• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diagnosabilities ofexchanged hypercube networks under the pessimistic one-step diagnosis strategy

    2015-12-23 10:09:18

    Schoolof Computer,Electronics and Information,Guangxi University,Nanning 530004,China

    Diagnosabilities ofexchanged hypercube networks under the pessimistic one-step diagnosis strategy

    Jiarong Liang?,Ying Huang,and Liangcheng Ye

    Schoolof Computer,Electronics and Information,Guangxi University,Nanning 530004,China

    The exchanged hypercube EH(s,t)(where s≥1 and t≥1)is obtained by systematically reducing links from a regular hypercube Q s+t+1.One-step diagnosis ofexchanged hypercubes which involves only one testing phase during which processors test each other is discussed.The diagnosabilities of exchanged hypercubes are studied by using the pessimistic one-step diagnosis strategy under two kinds ofdiagnosis models:the PMC model and the MM?model.The main results presented here are the two proofs thatthe degree of diagnosability ofthe EH(s,t)under pessimistic one-step t1/t1 fault diagnosis strategy is 2s where 1≤s≤t(respectively,2t,where 1≤t≤s)based on the PMC model and that it is also 2s where 1≤s≤t(respectively,2t, where 1≤t≤s)based on the MM?model.

    pessimistic diagnosis strategy,exchanged hypercube network,PMC model,MM?model,interconnection networks.

    1.Introduction

    With the rapid development of the very large scale integration(VLSI)technology,a multiprocessor system may contain hundreds or even thousands of processors.It is inevitable that the processors in the system become faulty. Before being repaired,allthe faultprocessors in the system must be diagnosed.The problem of fault self-diagnosis in multiprocessorsystems has gained increasing importance.

    Severaldifferentstrategies have been developed forselfdiagnosis in multiprocessor systems.Preparata et al.[1] fi rst proposed a model called PMC model.Under this model,processors test each other if they are adjacent directly.It assumes that the tests performed by fault-free nodes are always correct,whereas tests performed by faulty nodes are unreliable.The PMC model was also adopted in[2-9].Maeng and Malek[10]proposed another model,called the MM model.It performs the diagnosis by allocating the same task to pairs of adjacentprocessors and comparing theirresponses.Sengupta and Dahbura[11] suggested a modi fi cation of the MM model,called the MM?model,in which a comparison can be performed by each processor to each pair of distinct neighbors with which itcan communicate directly.The MM?modelwas also adopted in[12-14].

    Preparata et al.[1]de fi ned the notion of the tpdiagnosable system in which all the faulty processors can be identi fi ed provided the numberoffaulty processorsdoes notexceed tp.The maximum number tpsuch thatthe system is tp-diagnosable is called tp-diagnosability.In order to improve the capability of self-diagnosis,Friedman and Kavianpour[15,16]introduced the concept of the t1/t1-diagnosable system in which all the faults can be isolated within a set of at most t1nodes provided the number of faulty nodes does notexceed t1.The maximum number t1such that the system is t1/t1-diagnosable is called t1/t1-diagnosability(or pessimistic diagnosability).Yang et al. [17]proved thatatmostone fault-free node may be identifi ed as faulty in the t1/t1-diagnosable system.

    It is widely known that the hypercube Qnhas been one of the most popular interconnection networks for the parallel computer system and its diagnosability under the pessimistic one-step diagnosis strategy based on the PMC model has been studied in[8].As the variants of the hypercube,the exchanged hypercube,denoted as EH(s,t), proposed by Loh etal.[18],is a spanning subgraph of the Qs+t+1with aboutone halfofits edges[19],butstillkeeps many desirable properties of the hypercube.Ithas received a great deal of attention and researches.The connectivity and conditionalconnectivity were determined in[20-22]. The topologicalproperties and embedding issues were investigated in[23].However,the pessimistic diagnosability of exchanged hypercube has notbeen studied yet.

    In this paper,we fi rst investigate the pessimistic diagnosability of the exchanged hypercube and determine thatdiagnosabilities of EH(s,t)underthe PMC modeland the MM?modelare 2s where 1≤s≤t.In Section 2,some necessary de fi nitions and backgrounds are given.In Section 3,we prove the 2s/2s-diagnosability of the EH(s,t) under the two diagnosis models using the pessimistic onestep diagnosis strategy.We conclude our paper in Section 4.

    2.Preliminaries

    An interconnection network can be modeled by an undirected graph G=(V,E),where V is the setof processors and E is the set of communication links.For graph terminology and notation not de fi ned here we follow[24]. The neighbor-set of V'in G is de fi ned asΓ(G,V')= {v∈V(G)|(u,v)∈E(G),u∈V',V'?V(G)}-V'. N(u)={v∈V(G)|v is adjacentto u}.

    Definition 1The exchanged hypercube is de fi ned as an undirected graph EH(s,t)=(V,E)(s≥1,t≥1). The setofvertices V is V={as···a1bt···b1c|ai,bj,c∈{0,1}for i∈[1,s],j∈[1,t]}.The setof edges E is composed of three disjointtypes E0,E1and E2.

    where⊕denotes the XOR operator and v[x:y]denotes the bit pattern of v from dimension y to dimension x.H(x,y)denotes the Hamming distance between nodes x and y.The two exchanged hypercubes EH(1,1)and EH(1,2)are shown in Fig.1.

    Fig.1 Two exchanged hypercubes EH(1,1)and EH(1,2)

    The following three properties which can concise our proof are obtained by Loh etal.[18]and Ma[21].

    Property 1EH(s,t)can be decomposed into two copies of EH(s,t-1)or EH(s-1,t).

