• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Accelerated proportionaldegradation hazards-odds modelin accelerated degradation test

    2015-12-23 10:09:15

    1.Schoolof Reliability and Systems Engineering,Beihang University,Beijing 100191,China; 2.Departmentof Industrial Engineering,Tsinghua University,Beijing 100084,China

    Accelerated proportionaldegradation hazards-odds modelin accelerated degradation test

    Tingting Huang1,*and Zhizhong Li2

    1.Schoolof Reliability and Systems Engineering,Beihang University,Beijing 100191,China; 2.Departmentof Industrial Engineering,Tsinghua University,Beijing 100084,China

    An accelerated proportionaldegradation hazards-odds modelis proposed.Itis a non-parametric modeland thus has pathfree and distribution-free properties,avoiding the errors caused by faulty assumptions of degradation paths or distribution of degradation measurements.It is established based on a link function which combines the degradation cumulative hazard rate function and the degradation odds function through a transformation parameter,and this makes the accelerated proportionaldegradation hazards modeland the accelerated proportionaldegradation odds modelspecialcases ofit.Hypothesis tests are discussed,and the proposed modelis applicable when some modelassumptions are satis fi ed.This modelis utilized to estimate the reliability of miniature bulbs under low stress levels based on the degradation data obtained under high stress levels to validate the effectiveness of this model.

    accelerated proportional degradation hazards (APDH),accelerated proportionaldegradation odds(APDO),link function,non-parametric model,accelerated degradation test (ADT),reliability estimation.

    1.Introduction

    As products become more reliable and enduring,itis very dif fi cultto estimate the reliability of the products based on traditionalreliability tests[1].Itis also hard to obtain failure time data of the products through the accelerated life test(ALT).Fortunately,for many products,there is one or more measurements,representing productperformance which degrades with time and thus making degradation test (DT)applicable[2,3].However,in the DT,forsome cases, degradation data ofthe performance parameterof products obtained under normal operating conditions do not have an obvious degradation trend making it hard to estimate the reliability ofthe products.The accelerated degradation test(ADT)makes it possible to predict the reliability of high-reliable and long-lifetime products.In the ADT,products are tested under higher operating stress levels.Degradation data of the performance parameter are monitored and utilized to extrapolate the reliability of the products under normaloperating stress levels.

    Accelerated degradation models are used for reliability extrapolation in the ADT.Followed by the categories of approaches to prognosis[4],accelerated degradation models are divided into physics-based models,statistics-based models,and arti fi cial intelligence-based models.Physicsbased models,like Arrhenius modeland Eyring model,derive from physics or chemistry relationships and are used forspeci fi c stress types.For example,the Arrhenius model is used when products are exposed to high temperature[5]. Statistics-based models are based on statistical analysis methods.They are used for data processing when physicsbased models are not applicable.Statistics-based models can be divided into parametric models and non-parametric models[6].In parametric models,the number and meaning of model parameters are pre-determined,thus,a prespeci fi ed degradation path or distribution of degradation measurements is required.In non-parametric models,the number and meaning of model parameters remain fl exible,and thus,the non-parametric modelhas path-free and distribution-free properties.Arti fi cial intelligence-based models,which are proposed and developed in recentyears, are based on arti fi cialintelligenttechniques,such as arti ficial neural networks[7],support vector machine[8],and fuzzy theory[9].

    These three types of accelerated degradation models have theirmerits and drawbacks.The physics-based model requires speci fi c physics or chemistry relationships properly describing productfailure mechanisms.However,it is dif fi cult to establish such a relationship for every failure mechanism.The statistics-based modelis more fl exible and can be used in more reliability estimation cases,butitdoes not have any explicit physical meaning.The arti ficialintelligence-based modeldoes notrequire any speci fi c modelas in physics-based and statistics-based approaches. It has the self-training property,however,some obtained data are notfully used as they are used forverifying the established model.Neither does ithave any explicitphysical meaning.

    Statistics-based models can be further classi fi ed into parametric models and non-parametric models.A prespeci fi ed degradation path or distribution of degradation measurements is required in a parametric model.However, it might cause comparatively large errors if the assumed path or distribution is notin accordance with the realsituation.There are three approaches used in parametric models:the general degradation path model[10],the timedependentparameter distribution(random process)model [11],and the stochastic process model with independent increment[12-14].

    The non-parametric model is a path-free and distribution-free model.It avoids the errors caused by faulty assumption of degradation paths or distribution of degradation measurements.In[15]an accelerated degradation modelcalled non-parametric regression accelerated life-stress model was proposed,where it is assumed that various stress levels affect only the degradation rate,but not the shape of the degradation curve.In[16]a proportional wear-out model to analyze accelerated degradation data by non-parametric regression was presented.In[17] a non-parametric accelerated degradation model called (accelerated)proportionaldegradation hazards modelwas presented.This model assumes that stresses have a multiplicative effect on the baseline degradation hazard rate function.

    In this accelerated proportional degradation hazards (APDH)model,it is also assumed that the ratio of baseline degradation hazard rate functions atany speci fi c time under differentstress levels is a constant.However,sometimes,it happens that the baseline degradation odds functions ratherthan the baseline degradation hazard rate functions at any speci fi c time under different stress levels are proportional.

    This paper establishes a link function which combines the degradation cumulative hazard rate function and the degradation odds function through a transformation parameter.An accelerated proportionaldegradation hazardsodds(APDHO)modelis proposed based on this link function.It makes the APDH,which is proposed based on the degradation cumulative hazard rate function,and the accelerated proportional degradation odds(APDO)model, which can be proposed based on the degradation odds function,special cases of it.The proposed model is validated fi nally by an engineering case of miniature bulbs.

    2.The proposed APDHO

    In the ADT,the APDH model is proposed based on the degradation cumulative hazard rate function,while the APDO model can be proposed based on the degradation odds function.These two models have the assumption that either degradation cumulative hazard rate functions are proportional(for APDH model)or degradation odds functions are proportional(for the APDO model)at any time underdifferentstress levels.However,there are some cases that neither of the assumptions is violated in engineering applications.The APDHO model is proposed in this session and it makes the two models specialcases of it,thus, it no longer requires deciding which of the two models to use.

