• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evidentialmethod to identify in fl uentialnodes in complex networks

    2015-12-23 10:09:13,3,4,*

    ,3,4,*

    1.Schoolof Computer and Information Science,Southwest University,Chongqing 400715,China; 2.Departmentof the Tibetan Language,Sichuan University of Nationalities,Kangding 626001,China; 3.Schoolof Automation,Northwestern Polytechnical University,Xi’an 710072,China; 4.Schoolof Engineering,Vanderbilt University,TN 37235,USA

    Evidentialmethod to identify in fl uentialnodes in complex networks

    Hongming Mo1,2,CaiGao1,and Yong Deng1,3,4,*

    1.Schoolof Computer and Information Science,Southwest University,Chongqing 400715,China; 2.Departmentof the Tibetan Language,Sichuan University of Nationalities,Kangding 626001,China; 3.Schoolof Automation,Northwestern Polytechnical University,Xi’an 710072,China; 4.Schoolof Engineering,Vanderbilt University,TN 37235,USA

    Identifying in fl uentialnodes in complex networks is still an open issue.In this paper,a new comprehensive centrality measure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality,betweenness centrality and closeness centrality are taken into consideration in the proposed method.Numericalexamples are used to illustrate the effectiveness of the proposed method.

    Dempster-Shafer evidence theory(D-S theory);belief function;complex networks;in fl uentialnodes;evidentialcentrality; comprehensive measure.

    1.Introduction

    Complex networks have attracted more and more attention in recent years[1-8].Many real-world systems such as computer sciences,economics,management and biologicalsciences can be regarded as complex networks.Itis of theoretical signi fi cance and practical value to know how to identify the in fl uentialnodes effectively in complex networks[9-16].Itis essentialto identify the node centrality, for itwillhelp to better know the structure of the complex networks and wellmanage the complex networks[17-25].

    The existing commonly used methods to identify the central nodes of binary networks are degree centrality (DC),betweenness centrality(BC)[26]and closeness centrality(CC)[27].DC,BC and CC function well in some special networks.The DC method is straight-forward, simple and ef fi cient,butof little globalstructure relevance. Itjustconsiders the localstructure butnotthe globalstructure of the network.BC and CC metrics can better identify in fl uential nodes,since they take the global structure into consideration.BC is de fi ned as the number of the shortest paths from all vertices to all others that pass through that node.CC is de fi ned as the inverse sum of the shortest distances to all other nodes from a focal node.Some other measures are also available to identify the in fl uential nodes in complex networks,such as semi-local centrality [28],eigenvectorcentrality[29],PageRank[30]and LeaderRank[31].

    The Dempster-Shafer evidence theory(D-S theory) [32,33]is a powerfultoolin data fusion,decision making, etc.[34-43].And the combination rule of Dempster,as introduced later,can be used to combine differentproperties of the same objectto yield a new comprehensive characteristic.Thus,the Dempster’s combination rule can be used to combine the DC,BC and CC of a node and generate a new index,which can be viewed as the capability of the node.Based on the ability of the Dempster’s combination rule,the D-S theory has been applied to identify in fl uential nodes in complex networks.Wei et al.[44]proposed a centrality measure based on the D-S theory,trading off between the degree and the strength of every node in a weighted network.Based on[44],Gao etal.[45]proposed an improvementmeasure,which takes the degree and the weight of every node itself and the nearest neighbors into consideration in a weighted network.The two evidential measures of node centrality are applied to weighted networks.When the networks are unweighed,the two existing evidentialmeasuresofnode centrality degenerate to the fundamentalmeasure of DC,ignoring the weightelement. To address the issue,a new evidential method to identifyin fl uential nodes in unweighted networks,combining DC, BC and CC based on the D-S theory,is proposed in this paper.In the proposed evidential method,the in fl uence of nodes are ascertained by unionization of degree,betweenness and closeness.We all know that,the capability of a node depends on many aspects,such as degree,betweenness and closeness.Thus the proposed method is more comprehensive than those existing single methods in unweighted networks.To evaluate the performance of the proposed method,the susceptible and infected(SI)model is adopted to examine the spreading in fl uence of the nodes ranked by differentcentrality measures.

    The paper is organized as follows.In Section 2,a brief overview of centrality measures and a short introduction of the D-S theory are given.In Section 3,the proposed method to identify in fl uential nodes in complex networks is developed and illustrated by detailed steps.Assessment of the proposed method by the SI modelis shown in Section 4.A shortconclusion is drawn in the last Section.

    2.Preliminaries

    2.1 Centrality measure

    A network can generally be represented as a set G= (V,E)[27].Here,V and E are the sets of all nodes and edges,respectively.|V|=n,which is the number of nodes.

    The three centrality measures of DC,BC and CC are given as follows:

    Definition 1The DC of node i,denoted as d(i),is de fi ned as

    where vijis the edge between node i and node j.The value of vijis 1,when there is an edge between node i and node j,otherwise 0.

    Definition 2The BC of node i,denoted as b(i),is defi ned as

    where gpqis the number of the shortest paths from all nodes to allothers,and gpq(i)denotes the numberofnode i passing through the shortestpaths.

    Definition 3The CC of node i,denoted as c(i),is defi ned as

    where stijis the shortest distance between node i and node j.

    2.2 DS theory

    In the D-S theory,a problem domain is denoted by a finite nonempty setΩof mutually exclusive and exhaustive hypotheses,called the frame of discernment.A few basic concepts[32,33]are introduced as follows:

    Definition 4LetΩ={θ1,θ2,...,θN}be a fi nite set of N elements.Let 2Ωdenote the power set ofΩ,and 2Ω={?,θ1,...,θN,θ1∪θ2,θ1∪θ3,...,Ω}.

