• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evidentialmethod to identify in fl uentialnodes in complex networks

    2015-12-23 10:09:13,3,4,*

    ,3,4,*

    1.Schoolof Computer and Information Science,Southwest University,Chongqing 400715,China; 2.Departmentof the Tibetan Language,Sichuan University of Nationalities,Kangding 626001,China; 3.Schoolof Automation,Northwestern Polytechnical University,Xi’an 710072,China; 4.Schoolof Engineering,Vanderbilt University,TN 37235,USA

    Evidentialmethod to identify in fl uentialnodes in complex networks

    Hongming Mo1,2,CaiGao1,and Yong Deng1,3,4,*

    1.Schoolof Computer and Information Science,Southwest University,Chongqing 400715,China; 2.Departmentof the Tibetan Language,Sichuan University of Nationalities,Kangding 626001,China; 3.Schoolof Automation,Northwestern Polytechnical University,Xi’an 710072,China; 4.Schoolof Engineering,Vanderbilt University,TN 37235,USA

    Identifying in fl uentialnodes in complex networks is still an open issue.In this paper,a new comprehensive centrality measure is proposed based on the Dempster-Shafer evidence theory. The existing measures of degree centrality,betweenness centrality and closeness centrality are taken into consideration in the proposed method.Numericalexamples are used to illustrate the effectiveness of the proposed method.

    Dempster-Shafer evidence theory(D-S theory);belief function;complex networks;in fl uentialnodes;evidentialcentrality; comprehensive measure.

    1.Introduction

    Complex networks have attracted more and more attention in recent years[1-8].Many real-world systems such as computer sciences,economics,management and biologicalsciences can be regarded as complex networks.Itis of theoretical signi fi cance and practical value to know how to identify the in fl uentialnodes effectively in complex networks[9-16].Itis essentialto identify the node centrality, for itwillhelp to better know the structure of the complex networks and wellmanage the complex networks[17-25].

    The existing commonly used methods to identify the central nodes of binary networks are degree centrality (DC),betweenness centrality(BC)[26]and closeness centrality(CC)[27].DC,BC and CC function well in some special networks.The DC method is straight-forward, simple and ef fi cient,butof little globalstructure relevance. Itjustconsiders the localstructure butnotthe globalstructure of the network.BC and CC metrics can better identify in fl uential nodes,since they take the global structure into consideration.BC is de fi ned as the number of the shortest paths from all vertices to all others that pass through that node.CC is de fi ned as the inverse sum of the shortest distances to all other nodes from a focal node.Some other measures are also available to identify the in fl uential nodes in complex networks,such as semi-local centrality [28],eigenvectorcentrality[29],PageRank[30]and LeaderRank[31].

    The Dempster-Shafer evidence theory(D-S theory) [32,33]is a powerfultoolin data fusion,decision making, etc.[34-43].And the combination rule of Dempster,as introduced later,can be used to combine differentproperties of the same objectto yield a new comprehensive characteristic.Thus,the Dempster’s combination rule can be used to combine the DC,BC and CC of a node and generate a new index,which can be viewed as the capability of the node.Based on the ability of the Dempster’s combination rule,the D-S theory has been applied to identify in fl uential nodes in complex networks.Wei et al.[44]proposed a centrality measure based on the D-S theory,trading off between the degree and the strength of every node in a weighted network.Based on[44],Gao etal.[45]proposed an improvementmeasure,which takes the degree and the weight of every node itself and the nearest neighbors into consideration in a weighted network.The two evidential measures of node centrality are applied to weighted networks.When the networks are unweighed,the two existing evidentialmeasuresofnode centrality degenerate to the fundamentalmeasure of DC,ignoring the weightelement. To address the issue,a new evidential method to identifyin fl uential nodes in unweighted networks,combining DC, BC and CC based on the D-S theory,is proposed in this paper.In the proposed evidential method,the in fl uence of nodes are ascertained by unionization of degree,betweenness and closeness.We all know that,the capability of a node depends on many aspects,such as degree,betweenness and closeness.Thus the proposed method is more comprehensive than those existing single methods in unweighted networks.To evaluate the performance of the proposed method,the susceptible and infected(SI)model is adopted to examine the spreading in fl uence of the nodes ranked by differentcentrality measures.

    The paper is organized as follows.In Section 2,a brief overview of centrality measures and a short introduction of the D-S theory are given.In Section 3,the proposed method to identify in fl uential nodes in complex networks is developed and illustrated by detailed steps.Assessment of the proposed method by the SI modelis shown in Section 4.A shortconclusion is drawn in the last Section.

