男鬼变身卡| 国产男人的电影天堂91| 国产成人av激情在线播放| a 毛片基地| 人妻 亚洲 视频| 亚洲一区二区三区欧美精品| 少妇的逼好多水| 人妻人人澡人人爽人人| 97在线人人人人妻| 久久精品人人爽人人爽视色| 日韩伦理黄色片| 久久97久久精品| 国产深夜福利视频在线观看| 久久久久久久久久人人人人人人| 美女国产视频在线观看| 久久精品国产综合久久久 | 免费黄色在线免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产欧美亚洲国产| 欧美日韩一区二区视频在线观看视频在线| 国产欧美另类精品又又久久亚洲欧美| 久久久久国产精品人妻一区二区| 男女无遮挡免费网站观看| 亚洲成人av在线免费| 91国产中文字幕| 久久韩国三级中文字幕| 十八禁高潮呻吟视频| 国产爽快片一区二区三区| 26uuu在线亚洲综合色| a级毛色黄片| 亚洲av中文av极速乱| 亚洲av综合色区一区| 欧美bdsm另类| 国产一区有黄有色的免费视频| 在线观看三级黄色| 中国美白少妇内射xxxbb| 丝袜美足系列| 日本黄大片高清| 亚洲欧美中文字幕日韩二区| 如日韩欧美国产精品一区二区三区| 中文字幕免费在线视频6| 亚洲av福利一区| 欧美+日韩+精品| 国语对白做爰xxxⅹ性视频网站| 中文天堂在线官网| 中文字幕制服av| 亚洲av福利一区| 久久久久久久久久成人| 中文字幕精品免费在线观看视频 | 亚洲高清免费不卡视频| 母亲3免费完整高清在线观看 | 免费黄频网站在线观看国产| 搡老乐熟女国产| 老司机影院毛片| 最近的中文字幕免费完整| 26uuu在线亚洲综合色| 亚洲国产看品久久| 亚洲欧美日韩卡通动漫| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 日本91视频免费播放| 五月伊人婷婷丁香| 性色av一级| 中文字幕制服av| 欧美日韩综合久久久久久| 嫩草影院入口| 色网站视频免费| 久久97久久精品| 18+在线观看网站| 极品人妻少妇av视频| 啦啦啦啦在线视频资源| 香蕉国产在线看| 男男h啪啪无遮挡| 18禁国产床啪视频网站| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 成人国语在线视频| 午夜福利,免费看| 婷婷色综合www| 免费高清在线观看视频在线观看| 涩涩av久久男人的天堂| 黑人欧美特级aaaaaa片| 永久网站在线| 久久久久久人人人人人| 一级a做视频免费观看| 亚洲久久久国产精品| 热99国产精品久久久久久7| 街头女战士在线观看网站| 我的女老师完整版在线观看| 少妇精品久久久久久久| 中国国产av一级| 日本免费在线观看一区| 999精品在线视频| 各种免费的搞黄视频| 精品少妇黑人巨大在线播放| 在线 av 中文字幕| 国产欧美日韩综合在线一区二区| 精品人妻在线不人妻| 亚洲高清免费不卡视频| 日产精品乱码卡一卡2卡三| 日本91视频免费播放| 成人漫画全彩无遮挡| 免费观看在线日韩| 女人被躁到高潮嗷嗷叫费观| √禁漫天堂资源中文www| 亚洲av电影在线进入| 成年人午夜在线观看视频| 国产欧美日韩综合在线一区二区| 考比视频在线观看| 国语对白做爰xxxⅹ性视频网站| 久久99蜜桃精品久久| 午夜影院在线不卡| 日日爽夜夜爽网站| 亚洲一区二区三区欧美精品| 91成人精品电影| 9色porny在线观看| 国产成人精品无人区| 九九爱精品视频在线观看| 中文字幕最新亚洲高清| 精品熟女少妇av免费看| 国产欧美日韩一区二区三区在线| 国产精品免费大片| 久久国产精品大桥未久av| 日韩一区二区三区影片| 日韩中文字幕视频在线看片| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 女人精品久久久久毛片| 捣出白浆h1v1| 亚洲欧美中文字幕日韩二区| 精品久久久久久电影网| 18禁国产床啪视频网站| 老司机亚洲免费影院| 亚洲欧美成人综合另类久久久| av视频免费观看在线观看| 一本久久精品| 中文字幕人妻熟女乱码| 热99久久久久精品小说推荐| 欧美人与性动交α欧美软件 | 大片免费播放器 马上看| 在线天堂最新版资源| 欧美人与善性xxx| 国产精品三级大全| 亚洲人成网站在线观看播放| av天堂久久9| 成年人免费黄色播放视频| 丝袜美足系列| 国产福利在线免费观看视频| 麻豆精品久久久久久蜜桃| 午夜av观看不卡|