    Definition 5For a frame of discernmentΩ,a basic probability assignment(BPA)function is a mapping m:2Ω→[0,1],which is also called mass function,satisfying

    where?is an empty set and A is any elementof 2Ω.The mass function m(A)represents how strongly the evidence supports A.Given two BPAs m1and m2,the Dempster’s combination rule can be used to combine them and yield a new BPA.

    Definition 6Dempster’s rule of combination,also called orthogonalsum,denoted by m=m1⊕m2,is defi ned as follows:

    where A,B and C are the elements of 2Ω,and K is a normalization constant,called the con fl ict coef fi cient of the two BPAs.The Dempster’s rule of combination is the core of the D-S theory,satisfying commutative and associative properties,i.e.(i)m1⊕m2=m2⊕m1;(ii)

    (m1⊕m2)⊕m3=m1⊕(m2⊕m3).Thus if there exist multiple BPAs,the combination of them can be carried out in a pairwise way with any order.

    3.Evidentialcentrality

    In this section,we propose a new method to identify the in

    fl uentialnodes in complex networks,called comprehensive evidence centrality(CEC).In CEC,the in fl uence ofa node takes into accountnot only degree,betweenness or closeness,but all of them.The in fl uence of a node is de fi ned by the Dempster’s rule of combination,regarding DC,BC and CC as differentBPAs.The method to generate the new BPA of CEC is developed as follows.

    3.1 Construction of BPAs of degree,betweenness and closeness

    Step 1Ascertain a frame of discernmentθ,θ= (high,low).Let high and low be the evaluation indicesof in fl uence of degree,betweeness and closeness of each node.Let h represent high,and l represent low,for short. And then,the frame of discernmentθcan be represented asθ=(h,l).

    Step 2Ascertain a reference value based on the degree, betweenness and closeness.The maximum and minimum values of the degree,betweenness and closeness,can be obtained respectively as follows:

    In general,dM≥dm,bM≥bmand cM≥cmin complex networks,and n is the number of nodes.

    Step 3Construct BPAs for the degree,betweenness and closeness of each node.mdi(h)and mdi(l)(i= 1,2,3,...,n)represent the probabilities of“high”and“l(fā)ow”in fl uence of degree of the i th node,respectively. mbi(h),mbi(l),mci(h)and mci(l),likewise.These mass functions of the i th node are generated as follows:

    whereαis a user-de fi ned parameter,α∈[0,1],andα is set to be 1,for simplicity.di,biand ciare the degree, betweenness and closeness of the i th node,respectively. Therefore,the BPAs of the i th node according to the degree,betweenness and closeness can be generated respectively as follows:

    Step 4Apply the combination rule of Dempster.Using(4),a new BPA ofthe i th node,combining with Md(i), Mb(i)and Mc(i),can be obtained as follows:

    3.2 Comprehensive evidence centrality

    Step 5In(24),mi(θ)implies that the probabilities of high or low are unknown.For simplicity,assign mi(θ)to mi(h)and mi(l)averagely,therefore the indices of the i th node can be represented as follows:

    where Mi(h)and Mi(l)are the in fl uentialprobabilities of high and low of the i th node,respectively.Obviously,the higherthe value of Mi(h),the more importantthe node.In contrast,the lower the value of Mi(l),the more important the node.Therefore,the comprehensive evidence centrality can be presented by a function associated with Mi(h) and Mi(l).

    Definition 7Denoting CEC(i)as the CEC value of node i,which satis fi es

    where CEC(i)is a real number,CEC(i)∈[-1,1],and the greater the value,the more importantthe node.

    Example 1A toy network with 8 nodes and 11 edges is shown in Fig.1.The values of degree,betweenness and closeness of each node are shown in the second,third and fourth columns in Table 1,respectively.

    Fig.1 A network with 8 nodes

    Table 1 Evidential centrality of a network with 8 nodes

    From Table 1,using(6)-(11),the following values ca n be obtained:dM=5,dm=1;bM=17,bm=0;cM= 0.777 8,cm=0.411 8.

    Taking node A as an example,the BPA of the degree of node A,with(12),(13)and(18)used,can be obtained as follows:

    Thatis,the BPA of the degree of node A can be rewritten as

    Similarly,using(14)-(20),the BPAs of betweeness and closeness of node A can be obtained as follows:

    By(4),combining the three BPAs,Md(A),Mb(A)and Mc(A),a new BPA M(A)is generated as

    From(24),the values of mA(h),mA(l)and mA(θ)are as follows:

    Using(25)-(27),the comprehensive evidential centrality of node A can be obtained as follows:

    Repeating the above processes,the CEC values of the other nodes can be calculated.The CEC value of each node in this example is shown in the fi fth column in Table 1.

    4.Application

    The data from Zachary’s Karate Club Network were collected from the members at a USA university karate club by Wayne Zachary in 1977[46].Zachary constructed a network by considering each member in the club as a node. Each edge in the network represents that the connected two members are friends outside the club activities.The network is shown in Fig.2.