    2.Preliminaries

    2.1 Centrality measure

    A network can generally be represented as a set G= (V,E)[27].Here,V and E are the sets of all nodes and edges,respectively.|V|=n,which is the number of nodes.

    The three centrality measures of DC,BC and CC are given as follows:

    Definition 1The DC of node i,denoted as d(i),is de fi ned as

    where vijis the edge between node i and node j.The value of vijis 1,when there is an edge between node i and node j,otherwise 0.

    Definition 2The BC of node i,denoted as b(i),is defi ned as

    where gpqis the number of the shortest paths from all nodes to allothers,and gpq(i)denotes the numberofnode i passing through the shortestpaths.

    Definition 3The CC of node i,denoted as c(i),is defi ned as

    where stijis the shortest distance between node i and node j.

    2.2 DS theory

    In the D-S theory,a problem domain is denoted by a finite nonempty setΩof mutually exclusive and exhaustive hypotheses,called the frame of discernment.A few basic concepts[32,33]are introduced as follows:

    Definition 4LetΩ={θ1,θ2,...,θN}be a fi nite set of N elements.Let 2Ωdenote the power set ofΩ,and 2Ω={?,θ1,...,θN,θ1∪θ2,θ1∪θ3,...,Ω}.

    Definition 5For a frame of discernmentΩ,a basic probability assignment(BPA)function is a mapping m:2Ω→[0,1],which is also called mass function,satisfying

    where?is an empty set and A is any elementof 2Ω.The mass function m(A)represents how strongly the evidence supports A.Given two BPAs m1and m2,the Dempster’s combination rule can be used to combine them and yield a new BPA.

    Definition 6Dempster’s rule of combination,also called orthogonalsum,denoted by m=m1⊕m2,is defi ned as follows:

    where A,B and C are the elements of 2Ω,and K is a normalization constant,called the con fl ict coef fi cient of the two BPAs.The Dempster’s rule of combination is the core of the D-S theory,satisfying commutative and associative properties,i.e.(i)m1⊕m2=m2⊕m1;(ii)

    (m1⊕m2)⊕m3=m1⊕(m2⊕m3).Thus if there exist multiple BPAs,the combination of them can be carried out in a pairwise way with any order.

    3.Evidentialcentrality

    In this section,we propose a new method to identify the in

    fl uentialnodes in complex networks,called comprehensive evidence centrality(CEC).In CEC,the in fl uence ofa node takes into accountnot only degree,betweenness or closeness,but all of them.The in fl uence of a node is de fi ned by the Dempster’s rule of combination,regarding DC,BC and CC as differentBPAs.The method to generate the new BPA of CEC is developed as follows.

    3.1 Construction of BPAs of degree,betweenness and closeness

    Step 1Ascertain a frame of discernmentθ,θ= (high,low).Let high and low be the evaluation indicesof in fl uence of degree,betweeness and closeness of each node.Let h represent high,and l represent low,for short. And then,the frame of discernmentθcan be represented asθ=(h,l).

    Step 2Ascertain a reference value based on the degree, betweenness and closeness.The maximum and minimum values of the degree,betweenness and closeness,can be obtained respectively as follows:

    In general,dM≥dm,bM≥bmand cM≥cmin complex networks,and n is the number of nodes.

    Step 3Construct BPAs for the degree,betweenness and closeness of each node.mdi(h)and mdi(l)(i= 1,2,3,...,n)represent the probabilities of“high”and“l(fā)ow”in fl uence of degree of the i th node,respectively. mbi(h),mbi(l),mci(h)and mci(l),likewise.These mass functions of the i th node are generated as follows:

    whereαis a user-de fi ned parameter,α∈[0,1],andα is set to be 1,for simplicity.di,biand ciare the degree, betweenness and closeness of the i th node,respectively. Therefore,the BPAs of the i th node according to the degree,betweenness and closeness can be generated respectively as follows:

    Step 4Apply the combination rule of Dempster.Using(4),a new BPA ofthe i th node,combining with Md(i), Mb(i)and Mc(i),can be obtained as follows:

    3.2 Comprehensive evidence centrality

    Step 5In(24),mi(θ)implies that the probabilities of high or low are unknown.For simplicity,assign mi(θ)to mi(h)and mi(l)averagely,therefore the indices of the i th node can be represented as follows:

    where Mi(h)and Mi(l)are the in fl uentialprobabilities of high and low of the i th node,respectively.Obviously,the higherthe value of Mi(h),the more importantthe node.In contrast,the lower the value of Mi(l),the more important the node.Therefore,the comprehensive evidence centrality can be presented by a function associated with Mi(h) and Mi(l).