    A link function is de fi ned and it combines the degradation cumulative hazard rate function and the degradation odds function through a transformation parameter.It is formed as the productof the baseline link function and the effectof stress.The constraints of the link function are discussed before the formation of the baseline link function is given.The likelihood function is then determined, by maximizing which,the estimates of the parameters can be obtained.Hypothesis tests are proposed at the end of this session to presentthe method ofverifying the applicability of this model.

    In this paper,it is assumed that there is a degradation measurement that can represent the performance of the product.This degradation measurement increases or decreases monotonously,and the time point when itreaches a pre-speci fi ed threshold is considered as the failure time of the product.The degradation process is irreversible. The failure mechanism of the product remains the same throughoutthe whole degradation process.

    2.1 Definition of link function

    Followed by the Aranda-Ordaz parameter family[18]and its derivative model in the accelerated life test[19],a link function with time and stress as covariates is de fi ned in(1) in orderto combine the degradation cumulative hazard rate function and the degradation odds function,

    where g(x;t,z)is the link function,R(x;t,z)is the reliability function,x is the degradation measurement,t is the time point,z is the stress level,and c is the transformation parameter.

    When c→0,gc→0(x;t,z)=-ln R(x;t,z)following the l’Hospital’s rule,then g(x;t,z)becomes a degradationcumulative hazard rate functionΛ(x;t,z);when c=1,yielding to a degradation odds functionθ(x;t,z),where F(x;t,z)is the cumulative distribution function.

    The proposed APDHO model is established based on the link function g(x;t,z).As the APDH model is builtbased on the degradation cumulative hazard function Λ(x;t,z),and the APDOmodelcould be builtbased on the degradation odds functionθ(x;t,z),the proposed APDHO model then makes the APDH and APDO models special cases of it.It avoids the estimation errors caused by the improperdecision ofwhich ofthe two other models to use, and as in engineering cases,the assumptions of both models mightbe inviolate.

    2.2 Formation of link function

    Time t is assumed to have a multiplicative effect on an independentfunction ofdegradation measurement x in the APDHmodel.In addition,stress level z is assumed to have a multiplicative effect on the product of the function of x and the function of t[17].Following these assumptions, link function g(x;t,z)is assumed as

    where g0(x;t)is the baseline link function.

    The formation of the effectof stress z,i.e.e?βz,is defi ned based on physics-based accelerated models,such as the Arrhenius modeland the inverse power law model.

    p(x)and q(t)are determined based on the following consideration.For Weibull distribution,the cumulative hazard rate function of a random variable x is given asΛ(x)=xmη?m,where m is the shape parameter and ηis the scale parameter.Thus,the degradation cumulative hazard rate function of a random variable x with covariate t can be described asΛ(x;t)=xm[ε(t)]?m,where m is the shape parameterandε(t)is the scale parametervarying with covariate t.

    For log-logistic distribution,the odds function of a random variable x isθ(x)=xpλ?p,where p is the shape parameter andλis the scale parameter.Thus,the degradation odds function of a random variable x with covariate t can be described asθ(x;t)=xp[ε(t)]?p,where p is the shape parameter andε(t)is the scale parameter varying with covariate t.

    Degradation cumulative hazard rate functionΛ(x;t)= g0c→0(x;t)for the Weibull distribution and degradation odds functionθ(x;t)=g0c=1(x;t)forthe log-logistic distribution satis fi es the assumption that the time has a multiplicative effect on an independent function of a degradation measurement.Thus,p(x)and q(t)are determined based on the formation ofΛ(x;t)for the Weibull distribution andθ(x;t)for the log-logistic function as p(x)=xγand q(t)=ε(t)?γ.

    The link function g(x;t,z)is then de fi ned as

    whereγ>0 andβ>0 are unknown parameters,ε(t) is a function of time t and it represents the characteristic value of degradation measurement x attime t under stress level z.

    2.3 Constraints on link function

    2.3.1 Degradation percentage

    To unify the degradation paths of monotonously increasing and decreasing degradation processes and eliminate the inconsistency of initial values of different test units, x is rede fi ned as the degradation percentage.For the monotonously decreasing degradation process,

    The change of degradation percentage x with time t under differentstress levels are shown in Fig.1.

    Fig.1 Degradation percentage curves under different stress levels

    Thus,for both monotonously increasing and decreasing degradation processes,degradation percentage x increases with the time,and when itreaches a threshold,the testunit is considered failed.

    2.3.2 Constraints

    From(1)and(4),the reliability function is expressed as

    The complementary reliability function is de fi ned as

    Itis then given as

    Based on(9)and the property of the complementary reliability function,the following equations must be satisfi ed,

    The relationship between g(x;t,z)easily expressed based on(1)and(9)as follows:

    Equation(10)could then resultin

    Considering g(x;t,z)=p(x)q(t)e?βz,it can be deduced that p(0)=0,p(∞)=∞,q(0)=∞and q(∞)=0.

    After the transformation of x from the degradation measurement to the degradation percentage,the degradation curves become monotonously increasing lines pass through the origin(for the monotonously increasing degradation process,degradation percentages are assumed to remain the same trend after they reach one,the extreme threshold,as reliability becomes zero from then).The constraints of p(x)=xγas p(0)=0 and p(∞)=∞are then satis fi ed.As q(t)=ε(t)?γ,ε(t)has the constraints thatε(0)=0 andε(∞)=∞in order to satisfy the constraints on q(t).ε(t)should be assumed as a function of t thatsatis fi es the constraints on it.

    2.4 Establishment of log-likelihood function

    Based on(7),the probability density function is described as

    The log-likelihood function is de fi ned as the logarithm of the probability density function

    By maximizing the log-likelihood function as in(14), the estimates of modelparameters are obtained.