    Fig.2 Zachary’s Karate Club Network with 34 nodes and 78 edges

    To evaluate the performance of the proposed method, we adoptthe SI modelto examine the spreading in fl uence oftop-L nodes ranked by differentmeasures.The SImodel is used to mimic the spreading ability of diseases,rumors and so on[28,47,48].In the SImodel,there are two compartments,namely the susceptible(S)and the infected(I). At each step,each infected node randomly selects one of its neighbors to contact,with probabilityλ.Node i infects node j with probability(?>0),where djis the degree of node j,and dMis the maximum degree in the network.For simplicity,?is setto be 1.Notice that this model is slightly different from the standard SI model where all the neighbors of an infected node have the chance to be infected.Considering its function,the SI modelis usually used to mimic the limited spreading capability of individuals.

    In order to identify the in fl uence between nodes 1,33 and 34,the three nodes are set as infected nodes in the SI model,respectively.Then,the trial proceeds until all the nodes are infected.Niis the number of infected nodes at the i th step,and〈Ni〉denotes the average value of Niin 100 traces.The in fl uence of nodes 1,33 and 34 are shown in Fig.3.It indicates that the spreading speed of node 1 is the fastest,thus node 1 is the most in fl uential node in the network,which has the largestCEC value.The evaluation indices and orders of Zachary’s Karate Club Network, processed by DC,BC,CC and CEC methods are shown in Table 2,respectively.From Table 2,it is clearly seen that the orders,as shown in the 3rd,5th,7th and 9th columns, are different by the DC,BC,CC and CEC methods,respectively.In otherwords,differentmethods take different indices into consideration.The DC,BC and CC methods are single index,and the CEC method is multi-indices.For example,DC just takes the degree of the node into consideration,discarding other indices of the node.However, the CEC method takes these indices of DC,BC and CC into consideration.Itis obvious that,the method of multiindices refers to more factors of the node than the singleindex method.Thatis,the results generated by CECshould be more objective and reasonable than those by the DC,BCor CC method.In order to examine the ability of identi fication,the SImodelis used to compare the proposed CEC method with DC,BC and CC,respectively.The different spreading abilities and stabilities are shown in Figs.4-6, which indicates thatthe proposed method CEC is slightly better than DC,BC and CC.

    Table 2 Order ofinfluential nodes of Zachary’s Karate Club Network by different measures

    Fig.3 Spreading capabilities of nodes 1,33 and 34 in Zachary’s Karate Club Network

    Fig.4 Influence of evidential centrality and degree centrality in Zachary’s Karate Club Network

    Fig.5 Influence of evidential centrality and betweenness centrality in Zachary’s Karate Club Network

    Fig.6 Influence of evidential centrality and closeness centrality in Zachary’s Karate Club Network

    5.Conclusions

    In this paper,a comprehensive evidential method is proposed to identify in fl uential nodes in complex networks. The proposed method integrates degree,betweenness and closeness of each node based on the D-S theory.Numericalexamples illustrate thatthe proposed measure can well identify in fl uentialnodes.Itshould be pointed outthatthe proposed method only focuses on unweighted networks. Our ongoing work is to improve this proposed method to address the identi fi cation of in fl uential nodes in weighted networks.

    [1]S.H.Strogatz.Exploring complex networks.Nature,2001, 410(6825):268-276

    [2]A.L.Barab′asi,R.Albert.Emergence of scaling in random networks.Science,1999,286(5439):509-512.

    [3]D.J.Watts,S.H.Strogatz.Collective dynamics ofsmall-world networks.Nature,1998,393(6684):440-442.

    [4]H.J.Kim.Analysis ofa complex network ofphysics concepts. Modern Physics Letters B,2012,26(28):125-186.

    [5]O.Shanker,T.Hogg.Epidemiology model on shortcut and small world networks.Modern Physics Letters B,2009, 23(10):1249-1262.

    [6]J.Wang,L.L.Rong.Similarity index based on the information ofneighbornodes forlink prediction ofcomplex network. Modern Physics Letters B,2013,27(6):1350039.

    [7]H.X.Zhang,X.Lan,D.J.Wei,etal.Self-similarity in complex networks:from the view of the hub repulsion.Modern Physics Letters B,2013,27(28):1350201.

    [8]C.Shi,Z.Y.Yan,Y.N.Cai,etal.Multi-objective community detection in complex networks.Applied SoftComputing,2012, 12(2):850-859.

    [9]M.Kitsak,L.K.Gallos,S.Havlin,et al.Identi fi cation of infl uentialspreaders in complex networks.Nature Physics,2010, 6(11):888-893.

    [10]T.Zhou,G.Yan,B.H.Wang.Maximalplanar networks with large clustering coef fi cient and power-law degree distribution. PhysicalReview E,2005,71(4):046141.

    [11]D.B.Chen,H.Gao,L.Y.L¨u,et al.Identifying in fl uential nodes in large-scale directed networks:the role of clustering. PloS One,2013,8(10):e77455.

    [12]J.G.Liu,Z.M.Ren,Q.Guo.Ranking the spreading in fl uence in complex networks.Physica A:StatisticalMechanics and its Applications,2013,392(18):4154-4159.

    [13]L.Y.L¨u,D.B.Chen,T,Zhou.The small world yields the mosteffective information spreading.New JournalofPhysics, 2011,13(12):123005.

    [14]Q.Li,T.Zhou,L.Y.L¨u,etal.Identifying in fl uentialspreaders by weighted leaderrank.Physica A:StatisticalMechanics and its Applications,2014,404:47-55.

    [15]B.N.Hou,Y.P.Yao,D.S.Liao.Identifying all-around nodes for spreading dynamics in complex networks.Physica A:StatisticalMechanics and its Applications,2012,391(15):4012-4017.