    Property 2EH(s,t)is isomorphic to EH(t,s).

    Property 3The connectivity and the edge connectivity of EH(s,t)are s+1 where 1≤s≤t.

    The super connectivityκ'(G)of a graph G is the minimum numberof vertices whose removalleaves the remaining graph disconnected and every component contains at leasttwo vertices.

    Lemma 1[22]The super connectivity of EH(s,t) (s≥1,t≥1)isκ'(EH(s,t))=2s.

    Under the PMC model,a node can test another node if they are adjacent.Letσ(u,v)=0(or 1)represent that u evaluates v as fault-free(or faulty).The collection of all test results forms a test syndrome,denoted asσ.The PMC model assumes that a test result is 0 if the two involved nodes are fault-free,1 if the tester is fault-free and the tested node is faulty,and unpredictable if the tester is faulty(see Table 1).

    Table 1 The PMC model

    Under the MMmodel,two nodes are allocated the same task and their responses are compared by a comparator.A node is a comparator of two nodes if it is a common neighbor of them.Letσ(u,v;w)=0(or 1)represent that w evaluates u and v as agreement(or disagreement). The collection of all comparison results forms a comparison syndrome,denoted asσ.The MM?modelassumes thata comparison resultis 0 if the three nodes involved are all fault-free,1 if the comparator is fault-free and at least one of the two nodes being compared is faulty,and unpredictable if the comparatoris faulty(see Table 2).

    Table 2 The MM?model

    For F?V(G),letΩ(F)denote the set of syndromes thatcan be produced if F is the setof allfaulty nodes.We say two distinctsubsets F1,F2?V(G)are indistinguishable ifΩ(F1)∩Ω(F2)/=?,and distinguishable otherwise.

    For a t1/t1-diagnosable system,Chwa and Hakimi[25] provided necessary and suf fi cientconditions.

    Lemma 2Let the graph G=(V,E)be the testing graph of a system S of N units.Then S is pessimistically one-step t1/t1-diagnosable if and only if for any integer p in the range 1≤p≤t1,and for any setof nodes V'?V, |V'|=2p,such that|Γ(G,V')|≥t1-p+1.

    The following resultstates a suf fi cientcondition for the t1/t1-diagnosable system.

    Lemma 3[2]A system G=(V,E)is t1/t1-diagnosable underthe pessimistic diagnosis strategy,if for any two distinct subsets F1and F2of V with|F1|≤t1, |F2|≤t1,and|F1∪F2|>t1,F1and F2are distinguishable.

    The following characterization is usefulfor distinguishing two sets under the MM?model.For any two distinct sets F1and F2,F1ΔF2=(F1∪F2)-(F1∩F2).

    Lemma 4[11]Letthe graph G=(V,E)be a testing graph underthe MM?model.Forany subsets F1,F2,such that F1,F2?V(G)and F1/=F2,are distinguishable iff there exists a vertex u∈V-(F1∪F2),atleastone ofthe three conditions holds:

    3.Main results

    In this section,we will show that EH(s,t)(1≤s≤t)is 2s/2s-diagnosable underthe two diagnosis models.To be-

    gin with,some notations need to be explained.is a subgraph of EH(s+1,t)where t+1≤r≤t+s(respectively EH(s,t+1)where 1≤r≤t),induced by allvertices whose dimension r is

    0(or 1).Forsimplicity we write

    as EH0(s,t)(or EH1(s,t)).To prove ourmain results,some lemmas need to be prepared:

    Lemma 5For any V'?V(EH(s,t))(1≤s≤t) with|V'|=2,|Γ(EH(s,t),V')|≥2s.

    ProofWe fi rst prove that for any V'?V(EH(1,t)) (1≤t)with|V'|=2,|Γ(EH(1,t),V')|≥2 by induction on t.Itis easy to check thatitholds for EH(1,1).Suppose thatthe lemma is true for t-1(t≥2).Let V'={u,v}?V(EH(1,t)).Decompose EH(1,t)into EH0(1,t-1) and EH1(1,t-1)along dimension i,i∈[1,t].Now we consider the following two cases:

    Case 1u and v are in the same subgraph.

    Without loss of generality,we suppose u,v∈V(EH0(1,t-1)).By the induction hypothesis, |Γ(EH0(1,t-1),V')|≥2.Hence|Γ(EH(1,t),V')|= |Γ(EH0(1,t-1),V')|+|Γ(EH1(1,t-1),V')|≥2.

    Case 2u and v are notin the same subgraph.

    Without loss of generality,we suppose u∈V(EH0(1,t-1),v∈V(EH1(1,t-1)).By the property of the exchanged hypercube,|Γ(EH0(1,t-1),u)|≥2 and|Γ(EH1(1,t-1),v)|≥2.Thus,|Γ(EH(1,t),V')|≥|Γ(EH0(1,t-1),u)|+|Γ(EH1(1,t-1),v)|≥2.

    Now,we proceed to prove that the lemma is true for EH(s,t)by induction on s.The process of proof is similarwith the prooffor EH(1,t).Forsimplicity,we can omit the detail.

    Lemma 6For any V'?V(EH(2,t))(2≤t),|V'|≤3, if EH(2,t)-V'is disconnected,then EH(2,t)-V'has exactly two components.