    2.5 Hypothesis tests

    In the APDHO model,g(x;t,z)is de fi ned as g(x;t,z)= p(x)q(t)e?βz.Thus,it is assumed that the ratio of either degradation cumulative hazard rate functions or degradation odds functions at different times under each stress levelis a constant(Assumption 1).Moreover,it is also assumed thatthe ratio of either degradation cumulative hazard rate functions ordegradation odds functionsatany time under differentstress levels is a constant(Assumption 2).

    The APDHO model is applicable when both assumptions are satis fi ed.It might cause errors to use this model when any ofthe two assumptions is violated.Thus,hypothesis tests are required to be performed in orderto verify the applicability of this model.

    Hypothesis test 1The link function g(x;t,z)is defi ned as g(x;t,z)=p(x)q(t)e?βz,and thus,the ratio of g(x;t,z)at two differenttimes under one speci fi ed stress level z is

    When c→0,gc→0(x;t,z)=Λ(x;t,z),it can be deduced from(15)that

    whereλ(x;t,z)is the degradation hazard rate function.

    Exchanging the numeratorwith the denominatoron two sides of(16),

    Itresults in the following equation

    When c=1,gc=1(x;t,z)=θ(x;t,z),it can be deduced from(15)that,

    Exchanging the numeratorwith the denominatoron two sides of(19),

    Itresults in the following equation

    Hypothesis test 1 can then be performed to verify whether(18)or(21)is satis fi ed.

    Hypothesis test 2The link function g(x;t,z)is defi ned as g(x;t,z)=p(x)q(t)e?βz,and thus,the ratio of g(x;t,z)atone speci fi ed time t under two differentstress levels is

    Following the same methods as in hypothesis test 1,it can be deduced from(22)that,when c→0,

    and when c=1,

    Hypothesis test 2 can then be performed to verify whether(23)or(24)is satis fi ed.

    Itcan be concluded thatthe APDHOmodelis applicable when both assumptions are satis fi ed.

    3.Case study

    3.1 Accelerated degradation test system

    An accelerated degradation testsystem is established in order to obtain degradation data of miniature bulbs under several stress levels.The failure mechanism of miniature bulbs is mainly the non-uniform evaporation of the fi lamentowing to localdefects[20].The voltage is chosen as the stress type.The ADT system mainly consists of power supply,bulb circuit board,I/O connector,data acquisition board,PC,data recording software,miniature bulbs and resistors as shown in Fig.2. The powersupply provides the voltage as the stress over the bulbs which are connected with resistors in series on the bulb circuit board.The voltages over the resistors are acquired through the data acquisition board and the I/O connector,and then recorded in PC by the data recording software.

    Fig.2 Accelerated degradation test system for miniature bulbs

    3.2 Data collection

    3.2.1 Degradation data

    Degradation tests are performed understress levels 8 V,7.5 V and 7 V.Totally 14 testunits are tested undereach ofthe three stress levels.Degradation tests are operated until all the test units fail.Degradation paths of voltage degradation measurements under the three stress levels are shown in Fig.3.

    Fig.3 Degradation paths of voltage degradation measurements under stress levels 8 V,7.5 V and 7 V

    With the degradation of the miniature bulbs,the voltages over the resistors decrease and fi nally drop to a certain value and mostly remain constant,when the bulbs fail.Voltage degradation measurements are recorded every minute and then transformed into voltage degradation percentages using(5).The voltage degradation percentage right before the time point when a bulb fails is considered as the threshold and it is set as 0.1 based on history data.

    3.2.2 Failure time data

    Totally 13 failure time data under stress levels 6.7 V,6.5 V and 6.3 V are collected for the validation of the proposed APDHO model.Failure time data under the three stress levels are listed in Table 1.

    Table 1 Failure time data

    3.3 Degradation data pre-processing

    Voltage degradation percentages are sampled every 30 min,70 min and 100 min under stress levels 8 V, 7.5 V and 7 V respectively so that the obtained 33 data points cover 70%-90%of the time span from the teststart time point to the fi rst observed failure time point of the bulbs.Thus,the assumed censoring time points for the three stress levels are 961 min,2 241 min and 3 201 min respectively.A moving average method is used to eliminate the noise of the sampled data and the chosen spans are 3,5 and 7 forstress levels 8 V,7.5 V and 7 V.Two data points at each end under each stress level are excluded in estimations.

    3.4 Hypothesis tests

    Each pair of the three stress levels 8 V,7.5 V and 7 V are combined for hypothesis tests.For each combination, three equally spaced time points are selected and reliability estimates of voltage degradation percentages at these time points under the two stress levels are calculated by the Kaplan-Meier estimator.The logarithm of degradation cumulative hazard rate functionΛ(x;t,z)and the logarithm of degradation odds functionθ(x;t,z)at the three time points under the two stress levels are then evaluated based on the reliability estimates.

    For hypothesis tests under stress levels 8 V,7.5 V and 7 V,there are originally 14 data for each of the time points 211,421 and 631.The logarithm of degradation cumulative hazard rate functionΛ(x;t,z)and the logarithm of degradation odds functionθ(x;t,z)atthe three time points are calculated based on corresponding reliability values. The Kaplan-Meier method is used for calculating reliability values.Thus,when allthe 14 testunits fail,the reliability is equalto zero,which can neither be in the logarithm function,as in the calculating logarithm of the degradation cumulative hazard rate function,nor be in the denominator,as in the calculating logarithm of the degradation odds function.Thus,only 13 data points appear in fi gures showing hypothesis test results.The results are shown in Fig.4-Fig.9.

    Fig.4 lnΛ(x;t,z)under stress levels 8 V and 7.5 V

    Fig.5 lnθ(x;t,z)under stress levels 8 V and 7.5 V

    Fig.6 lnΛ(x;t,z)under stress levels 8 V and 7 V

    Fig.7 lnΛ(x;t,z)under stress levels 7.5 V and 7 V

    Fig.8 lnθ(x;t,z)under stress levels 8 V and 7 V

    Fig.9 lnθ(x;t,z)under stress levels 7.5 V and 7 V

    For each pair of the three stress levels,it can be seen from these fi gures that for each stress level,the curves of different time points do not cross,but they are approximately parallelto each other(Hypothesis 1).Similar situations can be observed for each time pointunder different stress levels(Hypothesis 2).Assumptions of the APDHO model can be regarded satis fi ed from an engineering perspective.