    [16]Q.C.Hu,Y.Gao,P.F.Ma,et al.A new approach to identify in fl uential spreaders in complex networks.Proc.of the 14th InternationalConference on Web-Age Information Management.2013:99-104.

    [17]X.H.Zhang,J.Zhu,Q.Wang,et al.Identifying in fl uential nodes in complex networks with community structure. Knowledge-Based Systems,2013,42(18):74-84.

    [18]F.Bauer,J.T.Lizier.Identifying in fl uentialspreaders and ef ficiently estimating infection numbers in epidemic models:A walk counting approach.Europhysics Letters,2012,99(6): 68007.

    [19]T.Zhou,Z.Q.Fu,B.H.Wang.Epidemic dynamics on complex networks.Progress in Natural Science,2006,16(5):452-457.

    [20]A.Zeng,C.J.Zhang.Ranking spreaders by decomposing complex networks.Physics Letters A,2013,377(14):1031-1035.

    [21]D.B.Chen,R.Xiao,A.Zeng,et al.Path diversity improves the identi fi cation of in fl uentialspreaders.Europhysics Letters, 2013,104(6):68006.

    [22]J.Borge-Holthoefer,Y.Moreno.Absence ofin fl uentialspreaders in rumor dynamics.Physical Review E,2012,85(2): 026116.

    [23]J.Borge-Holthoefer,A.Rivero,Y.Moreno.Locating privileged spreaders on an online socialnetwork.Physical Review E,2012,85(6):066123.

    [24]C.Gao,X.Lan,X.G.Zhang,etal.A bio-inspired methodology of identifying in fl uential nodes in complex networks. PloS One,2013,8(6):e66732.

    [25]M.G.Gong,X.W.Chen,L.J.Ma,et al.Identi fi cation of multi-resolution network structures with multi-objective immune algorithm.Applied SoftComputing,2013,13(4):1705-1717.

    [26]T.Opsahl,F.Agneessens,J.Skvoretz.Node centrality in weighted networks:Generalizing degree and shortest paths. Social Networks,2010,32(3):245-251.

    [27]L.C.Freeman.Centrality in socialnetworks conceptualclarifi cation.Social Networks,1979,1(3):215-239.

    [28]D.B.Chen,L.Y.L¨u,M.S.Shang,etal.Identifying in fl uential nodes in complex networks.Physica A:Statistical Mechanics and its Applications,2012,391(4):1777-1787.

    [29]B.Hou,Y.Yao,D.Liao.Identifying all-around nodes for spreading dynamics in complex networks.Physica A:Statistical Mechanics and its Applications,2012,391(15):4012-4017.

    [30]S.Brin,L.Page.The anatomy of a large-scale hypertextual Web search engine.Computer Networks and ISDN systems, 1998,30(1):107-117.

    [31]L.Y.L¨u,Y.C.Zhang,C.H.Yeung,et al.Leaders in social networks,the delicious case.PloS One,2011,6(6):e21202.

    [32]A.P.Dempster.Upper and lower probabilities induced by a multivalued mapping.The Annals of Mathematical Statistics, 1967,38(2):325-339.

    [33]G.Shafer.A mathematical theory of evidence.Princeton: Princeton University Press,1976.

    [34]X.Y.Deng,Y.Hu,Y.Deng,et al.Supplier selection using AHP methodology extended by D numbers.Expert Systems with Applications,2014,41(1):156-167.

    [35]B.Y.Kang,Y.Deng,R.Sadiq,et al.Evidential cognitive maps.Knowledge-Based Systems,2012,35:77-86.

    [36]C.W.Zhang,Y.Hu,F.T.Chan,et al.A new method to determine basic probability assignment using core samples. Knowledge-Based Systems,2014,69:140-149.

    [37]S.Y.Huang,X.Y Su,Y.Hu,et al.A new decision making method by incomplete preferences based on evidence distance. Knowledge-Based Systems,2014,56:264-272.

    [38]X.Y.Deng,Y.Hu,Y.Deng,et al.Environmental impactassessment based on D numbers.Expert Systems with Applications,2014,41(2):635-643.

    [39]Z.G.Liu,Q.Pan,J.Dezert.A belief classi fi cation rule for imprecise data.Applied Intelligence,2014,40(2):214-228.

    [40]Z.G.Liu,G.Mercier,J.Dezert,et al.Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning.IEEE Trans.on Geoscience and Remote Sensing Letters,2014,11(1):168-172.

    [41]B.Suo,Y.S.Cheng,C.Zeng,etal.Computationalintelligence approach for uncertainty quanti fi cation using evidence theory. Journal of Systems Engineering and Electronics,2013,24(2): 250-260.

    [42]Y.Q.Tan,J.Y.Yang,L.C.Li,etal.Data fusion of radar and IFF for aircraftidenti fi cation.Journal of Systems Engineering and Electronics,2012,23(5):715-722.

    [43]Y.He,L.F.Hu,X.Guan,et al.New con fl ict representation model in generalized power space.Journal of Systems Engineering and Electronics,2012,23(1):1-9.

    [44]D.J.Wei,X.Y.Deng,X.G.Zhang,et al.Identifying in fl uential nodes in weighted networks based on evidence theory. Physica A:Statistical Mechanics and its Applications,2013, 392(10):2564-2575.

    [45]C.Gao,D.J.Wei,Y.Hu,etal.A modi fi ed evidential methodology of identifying in fl uentialnodes in weighted networks. Physica A:Statistical Mechanics and its Applications,2013, 392(21):5490-5500.

    [46]W.W.Zachary.An information fl ow model for con fl ict and fi ssion in small groups.Journal of Anthropological Research, 1977:452-473.