    ProofWe use induction on t.Forany V'with|V'|≤3, itcan be checked that EH(2,2)-V'has exactly two components if EH(2,2)-V'is disconnected.Suppose the resultis true for EH(2,t-1)(3≤t).Decompose EH(2,t) into EH0(2,t-1)and EH1(2,t-1)along the dimension i,i∈[1,t].Without loss of generality,we may as-EH0(2,t-1)are both connected by Property 3,which is a contradiction with the disconnectivity of EH(2,t)-V'.is connected.Since EH(2,t)-V'is disconnected and EH1connected,EH0(2,t-1)mustbe disconnected.By the induction hypothesis,EH0(2,t-1)has exactly two components.Hence,the disconnected EH(2,t)-V'has exactly two components.The process of our proof is illustrated in Fig.2.

    Fig.2 Proof of Lemma 6

    Lemma 7For any V'?V(EH(s,t))(2≤s≤t), |V'|≤2s-1,if EH(s,t)-V'is disconnected,then EH(s,t)-V'has exactly two components.

    ProofWe prove this by induction on s.When s=2, the lemma is clearly true according to Lemma 6.Assume that the lemma is true for s-1(s≥3).Without loss of generality,we may assumeWe deal with two cases separately:

    Case 3There exists some dimension i,i∈[t+1,t+s], such that2 by decomposing EH(s,t)along dimension i.

    Decompose EH(s,t)into EH0(s-1,t)and EH1(s-

    1,t)along this dimension i.From

    |V'|≤2s-1,it follows that≤s-1.By Property 3,EH1(s-1,t)is connected.As EH1(s-1,t)is connected and EH(s,t)-V'is disconnected,is disconnected.According to the induction hypothesis,has two components.As a result EH(s,t)-V'has exactly two components.

    Case 4Decomposing EH(s,t)along any dimension i

    Case 4.1There exists some dimension i,such thatby decomposing EH(s,t)along the dimension i.

    Decompose EH(s,t)into EH0(s-1,t)and EH1(s-1, t)along this dimension i.With similar argument of Case 3,we see that EH1(s-1,t)-is connected,≤ 2(s-1)and EH0(s-1,t)-is disconnected.Then we decompose EH0(s-1,t)into EH00(s-1,t-1)and EH01(s-1,t-1)along the dimension j,j∈[1,t],such thatItis easy to see that EH01(s-1,t-1) is connected,EH00(s-1,t-1) is disconnected andBy the induction hypothesis,EH00(s-1,t-1)has two components.As a result EH(s,t)-V'has two components.

    Case 4.2Decomposing EH(s,t)along any dimen-

    Afterdecomposing along dimension i and j in Case 4.1, we decompose EH00(s-1,t-1)into EH000(s-1,t-2) and EH001(s-1,t-2)along the dimension k,k/=j,k∈ [1,t],such thatWe can obtain that EH001(s-1,t-2)-nected,EH000(s-1,t-2)-is disconnected andBy the induction hypothesis,has two components.As a result EH(s,t)-V'has two components.The process of ourproof of Case 4.2 is illustrated in Fig.3.

    Fig.3 Proofof Case 4.2 in Lemma 7

    Lemma 8For any two distinct sets F1,F2?V(EH(s,t))(1≤s≤t)with|F1|≤2s and|F2|≤2s but|F1∪F2|>2s,then there exists a node x∈F1ΔF2adjacentto some node y∈/F1∪F2.

    ProofBy the conditions,F1∩F2is a proper set of F1and F2,therefore,|F1∩F2|≤2s-1 and |F1ΔF2|≥2.For the sake of contradiction,suppose no nodes in F1ΔF2is adjacentto nodes not in F1∪F2,then Γ(EH(s,t),F1ΔF2)?F1∩F2implying EH(s,t)-F1∩F2is disconnected.Consider the following two cases:

    Case 52≤s≤t

    By Lemma 7,EH(s,t)-F1∩F2has two components, one is F1ΔF2,the other is EH(s,t)-F1∩F2-F1ΔF2. Since the connectivity of EH(s,t)is s+1,implying that |F1∩F2|≥s+1,and consequently|F1ΔF2|≤2(s-1). Hence|EH(s,t)-F1∩F2-F1ΔF2|≥|EH(s,t)|-|F1∩F2|-|F1ΔF2|=2s+t+1-(2s-1)-(2s-2)≥2. It follows that the super connectivity of the EH(s,t)is κ'(G)≤|F1∩F2|≤2s-1,a contradiction with Lemma 1.

    Case 61=s≤t

    In this case,|F1|=2,|F2|=2 and|F1∪F2|>2.Itfollows that|F1∩F2|=1.Since the connectivity of EH(1,t) is 2,EH(1,t)-F1∩F2is connected,a contradiction.

    According to Lemma 8 and Lemma 3 aboutthe diagnosability of a multiprocessor system under the PMC model, we obtain the following results.

    Theorem 1EH(s,t)(1≤s≤t)is 2s/2sdiagnosable under the PMC model using the pessimistic one-step diagnosis strategy.

    ProofTo the contrary,we suppose that EH(s,t)is not2s/2s-diagnosable.Then,by Lemma 3,there existtwo distinctsets F1and F2with|F1|≤2s and|F2|≤2s but |F1∪F2|>2s,which are indistinguishable.According to Lemma 8,there exists a node y∈F1ΔF2adjacent to some x/∈F1∪F2.We may assume that y∈F1-F2.Selecta syndromeσ∈Ω(F1)∩Ω(F2).Ifσ(x,y)=0(resp. σ(x,y)=1),then F1(resp.F2)is not an allowable fault setwith respecttoσ,a contradiction.Hence,EH(s,t)is 2s/2s-diagnosable under the PMC model.

    Next,we establish diagnosability for EH(s,t)under the MM?model.