    3.5 Functions specification

    The sampled voltage degradation percentages under three stress levels 8 V,7.5 V and 7 V are shown in Fig.10.They representthe degradation paths of voltage degradation percentages.Voltage degradation percentages as shown in the

    fi gure are used in the extrapolation of the reliability under low stress levels.

    Fig.10 Degradation paths of voltage degradation percentages under stress levels 8 V,7.5 V and 7 V

    ε(t)re fl ects the characteristic value of voltage degradation percentage x at time t,and thus the formation of ε(t)should be speci fi ed based on the degradation path of voltage degradation percentage x.Linear polynomial, quadratic polynomial and power functions are used to fi t the degradation paths.The linearpolynomialand quadratic polynomial have smaller errors than power functions in curve fi tting.As there is no big difference of errors between linear polynomialand quadratic polynomial,the linear polynomialis chosen to fi t the degradation path as it has fewer parameters.The formation ofε(t)is de fi ned as ε(t)=at,where a is an unknown parameter.Substitute ε(t)with at in(9)and(14),the complementary reliability function and the log-likelihood function are then expressed as

    3.6 Reliability estimation

    Maximizing the log-likelihood function as(26),the estimates of the parameters are obtained.A pattern search method is used to solve the non-linear optimization problems.The pattern search method is a kind of directsearch method,which does not need to calculate or approximate derivatives and does not enforce a notion of suf fi cientdecrease while still guarantee global convergence[21].The initialvalues ofthe pattern search method are fi rstsetas the uniformly distributed values in a bounded feasible ranges of each parameter,and then,they are reduced to smaller ranges orchanged to anotherbounded feasible range based on the previous optimization results.The intervaldistance between the uniformly distributed values is big atthe start, and changes to smaller values step by step untilan acceptable interval distance is achieved.Estimates of modelparameters are listed in Table 2.Time points are divided by 1 000 in the calculations to fi t the tolerance of the pattern search method.

    Table 2 Estimates of parameters

    Complementary reliability estimates under stress levels 6.7 V,6.5 V and 6.3 V are calculated by substituting the estimates of parameters and stress levels in(25).The Kaplan-Meier estimator is used to evaluate the reliability underthese three low stress levels based on the failure time data under the corresponding stress level for comparison. The estimation results are shown in Fig.11-Fig.13.The mean squared error(MSE)is used to indicate the differences between the estimated reliability under stress levels 6.7 V,6.5 V and 6.3 V using the APDHO modelbased on degradation data under stress levels 8 V,7.5 V and 7 V, and calculate the reliability by the Kaplan-Meier estimator based on failure time data under stress levels 6.7 V,6.5 V and 6.3 V.The MSE results are given in Table 3.

    Fig.11 Reliability estimates under stress level6.7 V

    Fig.12 Reliability estimates under stress level6.5 V

    Fig.13 Reliability estimates under stress level6.3 V

    Table 3 Estimate differences

    It can be concluded from Fig.11-Fig.13 and Table 3 that reliability estimates of miniature bulbs under stress level 6.7 V using the APDHO model based on the degradation data under the three high stress levels are close to the estimates using the Kaplan-Meier estimator based on the failure time data under stress level 6.7 V.The reliability estimates using APDHOunder6.5 V and 6.3 Vbecome further from those using the Kaplan-Meier estimator.This is due to that the estimation error increases when the extrapolation span increases.In addition,limited data also lead to estimation errors.It causes estimation error using the Kaplan-Meier estimator,so thatthe estimates mightbe away from the real values,and it also leads to estimation errors when using APDHO.Considering these factors,the proposed APDHO is effective.

    The estimate of the parameter c approaches one,and it could be concluded that the degradation odds function, ratherthan the degradation cumulative hazard rate function is proportionalin this case.Thus,itis more properly to use the APDO modelfor this case than the APDH model.The assumptions of both models are satis fi ed,and itis dif fi cult to choose which model to use in advance.The proposed APDHO modelmakes itpossible to letthe data choose the modelfor itself and itcould dealwith more cases than the othertwo models when c is between zero and one.

    4.Conclusions

    A non-parametric model called APDHO model for the ADT is proposed in this paper.As a non-parametric model, ithas path-free and distribution-free properties.Itdoes not require the assumption of either degradation path or distribution of degradation measurements.Thus,itavoids the errors caused by the faulty assumption ofdegradation path or distribution of degradation measurements.

    The proposed APDHO model is established based on a link function which combines the degradation cumulative hazard rate function and the degradation odds function through a transformation parameter.Thus,the APDHO model makes the APDH model and the APDO model which are established and could be established based on the degradation cumulative hazard rate function and the degradation odds function,respectively,specialcases of it.

    The link function is formed as the time and the stress have a multiplicative effecton an independentfunction of the degradation measurement.Thus,the proposed model has the assumptions thatthe ratio of either the degradation cumulative hazard rate function or the degradation odds function at differenttime points under each stress level is a constant and ratio of either the degradation cumulative hazard rate function or the degradation odds function at any time point under different stress levels is a constant. The proposed model is only applicable when both of the assumptions are satis fi ed.

    The proposed model is utilized to extrapolate the reliability of miniature bulbs under three low stress levels based on the degradation data obtained from degradation tests under three high stress levels.The results show that reliability estimates under the three low stress levels using the APDHO model based on the degradation data under the three high stress levels match wellwith those using the Kaplan-Meier estimator based on failure time data under the corresponding three low stress levels.The effectiveness of the proposed modelis validated.Itis necessary to mention that based on the characteristics of this model,more than one kind ofdegradation data are required ateach time pointundereach stress level.

    [1]W.Q.Meeker,L.A.Escobar,J.C.Lu.Accelerated degradation tests:modeling and analysis.Technometrics,1998,40(2): 89-99.

    [2]W.Nelson.Accelerated testing statistical models,test plans, and data analysis.New York:Wiley,1990.