    [47]L.J.Allen.Some discrete-time SI,SIR and SIS epidemic models.Mathematical Biosciences,1994,124(1):83-105.

    [48]G.Yan,T.Zhou,J.Wang,et al.Epidemic spread in weighted scale-free networks.Chinese Physics Letters,2005,22(2): 510.

    Biographies

    Hongming Mo was born in 1983.He received his B.S.degree from Chongqing NormalUniversity in 2006.He is now an assistantresearcher in Sichuan University of Nationalities.His research interests include uncertain information modeling and processing.

    E-mail:mohongmingswu@163.com

    Cai Gao was born in 1989.He received his B.S.degree in textile engineering from Southwest Univerity,Chongqing,China,in 2012.He is now a second year graduate student in Southwest University.His research interest is uncertain information modeling and processing.

    E-mail:gaocaiswu@163.com

    Yong Deng was born in 1975.He received his B.S. degree in physics education from Shaanxi Normal University in 1997.He then received his M.S.degree in measurement technology and instrument from Hunan University in 2000 and Ph.D.degree from Shanghai Jiaotong University in 2003.He is now a professor in Southwest University.His research interests include uncertain information modeling and processing.

    E-mail:ydeng@swu.edu.cn;prof.deng@hotmail. com

    10.1109/JSEE.2015.00044

    Manuscriptreceived May 9,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61174022),the National High Technology Research and Development Program of China(863 Program)(2013AA013801),the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02),the General Research Program of the Science Supported by Sichuan Provincial Departmentof Education(14ZB0322),and the Fundamental Research Funds for the Central Universities(XDJK2014D008).