    Theorem 2EH(s,t)(1≤s≤t)is 2s/2sdiagnosable under the MM?modelusing the pessimistic one-step diagnosis strategy.

    ProofTo the contrary,we suppose that EH(s,t)is not 2s/2s-diagnosable.Then there existtwo indistinguishable and distinctsets F1and F2with|F1|≤2s and|F2|≤2s but|F1∪F2|>2s.By Lemma 8,F1ΔF2has atleast one vertex u adjacentto some vertex w/∈F1∪F2.Denote F3as the setofallsuch vertices w.From Lemma 4,itfollows thatfor any vertex v∈F3,

    (i)|N(v)∩(F1-F2)|≤1.

    (ii)|N(v)∩(F2-F1)|≤1.

    (iii)N(v)?F1∪F2.

    We can derive that F3=Γ(EH(s,t),F1ΔF2)-F1∩F2,Γ(EH(s,t),(F1ΔF2)∪F3)?F1∩F2which implies that EH(s,t)-F1∩F2is disconnected.We considerthe following two cases.

    Case 72≤s≤t

    According to Lemma 7,EH(s,t)-F1∩F2has two components that one is(F1ΔF2)∪F3,the other is EH(s,t)-F1∩F2-(F1ΔF2)∪F3.Itcan be seen that s+1≤|F1∩F2|≤2s-1,2≤|F1ΔF2|≤2(s-1), |F3|≤|N(F1ΔF2)|≤2(s-1)(s+1).Hence,2≤|(F1ΔF2)∪F3|≤2(s-1)+2(s-1)(s+1)=2s2+ 2s-4≥2,and|EH(s,t)-((F1ΔF2)∪F3)-F1∩F2|≥2s+t+1-(2s2+2s-4)-(2s-1)≥2.Itfollows thatthe super connectivity isκ'(EH(s,t))≤|F1∩F2|≤2s-1, a contradiction with Lemma 1.

    Case 81=s≤t

    In this case,|F1|=2,|F2|=2 and|F1∪F2|>2.Itfollows that|F1∩F2|=1.Since the connectivity of EH(1,t) is 2,EH(1,t)-F1∩F2is connected,a contradiction.

    4.Conclusions

    The exchanged hypercubes have been shown to have some similar and differentproperties compared to hypercubes in [18].The pessimistic diagnosability of the exchanged hypercubes is studied in this paper.It has been shown that the degree ofdiagnosability ofthe EH(s,t)underthe pessimistic one-step t1/t1faultdiagnosis strategy is 2s where 1≤s≤t based on the PMC modeland the MM?model. So far,some properties of the exchanged hypercubes,such as super connectivity,conditional diagnosability,topologicalproperties,and embedding issues,have been studied. Butthey still have many other unknown properties.These properties of the exchanged hypercubes are waiting to revealthemselves to us.

    [1]F.P.Preparata,G.Metze,R.T.Chien.On the connection assignment problem of diagnosable systems.IEEE Trans.on Electronic Computers,1967,16(6):848-854.

    [2]G.Y.Chang,G.J.Chang,G.H.Chen.Diagnosabilities of regularnetworks.IEEE Trans.on Paralleland Distributed Systems,2005,16(4):314-323.

    [3]C.K.Lin,T.L.Kung,J.J.M.Tan.An algorithmic approach to conditional-fault local diagnosis of regular multiprocessor interconnected systems under the PMC model.IEEE Trans.on Computers,2013,62(3):439-451.

    [4]C.H.Tsai.A quick pessimistic diagnosis algorithm for hypercube-like multiprocessorsystems underthe PMC model. IEEE Trans.on Computers,2013,62(2):259-267.

    [5]S.L.Peng,C.K.Lin,J.J.M.Tan.The g-good-neighbor conditional diagnosability of hypercube under PMC model.Applied Mathematics and Computation,2012,218(21):10406-10412.

    [6]N.W.Chang,S.Y.Hsieh.Conditional diagnosability of augmented cubes underthe PMC model.IEEE Trans.on Dependable and Secure Computing,2012,9(1):46-60.

    [7]T.K.Li,C.H.Tsai,H.C.Hsu.A fastfault-identi fi cation algorithm for bijective connection graphs using the PMC model. Information Sciences,2012,187:291-297.

    [8]A.Kavianpour,K.H.Kim.Diagnosabilities ofhypercubes underthe pessimistic one-step diagnosis strategy.IEEE Trans.on Computers,1991,40(2):232-237.

    [9]M.C.Yang.Conditional diagnosability of balanced hypercubes underthe PMC model.Information Sciences,2013,222: 754-760.

    [10]J.Maeng,M.Malek.A comparison connection assignmentfor self-diagnosis ofmultiprocessorsystems.Proc.ofDigestofthe International Sympsium on Fault Tolerant Computing,1981: 173-175.

    [11]A.Sengupta,A.T.Dahbura.On self-diagnosable multiprocessor systems:diagnosis by the comparison approach.IEEE Trans.on Computers,1992,41(11):1386-1396.

    [12]W.S.Hong,S.Y.Hsieh.Strong diagnosability and conditional diagnosability ofaugmented cubes underthe comparison diagnosis model.IEEE Trans.on Reliability,2012,61(1):140-148.

    [13]M.C.Yang.Conditional diagnosability of matching composition networks under the MM*model.Information Sciences, 2013,233:230-243.

    [14]S.Y.Hsieh,C.Y.Kao.The conditionaldiagnosability ofk-ary n-cubes under the comparison diagnosis model.IEEE Trans. on Computers,2013,62(4):839-843.