    [3]C.J.Lu,W.Q.Meeker.Using degradation measures to estimate a time-to-failure distribution.Technometrics,1993, 35(2):161-174.

    [4]A.K.S.Jardine,D.Lin,D.Banjevic.A review on machinery diagnostics and prognostics implementing conditionbased maintenance.Mechanical Systems and Signal Processing,2006,20(7):1483-1510.

    [5]L.A.Escobar,W.Q.Meeker.A review of accelerated test models.StatisticalScience,2006,21(4):552-577.

    [6]E.A.Elsayed.Reliability engineering.Massachusetts: Addison-Wesley,1996.

    [7]N.Z.Gebraeel,M.A.Lawley.A neural network degradation model for computing and updating residual life distributions. IEEE Trans.on Automation Science and Engineering,2008, 5(1):154-163.

    [8]Y.Pan,J.Chen,L.Guo.Robust bearing performance degradation assessmentmethod based on improved waveletpacketsupport vector data description.Mechanical Systems and SignalProcessing,2009,23(3):669-681.

    [9]S.J.Wu,T.R.Tsai.Estimation of time-to-failure distribution derived from a degradation model using fuzzy clustering.Quality and Reliability Engineering International,2000, 16(4):261-267.

    [10]V.Crk.Reliability assessment from degradation data.Proc.of the Annual Reliability and Maintainability Symposium,2008: 155-161.

    [11]K.Yang,J.Xue.Continuous state reliability analysis.Proc.of the Annual Reliability and Maintainability Symposium,1996: 251-257.

    [12]G.A.Whitmore,F.Schenkelberg.Modelling accelerateddegradation data using Wiener diffusion with a time scale transformation.Lifetime Data Analysis,1997,3(1):27-45.

    [13]H.T.Liao,E.A.Elsayed.Reliability prediction and testing plan based on an accelerated degradation rate model.International Journal of Materials and Product Technology,2004, 21(5):402-422.

    [14]C.Park,W.J.Padgett.Accelerated degradation models for failure based on geometric Brownian motion and gamma processes.Lifetime Data Analysis,2005,11(4):511-527.

    [15]J.J.H.Shiau,H.H.Lin.Analyzing accelerated degradation data by nonparametric regression.IEEE Trans.on Reliability, 1999,48(2):149-158.

    [16]M.A.H.Ebrahem,J.J.Higgins.Non-parametric analysis ofa proportional wearout modelfor accelerated degradation data. Applied Mathematics and Computation,2006,174(1):365-373.

    [17]G.Eghbali.Reliability estimate using accelerated degradation data.Piscataway,USA:Rutgers University,2000.

    [18]F.J.Aranda-Ordaz.On two families of transformations to additivity for binary response data.Biometrics,1981,68(2): 357-363.

    [19]T.Huang,E.A.Elsayed,T.Jiang.An ALT proportional hazard-proportional odds model.Proc.of the 14th ISSAT International Conference on Reliability a nd Quality in Design, 2008:39-43.

    [20]O.Horacsek.Properties and failure modes of incandescent tungsten fi laments.Science,Measurement and Technology, IEE Proceedings A,1980,127(3):134-141.

    [21]V.Torczon.On the convergence of pattern search algorithms. Society for Industrial and Applied Mathematics(SIAM)Journalon Optimization,1997,7(1):1-25.

    Biographies

    Tingting Huang was born in 1981.She is an assistant professor for the School of Reliability and Systems Engineering,Beihang University,China. She worked as a postdoctoral for the Department of Industrial Engineering,Tsinghua University in 2011.She recieved her Ph.D.from the School of Reliability and Systems Engineering,Beihang University in 2010.She recieved her M.S.degree from the Department of Industrial and Systems Engineering,Virginia Tech in 2014.She was a visiting scholar in the Department of Industrial and Systems Engineering,Rutgers University,USA in 2008.Her research interests are accelerated life testing,accelerated degradation testing and other reliability and environment testing technology.Herrecentwork is on proportionalhazards-proportionalodds modelbased accelerated degradation testing.

    E-mail:htt@buaa.edu.cn

    Zhizhong Li was born in 1969.He is a full professor for the Department of Industrial Engineering,Tsinghua University,China.He received his B.S.,M.S.and Ph.D.degrees in manufacturing engineering and automation from Tsinghua University in 1993,1995,and 1999,respectively.His current research areas include ergonomics issues in safetycritical systems,human error,3D anthropometry, and occupationalsafety.

    E-mail:zzli@tsinghua.edu.cn

    10.1109/JSEE.2015.00046

    Manuscriptreceived March 04,2014.

    *Corresponding author.

    This work was supported by the postdoctoral funding at Tsinghua University.