    成在线人永久免费视频| 国产精品 国内视频| 午夜91福利影院| 免费日韩欧美在线观看| 999精品在线视频| 搡老岳熟女国产| 人妻一区二区av| 人妻一区二区av| 亚洲国产欧美一区二区综合| 亚洲第一欧美日韩一区二区三区 | 一本综合久久免费| 国产日韩欧美亚洲二区| 日韩视频一区二区在线观看| 国产精品美女特级片免费视频播放器 | 99热国产这里只有精品6| 夜夜夜夜夜久久久久| 精品国产一区二区久久| av天堂久久9| 成人18禁高潮啪啪吃奶动态图| 不卡av一区二区三区| 婷婷成人精品国产| 老汉色av国产亚洲站长工具| 欧美精品一区二区免费开放| 久久人人爽av亚洲精品天堂| 丰满饥渴人妻一区二区三| 精品视频人人做人人爽| 欧美日韩亚洲综合一区二区三区_| 极品教师在线免费播放| 黄色丝袜av网址大全| 国产精品二区激情视频| 午夜福利视频在线观看免费| 久久久久久久大尺度免费视频| 久久久久久人人人人人| 国产欧美日韩一区二区三区在线| 99国产极品粉嫩在线观看| 人人妻人人爽人人添夜夜欢视频| 如日韩欧美国产精品一区二区三区| 法律面前人人平等表现在哪些方面| 一区二区三区乱码不卡18| 亚洲全国av大片| 99re6热这里在线精品视频| 亚洲av国产av综合av卡| 国产激情久久老熟女| 中文字幕精品免费在线观看视频| 国产在线观看jvid| 久久久久久久精品吃奶| 国产成人啪精品午夜网站| 夜夜骑夜夜射夜夜干| 老熟女久久久| 俄罗斯特黄特色一大片| 波多野结衣一区麻豆| 无人区码免费观看不卡 | 国产成人啪精品午夜网站| 在线播放国产精品三级| 国产精品1区2区在线观看. | 国内毛片毛片毛片毛片毛片| e午夜精品久久久久久久| 久久 成人 亚洲| 老司机靠b影院| 99精品欧美一区二区三区四区| 又大又爽又粗| 精品一区二区三区av网在线观看 | 欧美精品一区二区大全| 黑人猛操日本美女一级片| 国产精品国产高清国产av | 久久人妻熟女aⅴ| 亚洲成a人片在线一区二区| 国产免费视频播放在线视频| 午夜视频精品福利| 久久久国产精品麻豆| 操出白浆在线播放| 欧美乱码精品一区二区三区| 啦啦啦免费观看视频1| 国产亚洲精品久久久久5区| 国产成人影院久久av| 国产色视频综合| cao死你这个sao货| 日韩人妻精品一区2区三区| 久久性视频一级片| 久久这里只有精品19| 精品午夜福利视频在线观看一区 | 美女高潮到喷水免费观看| 中文字幕人妻熟女乱码| 亚洲成人手机| 国产成人系列免费观看| 精品福利永久在线观看| 最近最新中文字幕大全电影3 | 日韩制服丝袜自拍偷拍| 国产有黄有色有爽视频| 多毛熟女@视频| 国产精品1区2区在线观看. | 国产亚洲精品久久久久5区| 成人国语在线视频| 97人妻天天添夜夜摸| 一区福利在线观看| 中文欧美无线码| 一级毛片电影观看| 成人永久免费在线观看视频 | 精品国产一区二区久久| 欧美日韩福利视频一区二区| 操美女的视频在线观看| 高清在线国产一区| 高清在线国产一区| 亚洲情色 制服丝袜| 久久午夜综合久久蜜桃| 国产成人精品久久二区二区免费| 五月天丁香电影| 超碰97精品在线观看| 纯流量卡能插随身wifi吗| 在线天堂中文资源库| 亚洲人成电影免费在线| 女人爽到高潮嗷嗷叫在线视频| 精品亚洲成国产av| 亚洲av欧美aⅴ国产| 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 国产一区有黄有色的免费视频| 亚洲第一青青草原| 亚洲人成电影免费在线| 99国产精品一区二区三区| 国产亚洲精品第一综合不卡| 国产高清激情床上av| 波多野结衣av一区二区av| 欧美日韩视频精品一区| 国产精品 国内视频| 久久精品亚洲av国产电影网| 日本撒尿小便嘘嘘汇集6| 在线播放国产精品三级| 亚洲av成人一区二区三| 亚洲精品在线美女| 精品久久久久久久毛片微露脸| aaaaa片日本免费| 又黄又粗又硬又大视频| 欧美午夜高清在线| 在线观看免费日韩欧美大片| 亚洲av片天天在线观看| h视频一区二区三区| 91成年电影在线观看| 久久精品国产亚洲av高清一级| 免费人妻精品一区二区三区视频| tocl精华| 热99re8久久精品国产| 免费av中文字幕在线| 男男h啪啪无遮挡| 在线观看66精品国产| 99久久人妻综合| 日韩精品免费视频一区二区三区| 一个人免费看片子| 中文字幕最新亚洲高清| 啦啦啦中文免费视频观看日本| 9191精品国产免费久久| 丰满迷人的少妇在线观看| 国产av精品麻豆| 国产精品九九99| 久久天躁狠狠躁夜夜2o2o| 免费在线观看黄色视频的| 亚洲伊人久久精品综合| 国产91精品成人一区二区三区 | 国产黄频视频在线观看| 日本wwww免费看| 成人18禁在线播放| 丝袜人妻中文字幕| 久久久久国产一级毛片高清牌| 又黄又粗又硬又大视频| 国产xxxxx性猛交| 宅男免费午夜| av超薄肉色丝袜交足视频| 国产精品亚洲av一区麻豆| 一区二区三区乱码不卡18| 亚洲精品国产区一区二| 久久狼人影院| 成人亚洲精品一区在线观看| 交换朋友夫妻互换小说| 欧美一级毛片孕妇| 丰满少妇做爰视频| 丝袜喷水一区| 国产精品国产av在线观看| 免费观看人在逋| 久久精品91无色码中文字幕| 91麻豆av在线| 亚洲色图综合在线观看| 岛国在线观看网站| 亚洲伊人色综图| 国产一卡二卡三卡精品| 国产在线一区二区三区精| 一区二区三区国产精品乱码| 少妇猛男粗大的猛烈进出视频| 无限看片的www在线观看| 三上悠亚av全集在线观看| av视频免费观看在线观看| 久久人妻熟女aⅴ| 日本一区二区免费在线视频| www日本在线高清视频| 国产欧美日韩一区二区三| 69精品国产乱码久久久| 欧美日韩av久久| 男女床上黄色一级片免费看| 精品人妻1区二区| 在线观看66精品国产| 成人精品一区二区免费| 在线观看66精品国产| 亚洲美女黄片视频| 免费高清在线观看日韩| 欧美日韩一级在线毛片| 午夜91福利影院| 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 国产成人欧美在线观看 | 青青草视频在线视频观看| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 