    [15]A.Kavianpour,A.D.Friedman.Ef fi cient design of easily diagnosable systems.Proc.of the Third USA-Japan Computer Conference,1978:251-257.

    [16]A.D.Friedman.A new measure of digital system diagnosis. Proc.of Digest of the International Sympsium on Fault TolerantComputing,1975:167-170.

    [17]C.L.Yang,G.M.Masson,R.A.Leonetti.On fault isolation and identi fi cation in t1/t1-diagnosable systems.IEEE Trans. on Computers,1986,100(7):639-643.

    [18]P.K.K.Loh,W.J.Hsu,Y.Pan.The exchanged hypercube. IEEE Trans.on Parallel and Distributed Systems,2005,16(9): 866-874.

    [19]Y.W.Chen.A commenton“the exchanged hypercube”.IEEE Trans.on Parallel and Distributed Systems,2007,18(4):576-576.

    [20]X.J.Li,J.M.Xu.Generalized measures of faulttolerance in exchanged hypercubes.Information Processing Letters,2013, 113(14/15/16):533-537.

    [21]M.Ma.The connectivity of exchanged hypercubes.Discrete Mathematics Algorithms and Applications,2010,2(2):213-220.

    [22]M.Ma,L.Zhu.The super connectivity of exchanged hypercubes.Information Processing Letters,2011,111(8):360-364.

    [23]X.Y.Wang,J.R.Liang,Q.L.Dou.Research on topological properties and embedding issues of the exchanged hypercube. Acta Electronica Sinica,2012,40(4):669-673.(in Chinese) [24]R.J.Trudeau.Introduction to graph theory.New York: Courier Dover Publications,2013.

    [25]K.Y.Chwa,S.L.Hakimi.On faultidenti fi cation in diagnosable systems.IEEE Trans.on Computers,1981,100(6):414-422.

    Biographies

    Jiarong Liang was born in 1966.He received his B.E.degree in mathematics from Central China Normal University in 1991.He furtherreceived his M.S.degree in applied mathematics from Northwest University,China,in 1994 and Ph.D.degree in Institute of Automation from South China University of Technology in 1998.From 2002 to 2003, he was a postdoctoral at Korea Advance Institute of Science and Technology.Currently he is a professor and doctoral supervisor in Schoolof Computer,Electronics and Information,Guangxi University.His research interests include parallel and distributed wireless sensor network and network reliability analysis,and singular controlsystems.He has published over 180 papers in the above areas.

    E-mail:gxuliangjr@163.com

    Ying Huang was born in 1990.She received her B.E.degree in computer science and technology from Shijiazhuang Tiedao University in 2012.She is currently working towards her M.S.degree in School of Computer,Electronics and Information, Guangxi University.Her research interests focus on paralleland distributed computing and network fault tolerance.

    E-mail:huangying11290@126.com

    Liangcheng Ye was born in 1988.He received his B.E.degree in computer science and technology from Zhejiang University of Techonlogy in 2011. He is currently working towards his M.S.degree in School of Computer,Electronics and Information, Guangxi University.His research interests include graph theory,network faulttolerance,and faultdiagnosis.

    E-mail:yeliangcheng707@qq.com

    10.1109/JSEE.2015.00048

    Manuscriptreceived April14,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Fundation of China(61363002).