    成人漫画全彩无遮挡| 飞空精品影院首页| 国产精品免费大片| 国产极品天堂在线| 欧美激情极品国产一区二区三区 | 美女国产视频在线观看| 国产一区二区在线观看日韩| 免费av不卡在线播放| 另类亚洲欧美激情| 麻豆乱淫一区二区| 嫩草影院入口| 精品一区在线观看国产| 我的女老师完整版在线观看| 视频在线观看一区二区三区| 伦理电影大哥的女人| 国产成人freesex在线| 男人添女人高潮全过程视频| 亚洲美女搞黄在线观看| 超碰97精品在线观看| 国内精品宾馆在线| 精品少妇久久久久久888优播| 亚洲av电影在线观看一区二区三区| 69精品国产乱码久久久| 日产精品乱码卡一卡2卡三| 精品国产一区二区三区久久久樱花| 亚洲国产精品999| 亚洲丝袜综合中文字幕| 久久韩国三级中文字幕| 免费观看性生交大片5| av又黄又爽大尺度在线免费看| 人人妻人人澡人人爽人人夜夜| 久久久久久久大尺度免费视频| 久久午夜福利片| 黄色怎么调成土黄色| xxx大片免费视频| 亚洲精品日韩av片在线观看| 22中文网久久字幕| 美女脱内裤让男人舔精品视频| 蜜桃在线观看..| 亚洲精品久久成人aⅴ小说 | 精品人妻熟女av久视频| 欧美 亚洲 国产 日韩一| 国产高清有码在线观看视频| 欧美性感艳星| 多毛熟女@视频| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美在线一区| 久久人人爽人人爽人人片va| 97超视频在线观看视频| 日韩伦理黄色片| 在线观看免费日韩欧美大片 | 中文字幕最新亚洲高清| 亚洲欧洲国产日韩| 婷婷色麻豆天堂久久| 纵有疾风起免费观看全集完整版| 夜夜看夜夜爽夜夜摸| 伦理电影大哥的女人| 九草在线视频观看| 大又大粗又爽又黄少妇毛片口| 久久狼人影院| 国产又爽黄色视频| 免费人妻精品一区二区三区视频| 国产高清激情床上av| 久久精品国产亚洲av香蕉五月 | 中文字幕精品免费在线观看视频| 欧美人与性动交α欧美软件| 99精品在免费线老司机午夜| 精品第一国产精品| 国产aⅴ精品一区二区三区波| 亚洲欧洲日产国产| 成人18禁在线播放| 午夜久久久在线观看| 久久ye,这里只有精品| 国产精品一区二区在线不卡| 色尼玛亚洲综合影院| 久久久久久亚洲精品国产蜜桃av| 一区在线观看完整版| 免费观看a级毛片全部| 国产熟女午夜一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久天躁狠狠躁夜夜2o2o| 亚洲一区二区三区欧美精品| 欧美黑人欧美精品刺激| 热99re8久久精品国产| 国产成人啪精品午夜网站| 99香蕉大伊视频| 一区二区av电影网| 啦啦啦 在线观看视频| 天天影视国产精品| 日韩制服丝袜自拍偷拍| 蜜桃国产av成人99| 亚洲欧美精品综合一区二区三区| 五月天丁香电影| 天天躁日日躁夜夜躁夜夜| 午夜91福利影院| 精品少妇内射三级| 国产一区二区 视频在线| 在线av久久热| 女警被强在线播放| 波多野结衣一区麻豆| 国产精品成人在线| 亚洲七黄色美女视频| 国产精品av久久久久免费| 在线天堂中文资源库| 一二三四社区在线视频社区8| 另类亚洲欧美激情| 日韩视频在线欧美| 美女午夜性视频免费| 天天影视国产精品| 亚洲精品久久成人aⅴ小说| 国产淫语在线视频| 亚洲男人天堂网一区| 在线观看免费视频网站a站| 巨乳人妻的诱惑在线观看| 国产男靠女视频免费网站| 香蕉久久夜色| 熟女少妇亚洲综合色aaa.| 国产单亲对白刺激| 亚洲综合色网址| 国产激情久久老熟女| 国产精品免费大片| 精品久久蜜臀av无| 操美女的视频在线观看| 成人国产av品久久久| 欧美一级毛片孕妇| 桃花免费在线播放| 日韩中文字幕视频在线看片| 无人区码免费观看不卡 | 一本大道久久a久久精品| 精品卡一卡二卡四卡免费| 欧美 亚洲 国产 日韩一| 亚洲精品一卡2卡三卡4卡5卡| 一边摸一边抽搐一进一出视频| 欧美精品亚洲一区二区| 国产精品免费视频内射| 亚洲欧美日韩另类电影网站| 天堂俺去俺来也www色官网| 每晚都被弄得嗷嗷叫到高潮| 男人舔女人的私密视频| av天堂在线播放| 精品一区二区三卡| 免费少妇av软件| 久久久精品免费免费高清| 18禁国产床啪视频网站| 啦啦啦 在线观看视频| 国产成人精品在线电影| 国产精品av久久久久免费| 男女之事视频高清在线观看| 亚洲精华国产精华精| 视频区图区小说| 精品国产一区二区久久| 欧美黄色淫秽网站| 成人影院久久| 久久人人爽av亚洲精品天堂| 午夜免费成人在线视频| 亚洲国产看品久久| 久久久欧美国产精品| 久久天堂一区二区三区四区| 久久毛片免费看一区二区三区| 日韩视频在线欧美| av在线播放免费不卡| 国产精品国产av在线观看| 亚洲av美国av| 午夜福利免费观看在线| 纵有疾风起免费观看全集完整版| 久久性视频一级片| 别揉我奶头~嗯~啊~动态视频| 黄色片一级片一级黄色片| 亚洲成国产人片在线观看| 国产成人啪精品午夜网站| 精品国内亚洲2022精品成人 | a级毛片在线看网站| 中国美女看黄片| 操出白浆在线播放| 欧美另类亚洲清纯唯美| 丰满迷人的少妇在线观看| 亚洲中文日韩欧美视频| 亚洲自偷自拍图片 自拍| av免费在线观看网站| 飞空精品影院首页| 极品少妇高潮喷水抽搐| 80岁老熟妇乱子伦牲交| 亚洲精品国产精品久久久不卡| 久久人妻熟女aⅴ| 亚洲一区二区三区欧美精品| 一进一出抽搐动态| 男女高潮啪啪啪动态图| 高潮久久久久久久久久久不卡| 国产精品电影一区二区三区 | 我的亚洲天堂| 亚洲成人手机| 在线观看www视频免费| 乱人伦中国视频| 欧美av亚洲av综合av国产av| 欧美变态另类bdsm刘玥| 亚洲精品粉嫩美女一区| 亚洲国产欧美一区二区综合| 女警被强在线播放| 人妻久久中文字幕网| 91麻豆av在线| 我的亚洲天堂| 国产在视频线精品| 欧美精品亚洲一区二区| 成人国产一区最新在线观看| 日韩成人在线观看一区二区三区| 黄片小视频在线播放| 人人妻人人澡人人爽人人夜夜| 最新的欧美精品一区二区| 欧美黄色淫秽网站| 成人精品一区二区免费| 色婷婷久久久亚洲欧美| 三上悠亚av全集在线观看| 国产精品久久久人人做人人爽| 午夜福利在线免费观看网站| 十八禁人妻一区二区| 