两性夫妻黄色片| 91老司机精品| 黄色 视频免费看| 亚洲精品一二三| 高清毛片免费观看视频网站 | 午夜两性在线视频| 国产在线观看jvid| 日韩欧美免费精品| 欧美黄色淫秽网站| 美国免费a级毛片| 亚洲 国产 在线| 女人久久www免费人成看片| 国产黄色免费在线视频| 亚洲第一欧美日韩一区二区三区 | 十八禁高潮呻吟视频| 国产一卡二卡三卡精品| 男女下面插进去视频免费观看| 亚洲伊人久久精品综合| 丰满少妇做爰视频| 亚洲av成人不卡在线观看播放网| 啦啦啦 在线观看视频| 国产熟女午夜一区二区三区| 黑人欧美特级aaaaaa片| 在线 av 中文字幕| 一个人免费看片子| 久久精品亚洲熟妇少妇任你| 免费在线观看影片大全网站| 18禁国产床啪视频网站| 纵有疾风起免费观看全集完整版| 夜夜夜夜夜久久久久| 精品卡一卡二卡四卡免费| 狠狠精品人妻久久久久久综合| 美女高潮喷水抽搐中文字幕| 亚洲一区二区三区欧美精品| 午夜久久久在线观看| 在线 av 中文字幕| 国产成人系列免费观看| 久久中文字幕人妻熟女| 青草久久国产| 一级片'在线观看视频| 王馨瑶露胸无遮挡在线观看| 好男人电影高清在线观看| avwww免费| 51午夜福利影视在线观看| 在线av久久热| 久久精品国产综合久久久| 天天躁夜夜躁狠狠躁躁| 男女床上黄色一级片免费看| 国产黄色免费在线视频| 免费av中文字幕在线| 午夜激情av网站| 亚洲精品久久成人aⅴ小说| 久久精品国产亚洲av高清一级| 在线av久久热| 无限看片的www在线观看| 午夜免费成人在线视频| videosex国产| aaaaa片日本免费| 岛国在线观看网站| 精品乱码久久久久久99久播| 制服诱惑二区| av国产精品久久久久影院| 午夜视频精品福利| 日韩熟女老妇一区二区性免费视频| 亚洲成a人片在线一区二区| 五月天丁香电影| 麻豆av在线久日| 日韩中文字幕视频在线看片| 女人爽到高潮嗷嗷叫在线视频| 国产一区有黄有色的免费视频| 99国产精品一区二区蜜桃av | 18禁裸乳无遮挡动漫免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产免费av片在线观看野外av| 又大又爽又粗| 国产在线精品亚洲第一网站| 免费在线观看影片大全网站| 老汉色av国产亚洲站长工具| 99久久精品国产亚洲精品| 天天躁日日躁夜夜躁夜夜| 日本欧美视频一区| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 日韩一区二区三区影片| 中文字幕人妻丝袜一区二区| 午夜精品久久久久久毛片777| 黑人操中国人逼视频| 精品亚洲成a人片在线观看| 大香蕉久久网| 中文欧美无线码| 高潮久久久久久久久久久不卡| 国产精品一区二区精品视频观看| 丁香欧美五月| a级毛片在线看网站| 亚洲欧洲精品一区二区精品久久久| a级毛片黄视频| 精品国产一区二区三区四区第35| 精品国产乱码久久久久久男人| 777米奇影视久久| 亚洲熟女毛片儿| 免费高清在线观看日韩| 久久久国产一区二区| 水蜜桃什么品种好| 99国产精品免费福利视频| 一区二区av电影网| 欧美性长视频在线观看| 在线永久观看黄色视频| 嫁个100分男人电影在线观看| 9色porny在线观看| 大香蕉久久成人网| 色尼玛亚洲综合影院| 老司机在亚洲福利影院| 精品人妻在线不人妻| 久久精品91无色码中文字幕| 久久99热这里只频精品6学生| 日韩一区二区三区影片| 亚洲男人天堂网一区| 人人妻人人澡人人看| 99国产精品一区二区三区| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 香蕉久久夜色| 国产不卡av网站在线观看| 久久婷婷成人综合色麻豆| 91字幕亚洲| 亚洲第一青青草原| 青草久久国产| 美女扒开内裤让男人捅视频| 国产精品免费视频内射| 免费观看人在逋| 成人18禁在线播放| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 性色av乱码一区二区三区2| 国产精品秋霞免费鲁丝片| 青青草视频在线视频观看| 757午夜福利合集在线观看| 亚洲美女黄片视频| 国产欧美日韩精品亚洲av| 亚洲国产精品一区二区三区在线| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 精品视频人人做人人爽| 波多野结衣一区麻豆| 免费av中文字幕在线| 久久久精品区二区三区| 美女高潮喷水抽搐中文字幕| 日本撒尿小便嘘嘘汇集6| 我要看黄色一级片免费的| a级片在线免费高清观看视频| 精品一区二区三区四区五区乱码| 国产亚洲精品一区二区www | 999久久久精品免费观看国产| 一区二区日韩欧美中文字幕| a级毛片在线看网站| 黑人猛操日本美女一级片| 久久久久久久大尺度免费视频| 俄罗斯特黄特色一大片| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 99在线人妻在线中文字幕 | 国产精品久久电影中文字幕 | 香蕉久久夜色| 女人高潮潮喷娇喘18禁视频| 电影成人av| 亚洲国产中文字幕在线视频| 不卡一级毛片| 久久中文看片网| 69精品国产乱码久久久| 久久精品亚洲熟妇少妇任你| 国产在线视频一区二区| 精品一区二区三区四区五区乱码| 久久 成人 亚洲| 少妇被粗大的猛进出69影院| 香蕉国产在线看| 成人18禁高潮啪啪吃奶动态图| 少妇 在线观看| 日本av免费视频播放| 一级毛片女人18水好多| 啦啦啦免费观看视频1| av超薄肉色丝袜交足视频| 50天的宝宝边吃奶边哭怎么回事| 国产日韩欧美在线精品| cao死你这个sao货| 国产精品欧美亚洲77777| 精品亚洲乱码少妇综合久久| 国产一区二区三区综合在线观看| 精品久久蜜臀av无| 国产一区二区三区视频了| 日本黄色日本黄色录像| 久久国产精品影院| 十八禁网站免费在线| 操出白浆在线播放| 少妇 在线观看| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看 | 99riav亚洲国产免费| 黑人操中国人逼视频| 搡老岳熟女国产| 欧美日韩成人在线一区二区| 国产精品电影一区二区三区 | 人妻 亚洲 视频| 91国产中文字幕| 国产精品1区2区在线观看. | 国产高清激情床上av| 免费在线观看黄色视频的| 麻豆成人av在线观看| 亚洲欧美一区二区三区黑人| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲| 国产一区二区在线观看av| 热re99久久精品国产66热6| 1024视频免费在线观看| 国产亚洲精品一区二区www | 国产有黄有色有爽视频| 国产精品一区二区免费欧美| 欧美日韩亚洲高清精品| 色94色欧美一区二区| 国产区一区二久久| 欧美激情久久久久久爽电影 | 国产精品美女特级片免费视频播放器 | 精品国产乱码久久久久久小说| www.