    99热全是精品| 亚洲精品一二三| av在线亚洲专区| 成人高潮视频无遮挡免费网站| 免费大片黄手机在线观看| 亚洲色图av天堂| 日本免费在线观看一区| 麻豆久久精品国产亚洲av| ponron亚洲| 深夜a级毛片| 最近的中文字幕免费完整| 久久精品久久久久久噜噜老黄| 国产黄频视频在线观看| 五月伊人婷婷丁香| 日本wwww免费看| 日本与韩国留学比较| 波野结衣二区三区在线| 免费人成在线观看视频色| 日韩视频在线欧美| 免费少妇av软件| 黄色欧美视频在线观看| 在线播放无遮挡| 国产成人精品福利久久| 亚洲欧美一区二区三区国产| 麻豆av噜噜一区二区三区| 久久久久网色| 久久久久久久久久黄片| 亚洲av.av天堂| 又粗又硬又长又爽又黄的视频| 美女xxoo啪啪120秒动态图| 听说在线观看完整版免费高清| 国产成人精品久久久久久| 国产精品福利在线免费观看| 亚洲精品成人久久久久久| 777米奇影视久久| 日本av手机在线免费观看| 性色avwww在线观看| 国产黄色视频一区二区在线观看| av女优亚洲男人天堂| 国产成人aa在线观看| 亚洲一区高清亚洲精品| 极品少妇高潮喷水抽搐| av专区在线播放| 欧美+日韩+精品| 国产黄片美女视频| 天堂中文最新版在线下载 | 午夜老司机福利剧场| 亚洲av免费高清在线观看| 久99久视频精品免费| 一级av片app| 亚洲成人一二三区av| 极品教师在线视频| 99热这里只有精品一区| 久久久久久久久久久丰满| 成人亚洲精品av一区二区| 欧美成人精品欧美一级黄| 久久久久九九精品影院| 久久久久网色| 国产精品一二三区在线看| 久久久久久久大尺度免费视频| 人妻系列 视频| 亚洲精品成人av观看孕妇| 非洲黑人性xxxx精品又粗又长| 18禁动态无遮挡网站| 内地一区二区视频在线| 国产在视频线在精品| 男女那种视频在线观看| 欧美高清成人免费视频www| 久久久久国产网址| 日本免费在线观看一区| 日韩av不卡免费在线播放| 国产高潮美女av| 国产女主播在线喷水免费视频网站 | 欧美一级a爱片免费观看看| 国产色婷婷99| 亚洲av中文字字幕乱码综合| 亚洲国产日韩欧美精品在线观看| 欧美潮喷喷水| 久久久久免费精品人妻一区二区| 免费av观看视频| 国产精品不卡视频一区二区| 人妻制服诱惑在线中文字幕| 免费av不卡在线播放| 人妻一区二区av| 久久久久久久久中文| 国产亚洲精品av在线| 男女边摸边吃奶| 三级毛片av免费| 亚洲国产精品成人久久小说| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区国产| 国产亚洲精品久久久com| videossex国产| 一级毛片我不卡| 天天躁日日操中文字幕| 精品国产三级普通话版| 欧美激情久久久久久爽电影| 亚洲图色成人| 禁无遮挡网站| 亚洲欧洲日产国产| 国产黄色免费在线视频| 18+在线观看网站| 色视频www国产| 国产av国产精品国产| 日韩中字成人| 免费观看av网站的网址| av专区在线播放| 99热这里只有是精品在线观看| 嫩草影院精品99| 日本-黄色视频高清免费观看| 欧美潮喷喷水| 建设人人有责人人尽责人人享有的 | 午夜福利高清视频| av.在线天堂| 永久免费av网站大全| 大陆偷拍与自拍| 亚洲av二区三区四区| .国产精品久久| 亚洲色图av天堂| 99视频精品全部免费 在线| 三级国产精品欧美在线观看| 国产免费一级a男人的天堂| 日本黄大片高清| 国产免费福利视频在线观看| 亚洲av二区三区四区| 夜夜看夜夜爽夜夜摸| 男的添女的下面高潮视频| 日日啪夜夜撸| 亚洲精品日韩在线中文字幕| 国产极品天堂在线| 中文欧美无线码| 日韩中字成人| 黑人高潮一二区| 中文精品一卡2卡3卡4更新| 精品久久久久久久久av| 国产一区二区亚洲精品在线观看| 欧美精品国产亚洲| 国产黄a三级三级三级人| 亚洲国产欧美人成| 亚洲婷婷狠狠爱综合网| 精品一区二区三区视频在线| 男人爽女人下面视频在线观看| 男人爽女人下面视频在线观看| 亚洲成人久久爱视频| 熟女人妻精品中文字幕| 久久精品夜色国产| 久久久久久久大尺度免费视频| 精品亚洲乱码少妇综合久久| 日本一本二区三区精品| 日韩欧美一区视频在线观看 | 亚洲av在线观看美女高潮| 日日啪夜夜爽| 免费黄频网站在线观看国产| 国产在线男女| av福利片在线观看| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| 日韩精品青青久久久久久| 网址你懂的国产日韩在线| 日韩一区二区三区影片| 日韩av免费高清视频| 国产av不卡久久| 美女国产视频在线观看| 亚洲精品乱码久久久久久按摩| 国产精品99久久久久久久久| av国产久精品久网站免费入址| 一级毛片 在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热6这里只有精品| 毛片一级片免费看久久久久| 亚洲国产精品专区欧美| 成人亚洲欧美一区二区av| 国产在视频线在精品| 欧美xxxx黑人xx丫x性爽| 日韩不卡一区二区三区视频在线| 国产成人精品福利久久| 极品教师在线视频| 一个人观看的视频www高清免费观看| 国产午夜精品久久久久久一区二区三区| 黄色欧美视频在线观看| 欧美激情久久久久久爽电影| 男人狂女人下面高潮的视频| 久久精品国产亚洲网站| 欧美丝袜亚洲另类| 欧美xxxx性猛交bbbb| a级毛色黄片| 亚洲成人一二三区av| 午夜精品国产一区二区电影 | 一夜夜www| 国产精品女同一区二区软件| 好男人视频免费观看在线| 国内精品宾馆在线| 在线免费观看不下载黄p国产| 又爽又黄无遮挡网站| 蜜桃久久精品国产亚洲av| 国产综合懂色| 亚洲天堂国产精品一区在线| 亚洲人成网站高清观看| 国产伦精品一区二区三区四那| 99久久人妻综合| 国产精品一区www在线观看| 人妻系列 视频| 久久久久久久国产电影| 99热这里只有是精品50| 波多野结衣巨乳人妻| 日本熟妇午夜| 最近中文字幕2019免费版| 成人毛片a级毛片在线播放| 自拍偷自拍亚洲精品老妇| 日韩精品有码人妻一区| 亚洲av成人av| 成人漫画全彩无遮挡| 国产成人a∨麻豆精品| 