    Definition 7Denoting CEC(i)as the CEC value of node i,which satis fi es

    where CEC(i)is a real number,CEC(i)∈[-1,1],and the greater the value,the more importantthe node.

    Example 1A toy network with 8 nodes and 11 edges is shown in Fig.1.The values of degree,betweenness and closeness of each node are shown in the second,third and fourth columns in Table 1,respectively.

    Fig.1 A network with 8 nodes

    Table 1 Evidential centrality of a network with 8 nodes

    From Table 1,using(6)-(11),the following values ca n be obtained:dM=5,dm=1;bM=17,bm=0;cM= 0.777 8,cm=0.411 8.

    Taking node A as an example,the BPA of the degree of node A,with(12),(13)and(18)used,can be obtained as follows:

    Thatis,the BPA of the degree of node A can be rewritten as

    Similarly,using(14)-(20),the BPAs of betweeness and closeness of node A can be obtained as follows:

    By(4),combining the three BPAs,Md(A),Mb(A)and Mc(A),a new BPA M(A)is generated as

    From(24),the values of mA(h),mA(l)and mA(θ)are as follows:

    Using(25)-(27),the comprehensive evidential centrality of node A can be obtained as follows:

    Repeating the above processes,the CEC values of the other nodes can be calculated.The CEC value of each node in this example is shown in the fi fth column in Table 1.

    4.Application

    The data from Zachary’s Karate Club Network were collected from the members at a USA university karate club by Wayne Zachary in 1977[46].Zachary constructed a network by considering each member in the club as a node. Each edge in the network represents that the connected two members are friends outside the club activities.The network is shown in Fig.2.

    Fig.2 Zachary’s Karate Club Network with 34 nodes and 78 edges

    To evaluate the performance of the proposed method, we adoptthe SI modelto examine the spreading in fl uence oftop-L nodes ranked by differentmeasures.The SImodel is used to mimic the spreading ability of diseases,rumors and so on[28,47,48].In the SImodel,there are two compartments,namely the susceptible(S)and the infected(I). At each step,each infected node randomly selects one of its neighbors to contact,with probabilityλ.Node i infects node j with probability(?>0),where djis the degree of node j,and dMis the maximum degree in the network.For simplicity,?is setto be 1.Notice that this model is slightly different from the standard SI model where all the neighbors of an infected node have the chance to be infected.Considering its function,the SI modelis usually used to mimic the limited spreading capability of individuals.

    In order to identify the in fl uence between nodes 1,33 and 34,the three nodes are set as infected nodes in the SI model,respectively.Then,the trial proceeds until all the nodes are infected.Niis the number of infected nodes at the i th step,and〈Ni〉denotes the average value of Niin 100 traces.The in fl uence of nodes 1,33 and 34 are shown in Fig.3.It indicates that the spreading speed of node 1 is the fastest,thus node 1 is the most in fl uential node in the network,which has the largestCEC value.The evaluation indices and orders of Zachary’s Karate Club Network, processed by DC,BC,CC and CEC methods are shown in Table 2,respectively.From Table 2,it is clearly seen that the orders,as shown in the 3rd,5th,7th and 9th columns, are different by the DC,BC,CC and CEC methods,respectively.In otherwords,differentmethods take different indices into consideration.The DC,BC and CC methods are single index,and the CEC method is multi-indices.For example,DC just takes the degree of the node into consideration,discarding other indices of the node.However, the CEC method takes these indices of DC,BC and CC into consideration.Itis obvious that,the method of multiindices refers to more factors of the node than the singleindex method.Thatis,the results generated by CECshould be more objective and reasonable than those by the DC,BCor CC method.In order to examine the ability of identi fication,the SImodelis used to compare the proposed CEC method with DC,BC and CC,respectively.The different spreading abilities and stabilities are shown in Figs.4-6, which indicates thatthe proposed method CEC is slightly better than DC,BC and CC.