熟女人妻精品国产| 久久精品熟女亚洲av麻豆精品| 2018国产大陆天天弄谢| 黄片小视频在线播放| 91老司机精品| 午夜福利免费观看在线| 在线十欧美十亚洲十日本专区| 欧美精品人与动牲交sv欧美| 一边摸一边做爽爽视频免费| 免费观看a级毛片全部| 国产深夜福利视频在线观看| 亚洲国产欧美在线一区| 1024香蕉在线观看| 精品国内亚洲2022精品成人 | 男女下面插进去视频免费观看| 变态另类成人亚洲欧美熟女 | 人人妻,人人澡人人爽秒播| 亚洲精品乱久久久久久| 午夜福利一区二区在线看| 人人澡人人妻人| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 电影成人av| 久久久久久免费高清国产稀缺| 亚洲一卡2卡3卡4卡5卡精品中文| 精品亚洲成a人片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 老熟女久久久| 久久久国产一区二区| 国产91精品成人一区二区三区 | 日韩欧美三级三区| 成人18禁在线播放| 一级,二级,三级黄色视频| 欧美国产精品一级二级三级| 新久久久久国产一级毛片| 男人操女人黄网站| 9191精品国产免费久久| 欧美精品高潮呻吟av久久| 亚洲国产av影院在线观看| 中文字幕精品免费在线观看视频| 在线观看人妻少妇| av福利片在线| 亚洲欧美激情在线| av网站免费在线观看视频| 搡老熟女国产l中国老女人| 啦啦啦 在线观看视频| 成人18禁高潮啪啪吃奶动态图| 国产高清激情床上av| 亚洲精品国产一区二区精华液| a级片在线免费高清观看视频| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 一二三四在线观看免费中文在| 国产av又大| 免费看a级黄色片| 午夜成年电影在线免费观看| 亚洲熟妇熟女久久| 两性午夜刺激爽爽歪歪视频在线观看 | 又紧又爽又黄一区二区| 99热国产这里只有精品6| 国产精品麻豆人妻色哟哟久久| 亚洲综合色网址| 欧美黄色片欧美黄色片| 亚洲欧美一区二区三区久久| 黄频高清免费视频| 日韩免费高清中文字幕av| 黄色视频,在线免费观看| 最新在线观看一区二区三区| 王馨瑶露胸无遮挡在线观看| 一二三四社区在线视频社区8| 久久影院123| 久久精品国产亚洲av香蕉五月 | av福利片在线| 午夜两性在线视频| 黄色视频不卡| 亚洲精品久久午夜乱码| 国产欧美日韩一区二区三| 国产精品久久电影中文字幕 | 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 国产av国产精品国产| 欧美黑人欧美精品刺激| 丰满人妻熟妇乱又伦精品不卡| 精品一品国产午夜福利视频| 久久久国产一区二区| 一区二区日韩欧美中文字幕| 中文字幕av电影在线播放| 18禁美女被吸乳视频| 国产日韩欧美视频二区| 免费不卡黄色视频| 国产91精品成人一区二区三区 | 啪啪无遮挡十八禁网站| 久久久久久人人人人人| 亚洲国产欧美在线一区| 久久久久精品人妻al黑| 亚洲va日本ⅴa欧美va伊人久久| 久久精品亚洲av国产电影网| 精品亚洲成国产av| 国产人伦9x9x在线观看| 成在线人永久免费视频| 亚洲欧美激情在线| 夜夜夜夜夜久久久久| kizo精华| 一本久久精品| 久久性视频一级片| 一个人免费看片子| 国产成人av激情在线播放| 肉色欧美久久久久久久蜜桃| 亚洲成人免费电影在线观看| 操美女的视频在线观看| 精品乱码久久久久久99久播| 夜夜骑夜夜射夜夜干| 一区二区三区精品91| 91成人精品电影| 久久性视频一级片| 精品亚洲成国产av| 青青草视频在线视频观看| 香蕉丝袜av| 建设人人有责人人尽责人人享有的| 女人精品久久久久毛片| 人妻一区二区av| 我要看黄色一级片免费的| 制服诱惑二区| 日韩 欧美 亚洲 中文字幕| 99精品在免费线老司机午夜| 精品福利永久在线观看| 成人国产一区最新在线观看| 伦理电影免费视频| 国内毛片毛片毛片毛片毛片| 动漫黄色视频在线观看| 精品欧美一区二区三区在线| 成年人免费黄色播放视频| 老熟妇乱子伦视频在线观看| 欧美日韩福利视频一区二区| 久久久精品免费免费高清| 午夜日韩欧美国产| 欧美日韩成人在线一区二区| 少妇精品久久久久久久| av国产精品久久久久影院| 欧美精品一区二区大全| 日韩欧美国产一区二区入口| 久久久久精品国产欧美久久久| 99精国产麻豆久久婷婷| 热re99久久精品国产66热6| 精品欧美一区二区三区在线| 欧美激情极品国产一区二区三区| 国产精品99久久99久久久不卡| 精品国产一区二区久久| 18禁国产床啪视频网站| 国产精品久久久久成人av| 国产熟女午夜一区二区三区| h视频一区二区三区| 精品少妇内射三级| 桃红色精品国产亚洲av| 天天影视国产精品| 精品少妇久久久久久888优播| 人成视频在线观看免费观看| 狠狠精品人妻久久久久久综合| 一级毛片电影观看| 欧美激情高清一区二区三区| 老司机靠b影院| 夫妻午夜视频| 亚洲九九香蕉| 每晚都被弄得嗷嗷叫到高潮| 欧美中文综合在线视频| 91成年电影在线观看| 亚洲熟女毛片儿| 精品午夜福利视频在线观看一区 | 久久热在线av| 亚洲av日韩在线播放| 日韩制服丝袜自拍偷拍| 国产一区二区 视频在线| 国产成人精品久久二区二区91| 自线自在国产av| 国产在线精品亚洲第一网站| 大型av网站在线播放| 韩国精品一区二区三区| 亚洲情色 制服丝袜| cao死你这个sao货| av天堂在线播放| 怎么达到女性高潮| 精品福利永久在线观看|