午夜老司机福利剧场| 97精品久久久久久久久久精品| 亚洲国产成人一精品久久久| 亚洲图色成人| 亚洲丝袜综合中文字幕| 亚洲无线观看免费| av福利片在线观看| 男的添女的下面高潮视频| 99热网站在线观看| 国产一区二区亚洲精品在线观看| 少妇裸体淫交视频免费看高清| 97热精品久久久久久| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 男女那种视频在线观看| 91精品一卡2卡3卡4卡| av福利片在线观看| 1000部很黄的大片| 国产精品国产三级国产av玫瑰| 久久精品综合一区二区三区| 国产高清有码在线观看视频| av女优亚洲男人天堂| 亚洲成人一二三区av| 一级爰片在线观看| 91狼人影院| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 亚洲欧美成人综合另类久久久| 中文精品一卡2卡3卡4更新| 日本av手机在线免费观看| 成人性生交大片免费视频hd| 欧美丝袜亚洲另类| 极品教师在线视频| 真实男女啪啪啪动态图| 国产午夜精品一二区理论片| 九草在线视频观看| 我的老师免费观看完整版| 久久99蜜桃精品久久| 99久久中文字幕三级久久日本| 亚洲最大成人av| 欧美zozozo另类| 精品人妻熟女av久视频| 国产69精品久久久久777片| 久久久久久久亚洲中文字幕| 99re6热这里在线精品视频| 国内精品美女久久久久久| 22中文网久久字幕| 亚洲美女搞黄在线观看| 久久久久精品性色| 别揉我奶头 嗯啊视频| 赤兔流量卡办理| 老司机影院毛片| 国产午夜精品久久久久久一区二区三区| 我的女老师完整版在线观看| 搡老妇女老女人老熟妇| 亚洲欧美中文字幕日韩二区| 99久国产av精品| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| 97超视频在线观看视频| 久久97久久精品| 国产精品一区www在线观看| 亚洲人成网站在线播| 中文字幕久久专区| 日日摸夜夜添夜夜添av毛片| 亚洲欧美一区二区三区黑人 | 亚洲av免费高清在线观看| 91精品国产九色| 波多野结衣巨乳人妻| 夜夜看夜夜爽夜夜摸| 国内揄拍国产精品人妻在线| 亚洲精品国产成人久久av| 午夜精品在线福利| 亚洲不卡免费看| 十八禁网站网址无遮挡 | 欧美人与善性xxx| 免费观看在线日韩| 在线观看一区二区三区| 97在线视频观看| 大香蕉97超碰在线| 欧美日韩亚洲高清精品| 中国美白少妇内射xxxbb| 国产精品综合久久久久久久免费| 99热网站在线观看| 性插视频无遮挡在线免费观看| 美女高潮的动态| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃 | 国内精品一区二区在线观看| 日韩人妻高清精品专区| 日日撸夜夜添| 男女视频在线观看网站免费| 99热这里只有是精品在线观看| 国产欧美日韩精品一区二区| 成人亚洲欧美一区二区av| 只有这里有精品99| 激情 狠狠 欧美| 大香蕉97超碰在线| 老师上课跳d突然被开到最大视频| 大香蕉久久网| 91av网一区二区| 一级二级三级毛片免费看| 午夜激情欧美在线| 国产高清三级在线| 国产毛片a区久久久久| 人人妻人人澡欧美一区二区| 亚洲av免费在线观看| 亚洲高清免费不卡视频| 天堂俺去俺来也www色官网 | 欧美日本视频| 一区二区三区高清视频在线| 日韩三级伦理在线观看| 大片免费播放器 马上看| 亚洲国产成人一精品久久久| 18+在线观看网站| 午夜福利网站1000一区二区三区| www.色视频.com| 69av精品久久久久久| 亚洲av不卡在线观看| 国产午夜精品论理片| 中文天堂在线官网| 国产国拍精品亚洲av在线观看| 高清欧美精品videossex| 在线播放无遮挡| 我的老师免费观看完整版| 亚洲av成人av| 亚洲av免费高清在线观看| 午夜久久久久精精品| 日韩,欧美,国产一区二区三区| av播播在线观看一区| 欧美一区二区亚洲| 久久人人爽人人片av| 日韩欧美一区视频在线观看 | 少妇的逼水好多| 亚洲av日韩在线播放| 777米奇影视久久| 精品人妻熟女av久视频| a级一级毛片免费在线观看| 国产乱人视频| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 赤兔流量卡办理| 日韩精品青青久久久久久| 中国国产av一级| 久久99热6这里只有精品| 中文资源天堂在线| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 成人二区视频| 欧美不卡视频在线免费观看| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃 | 国内揄拍国产精品人妻在线| 嫩草影院入口| 久久精品国产鲁丝片午夜精品| 精品国产一区二区三区久久久樱花 | 黄色日韩在线| 3wmmmm亚洲av在线观看| 91久久精品国产一区二区成人| 别揉我奶头 嗯啊视频| 欧美日韩综合久久久久久| 在线免费观看的www视频| 好男人在线观看高清免费视频| 可以在线观看毛片的网站| 在线观看av片永久免费下载| 亚洲精品国产成人久久av| 成年免费大片在线观看| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 免费观看av网站的网址| 国产精品久久久久久精品电影| 有码 亚洲区| 少妇熟女欧美另类| 精品少妇黑人巨大在线播放| 亚洲美女视频黄频| 美女cb高潮喷水在线观看| 欧美潮喷喷水| 国产午夜精品久久久久久一区二区三区| 国产黄色小视频在线观看| 成人二区视频| 色综合色国产| 亚洲av.av天堂| 成人性生交大片免费视频hd| 久久久欧美国产精品| 国产午夜精品久久久久久一区二区三区| 久久97久久精品| 国产综合懂色| 两个人的视频大全免费| 国产高清国产精品国产三级 | 久久久午夜欧美精品| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 欧美日韩一区二区视频在线观看视频在线 | 高清毛片免费看| 日本-黄色视频高清免费观看| 综合色av麻豆| 18禁动态无遮挡网站| 美女脱内裤让男人舔精品视频| 床上黄色一级片| 久久草成人影院| 美女脱内裤让男人舔精品视频| 国产高清有码在线观看视频| 看黄色毛片网站| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂 | 九九在线视频观看精品| 人人妻人人澡人人爽人人夜夜 | 91久久精品电影网| av在线天堂中文字幕| 亚洲精品国产av蜜桃| 全区人妻精品视频| 97在线视频观看| 亚洲av电影不卡..