91麻豆av在线| 91精品国产国语对白视频| 免费日韩欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲精品不卡| 久久99一区二区三区| 亚洲人成电影免费在线| 亚洲成国产人片在线观看| 免费一级毛片在线播放高清视频 | 一级毛片精品| 中文字幕精品免费在线观看视频| 不卡一级毛片| 欧美黑人精品巨大| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| 少妇的丰满在线观看| 国产av国产精品国产| 午夜福利影视在线免费观看| 建设人人有责人人尽责人人享有的| 国产日韩欧美亚洲二区| 男女床上黄色一级片免费看| 99国产精品一区二区蜜桃av | 国产成人影院久久av| 99热网站在线观看| 久久ye,这里只有精品| 天天躁日日躁夜夜躁夜夜| 婷婷成人精品国产| 精品一品国产午夜福利视频| 国产精品自产拍在线观看55亚洲 | 成人亚洲精品一区在线观看| 少妇裸体淫交视频免费看高清 | 1024香蕉在线观看| 天堂中文最新版在线下载| 精品熟女少妇八av免费久了| 亚洲国产中文字幕在线视频| 亚洲专区字幕在线| 免费看a级黄色片| 亚洲熟妇熟女久久| 在线观看免费日韩欧美大片| 美女扒开内裤让男人捅视频| 高清欧美精品videossex| 五月天丁香电影| 每晚都被弄得嗷嗷叫到高潮| av天堂在线播放| 美女高潮到喷水免费观看| 日韩大码丰满熟妇| 成人18禁在线播放| 老司机在亚洲福利影院| 自线自在国产av| 亚洲精品美女久久av网站| 天天操日日干夜夜撸| 亚洲成国产人片在线观看| 亚洲国产欧美网| 老汉色∧v一级毛片| 久久av网站| 亚洲av欧美aⅴ国产| 一本—道久久a久久精品蜜桃钙片| 免费在线观看日本一区| www日本在线高清视频| 嫩草影视91久久| 欧美日本中文国产一区发布| 亚洲精品自拍成人| 日韩大片免费观看网站| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 激情在线观看视频在线高清 | 国产在线一区二区三区精| 十八禁网站免费在线| 母亲3免费完整高清在线观看| 亚洲成a人片在线一区二区| 亚洲国产av影院在线观看| 大片免费播放器 马上看| 亚洲国产成人一精品久久久| 十八禁网站网址无遮挡| 久久久久久久久久久久大奶| 中文字幕色久视频| 免费在线观看视频国产中文字幕亚洲| 男人舔女人的私密视频| 宅男免费午夜| 交换朋友夫妻互换小说| 精品国产一区二区久久| 怎么达到女性高潮| 一边摸一边做爽爽视频免费| 老熟妇乱子伦视频在线观看| 女同久久另类99精品国产91| 欧美老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 脱女人内裤的视频| 久久久久网色| 日韩视频在线欧美| 日韩欧美免费精品| 桃花免费在线播放| 在线观看免费高清a一片| 妹子高潮喷水视频| kizo精华| 丝袜人妻中文字幕| 中文字幕最新亚洲高清| 麻豆乱淫一区二区| 欧美在线黄色| 久久人妻福利社区极品人妻图片| 亚洲人成伊人成综合网2020| 黄色怎么调成土黄色| 亚洲精品中文字幕在线视频| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 大片电影免费在线观看免费| 中文字幕精品免费在线观看视频| 午夜福利欧美成人| 国产有黄有色有爽视频| 亚洲国产av新网站| 一级毛片精品| 午夜精品国产一区二区电影| 亚洲精品粉嫩美女一区| 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 日本黄色视频三级网站网址 | 日韩欧美一区视频在线观看| 亚洲av第一区精品v没综合| 色婷婷av一区二区三区视频| 成人精品一区二区免费| av线在线观看网站| 90打野战视频偷拍视频| 桃花免费在线播放| 国产在视频线精品| 国产野战对白在线观看| 天堂动漫精品| 欧美人与性动交α欧美精品济南到| 亚洲 欧美一区二区三区| 日韩欧美国产一区二区入口| 亚洲一区二区三区欧美精品| 亚洲国产中文字幕在线视频| 亚洲专区国产一区二区| 人妻 亚洲 视频| 亚洲精华国产精华精| 最新美女视频免费是黄的| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 一边摸一边抽搐一进一小说 | 18禁裸乳无遮挡动漫免费视频| 一本大道久久a久久精品| 久久国产精品男人的天堂亚洲| 啪啪无遮挡十八禁网站| 成人18禁在线播放| 久久国产精品影院| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 久久久久久久久免费视频了| 久久久久久免费高清国产稀缺| 考比视频在线观看| 欧美日韩视频精品一区| 看免费av毛片| 大型黄色视频在线免费观看| 香蕉丝袜av| 亚洲精品乱久久久久久| 欧美国产精品va在线观看不卡| 日韩 欧美 亚洲 中文字幕| 亚洲精华国产精华精| 国产一区二区 视频在线| 12—13女人毛片做爰片一| 老司机影院毛片| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 亚洲,欧美精品.| 成人手机av| 怎么达到女性高潮| 免费黄频网站在线观看国产| 最近最新免费中文字幕在线| 国产人伦9x9x在线观看| 一区二区三区激情视频| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 色婷婷久久久亚洲欧美| 他把我摸到了高潮在线观看 | 午夜激情av网站| 1024香蕉在线观看| 亚洲天堂av无毛| 一区二区三区国产精品乱码| 99国产极品粉嫩在线观看| 国产免费福利视频在线观看| 亚洲精品国产一区二区精华液| 一级黄色大片毛片| 天堂动漫精品| 精品国产一区二区久久| 一本综合久久免费| 国产xxxxx性猛交| 久久精品91无色码中文字幕| 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| 久久中文字幕人妻熟女| 亚洲综合色网址| 在线观看免费视频日本深夜| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| a级毛片黄视频| 久久久久精品人妻al黑| 最新在线观看一区二区三区| 日日夜夜操网爽| 午夜激情av网站| 亚洲伊人色综图| 亚洲精品美女久久久久99蜜臀| 电影成人av| 一区二区av电影网| 欧美久久黑人一区二区| 不卡av一区二区三区| 在线观看人妻少妇| 国产三级黄色录像| 十八禁人妻一区二区| 狂野欧美激情性xxxx| 精品国内亚洲2022精品成人 | 国产一区二区三区在线臀色熟女 | 亚洲国产av新网站| 色视频在线一区二区三区| 女性被躁到高潮视频| 亚洲男人天堂网一区| 性少妇av在线| 在线观看66精品国产| 捣出白浆h1v1| aaaaa片日本免费| 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 国产一区二区在线观看av| 美女国产高潮福利片在线看| 人妻一区二区av| 桃花免费在线播放| 麻豆乱淫一区二区| 国产在线免费精品| 777米奇影视久久| 黄色 视频免费看| 久久久久久久精品吃奶| 国产成人av激情在线播放| 日韩视频在线欧美| 亚洲人成电影免费在线| 九色亚洲精品在线播放| 极品教师在线免费播放| 久久久久久久久免费视频了| 国产野战对白在线观看| 99香蕉大伊视频| 欧美 亚洲 国产 日韩一| 国产三级黄色录像| 一级毛片电影观看| 日韩免费av在线播放| 麻豆av在线久日| 中文字幕精品免费在线观看视频| 亚洲,欧美精品.| 91麻豆av在线| 纯流量卡能插随身wifi吗| 亚洲黑人精品在线| 午夜日韩欧美国产| 国产伦理片在线播放av一区| 夜夜夜夜夜久久久久| 国产精品亚洲一级av第二区| 91国产中文字幕| 国产精品久久久久久人妻精品电影 | 99国产精品99久久久久| 热99久久久久精品小说推荐| e午夜精品久久久久久久| 天堂俺去俺来也www色官网| 久久中文字幕人妻熟女| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 女警被强在线播放| 午夜两性在线视频| 亚洲欧美一区二区三区黑人| 一区二区三区国产精品乱码| 欧美激情 高清一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产一区二区三区视频了| 高清黄色对白视频在线免费看| 高潮久久久久久久久久久不卡| av欧美777| 精品国产一区二区久久| 欧美日韩黄片免| 1024视频免费在线观看| 免费在线观看视频国产中文字幕亚洲| 国产精品九九99| 免费av中文字幕在线| 精品人妻1区二区| 中亚洲国语对白在线视频| 日日摸夜夜添夜夜添小说| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 麻豆成人av在线观看| 在线看a的网站| 咕卡用的链子| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 99国产极品粉嫩在线观看| 久9热在线精品视频| 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 香蕉久久夜色| 成人免费观看视频高清| 欧美久久黑人一区二区| 国产亚洲精品第一综合不卡| 午夜福利在线观看吧| 制服人妻中文乱码| 欧美性长视频在线观看| 色婷婷久久久亚洲欧美| 欧美日韩av久久| 精品国产亚洲在线| 亚洲av成人不卡在线观看播放网| 午夜精品国产一区二区电影| 国产av一区二区精品久久| 成人国语在线视频| 久久久久久久大尺度免费视频| 亚洲一区二区三区欧美精品| 亚洲自偷自拍图片 自拍| 91成年电影在线观看| 国产99久久九九免费精品| 热99久久久久精品小说推荐| 一级片'在线观看视频| 精品人妻1区二区| 欧美日韩一级在线毛片| 一区二区三区激情视频| 久久精品成人免费网站| 亚洲色图av天堂| 国产亚洲精品久久久久5区| 国产免费视频播放在线视频| 亚洲av美国av| 久久影院123| kizo精华| 亚洲精品国产色婷婷电影| 啦啦啦免费观看视频1| 十分钟在线观看高清视频www| 日韩免费av在线播放| 嫁个100分男人电影在线观看| 不卡av一区二区三区| 狠狠婷婷综合久久久久久88av| 91九色精品人成在线观看| 露出奶头的视频| 99精品在免费线老司机午夜| 宅男免费午夜| av一本久久久久| 在线永久观看黄色视频| 一级片'在线观看视频| 99re在线观看精品视频| 一级片'在线观看视频| 亚洲精品在线观看二区| 最黄视频免费看| 12—13女人毛片做爰片一| 成年人黄色毛片网站| 精品福利观看| 国产一区二区激情短视频| 看免费av毛片| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 日韩视频在线欧美| 老司机福利观看| 国产又爽黄色视频| 中文字幕色久视频| 无遮挡黄片免费观看| 亚洲国产av新网站| 亚洲全国av大片| 亚洲天堂av无毛| 999精品在线视频| 欧美日韩视频精品一区| 亚洲精品国产区一区二| 久久午夜亚洲精品久久| a级毛片黄视频| 夜夜爽天天搞| 国产精品久久久久久精品电影小说| 欧美激情高清一区二区三区| 香蕉久久夜色| 一夜夜www| 激情在线观看视频在线高清 | 女性生殖器流出的白浆| 国精品久久久久久国模美| 亚洲精品国产精品久久久不卡| 中文字幕高清在线视频| 五月开心婷婷网| 一级毛片精品| 亚洲av日韩精品久久久久久密| 9191精品国产免费久久| 大陆偷拍与自拍| 天天躁日日躁夜夜躁夜夜| 91av网站免费观看| 又黄又粗又硬又大视频| 中文字幕另类日韩欧美亚洲嫩草| 无限看片的www在线观看| 国产免费福利视频在线观看| 欧美激情久久久久久爽电影 | 久久精品91无色码中文字幕| 少妇 在线观看| 国产成人影院久久av| 妹子高潮喷水视频| 午夜精品久久久久久毛片777| 欧美 日韩 精品 国产| 人人妻人人澡人人看| 蜜桃国产av成人99| 美女主播在线视频| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 国产高清激情床上av| 正在播放国产对白刺激| 天堂动漫精品| 一级毛片精品| 国产精品av久久久久免费| 国产亚洲精品一区二区www |