在线观看| 国产免费福利视频在线观看| 男女国产视频网站| 狂野欧美白嫩少妇大欣赏| 久久久久国产网址| 亚洲av成人av| 建设人人有责人人尽责人人享有的 | 97在线视频观看| 能在线免费看毛片的网站| 天美传媒精品一区二区| 亚洲av一区综合| 又爽又黄无遮挡网站| 九九在线视频观看精品| 精品一区在线观看国产| 成年av动漫网址| 国产免费一级a男人的天堂| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 一区二区三区高清视频在线| 观看美女的网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品亚洲一区二区| 在线观看免费高清a一片| 天堂网av新在线| 男人舔女人下体高潮全视频| 51国产日韩欧美| 国产白丝娇喘喷水9色精品| 亚洲国产欧美人成| 欧美bdsm另类| 乱人视频在线观看| 欧美高清性xxxxhd video| 国产成人精品久久久久久| 亚洲av一区综合| 最近最新中文字幕大全电影3| 2022亚洲国产成人精品| 久久午夜福利片| 人人妻人人看人人澡| 黑人高潮一二区| 久久草成人影院| 男的添女的下面高潮视频| 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频 | 我的老师免费观看完整版| 国产高清有码在线观看视频| 亚洲丝袜综合中文字幕| 欧美bdsm另类| 51国产日韩欧美| 插逼视频在线观看| 久久综合国产亚洲精品| 亚洲在线自拍视频| 26uuu在线亚洲综合色| 精品人妻熟女av久视频| 免费无遮挡裸体视频| 一级毛片电影观看| 老师上课跳d突然被开到最大视频| 国产精品无大码| 成人性生交大片免费视频hd| 成人亚洲精品一区在线观看 | 亚洲精品456在线播放app| 成人毛片60女人毛片免费| 卡戴珊不雅视频在线播放| 午夜免费男女啪啪视频观看| 97超视频在线观看视频| 中文字幕亚洲精品专区| 亚洲精品亚洲一区二区| 美女cb高潮喷水在线观看| 搞女人的毛片| 色哟哟·www| 久久久久久久久久久丰满| 只有这里有精品99| 国产精品熟女久久久久浪| 免费无遮挡裸体视频| 超碰av人人做人人爽久久| av专区在线播放| av免费在线看不卡| 久久久久久久大尺度免费视频| 午夜日本视频在线| 精品欧美国产一区二区三| h日本视频在线播放| 深爱激情五月婷婷| 秋霞伦理黄片| 国产成年人精品一区二区| 熟妇人妻不卡中文字幕| 深夜a级毛片| 久久久久网色| 亚洲成人av在线免费| 在线观看美女被高潮喷水网站| 国产欧美日韩精品一区二区| 亚洲一级一片aⅴ在线观看| 午夜福利成人在线免费观看| 蜜臀久久99精品久久宅男| 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜 | 99热6这里只有精品| 寂寞人妻少妇视频99o| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 色综合站精品国产| 国产日韩欧美在线精品| 草草在线视频免费看| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕 | 蜜桃久久精品国产亚洲av| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 亚洲精品aⅴ在线观看| 午夜福利视频1000在线观看| 黄色日韩在线| 观看美女的网站| 人妻一区二区av| 国产亚洲最大av| 青春草视频在线免费观看| 国产精品一及| 欧美成人午夜免费资源| 美女大奶头视频| 成人鲁丝片一二三区免费| 精品国内亚洲2022精品成人| 久久这里只有精品中国| 99久国产av精品| 91aial.com中文字幕在线观看| 国产美女午夜福利| 边亲边吃奶的免费视频| 最近手机中文字幕大全| 女人久久www免费人成看片| 综合色丁香网| 中文资源天堂在线| 夫妻午夜视频| 国产淫语在线视频| 久久人人爽人人爽人人片va| 精品久久久久久久久久久久久| 日韩不卡一区二区三区视频在线| 久热久热在线精品观看| 国产 一区精品| 色视频www国产| 国产亚洲5aaaaa淫片| 久久人人爽人人片av| 亚洲av中文av极速乱| 亚洲精品成人av观看孕妇| 91午夜精品亚洲一区二区三区| 熟女人妻精品中文字幕| 中文天堂在线官网| 久久久久精品性色| 亚洲精品aⅴ在线观看| 好男人在线观看高清免费视频| 全区人妻精品视频| 亚洲综合精品二区| 夜夜看夜夜爽夜夜摸| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 亚洲精品国产av成人精品| 欧美日韩一区二区视频在线观看视频在线 | 国产午夜精品一二区理论片| 一级毛片电影观看| 久久久久久久久中文| 日韩强制内射视频| 人人妻人人看人人澡| 九色成人免费人妻av| a级一级毛片免费在线观看| 成人特级av手机在线观看| 中文字幕av在线有码专区| 国产视频首页在线观看| 国产成人午夜福利电影在线观看| 国产精品爽爽va在线观看网站| 中国美白少妇内射xxxbb| 一级毛片久久久久久久久女| 特级一级黄色大片| 欧美激情在线99| av福利片在线观看| 精品久久久精品久久久| 寂寞人妻少妇视频99o| 免费在线观看成人毛片| 亚洲精品成人久久久久久| 亚洲不卡免费看| 精品久久久久久电影网| 国产在视频线在精品| 国产精品一及| 日本一本二区三区精品| 亚洲熟妇中文字幕五十中出| 欧美潮喷喷水| 亚洲最大成人av| 日韩国内少妇激情av| 国产成人a∨麻豆精品| 色网站视频免费|