    Table 2 Order ofinfluential nodes of Zachary’s Karate Club Network by different measures

    Fig.3 Spreading capabilities of nodes 1,33 and 34 in Zachary’s Karate Club Network

    Fig.4 Influence of evidential centrality and degree centrality in Zachary’s Karate Club Network

    Fig.5 Influence of evidential centrality and betweenness centrality in Zachary’s Karate Club Network

    Fig.6 Influence of evidential centrality and closeness centrality in Zachary’s Karate Club Network

    5.Conclusions

    In this paper,a comprehensive evidential method is proposed to identify in fl uential nodes in complex networks. The proposed method integrates degree,betweenness and closeness of each node based on the D-S theory.Numericalexamples illustrate thatthe proposed measure can well identify in fl uentialnodes.Itshould be pointed outthatthe proposed method only focuses on unweighted networks. Our ongoing work is to improve this proposed method to address the identi fi cation of in fl uential nodes in weighted networks.

    [1]S.H.Strogatz.Exploring complex networks.Nature,2001, 410(6825):268-276

    [2]A.L.Barab′asi,R.Albert.Emergence of scaling in random networks.Science,1999,286(5439):509-512.

    [3]D.J.Watts,S.H.Strogatz.Collective dynamics ofsmall-world networks.Nature,1998,393(6684):440-442.

    [4]H.J.Kim.Analysis ofa complex network ofphysics concepts. Modern Physics Letters B,2012,26(28):125-186.

    [5]O.Shanker,T.Hogg.Epidemiology model on shortcut and small world networks.Modern Physics Letters B,2009, 23(10):1249-1262.

    [6]J.Wang,L.L.Rong.Similarity index based on the information ofneighbornodes forlink prediction ofcomplex network. Modern Physics Letters B,2013,27(6):1350039.

    [7]H.X.Zhang,X.Lan,D.J.Wei,etal.Self-similarity in complex networks:from the view of the hub repulsion.Modern Physics Letters B,2013,27(28):1350201.

    [8]C.Shi,Z.Y.Yan,Y.N.Cai,etal.Multi-objective community detection in complex networks.Applied SoftComputing,2012, 12(2):850-859.

    [9]M.Kitsak,L.K.Gallos,S.Havlin,et al.Identi fi cation of infl uentialspreaders in complex networks.Nature Physics,2010, 6(11):888-893.

    [10]T.Zhou,G.Yan,B.H.Wang.Maximalplanar networks with large clustering coef fi cient and power-law degree distribution. PhysicalReview E,2005,71(4):046141.

    [11]D.B.Chen,H.Gao,L.Y.L¨u,et al.Identifying in fl uential nodes in large-scale directed networks:the role of clustering. PloS One,2013,8(10):e77455.

    [12]J.G.Liu,Z.M.Ren,Q.Guo.Ranking the spreading in fl uence in complex networks.Physica A:StatisticalMechanics and its Applications,2013,392(18):4154-4159.

    [13]L.Y.L¨u,D.B.Chen,T,Zhou.The small world yields the mosteffective information spreading.New JournalofPhysics, 2011,13(12):123005.

    [14]Q.Li,T.Zhou,L.Y.L¨u,etal.Identifying in fl uentialspreaders by weighted leaderrank.Physica A:StatisticalMechanics and its Applications,2014,404:47-55.

    [15]B.N.Hou,Y.P.Yao,D.S.Liao.Identifying all-around nodes for spreading dynamics in complex networks.Physica A:StatisticalMechanics and its Applications,2012,391(15):4012-4017.

    [16]Q.C.Hu,Y.Gao,P.F.Ma,et al.A new approach to identify in fl uential spreaders in complex networks.Proc.of the 14th InternationalConference on Web-Age Information Management.2013:99-104.

    [17]X.H.Zhang,J.Zhu,Q.Wang,et al.Identifying in fl uential nodes in complex networks with community structure. Knowledge-Based Systems,2013,42(18):74-84.

    [18]F.Bauer,J.T.Lizier.Identifying in fl uentialspreaders and ef ficiently estimating infection numbers in epidemic models:A walk counting approach.Europhysics Letters,2012,99(6): 68007.

    [19]T.Zhou,Z.Q.Fu,B.H.Wang.Epidemic dynamics on complex networks.Progress in Natural Science,2006,16(5):452-457.

    [20]A.Zeng,C.J.Zhang.Ranking spreaders by decomposing complex networks.Physics Letters A,2013,377(14):1031-1035.

    [21]D.B.Chen,R.Xiao,A.Zeng,et al.Path diversity improves the identi fi cation of in fl uentialspreaders.Europhysics Letters, 2013,104(6):68006.

    [22]J.Borge-Holthoefer,Y.Moreno.Absence ofin fl uentialspreaders in rumor dynamics.Physical Review E,2012,85(2): 026116.

    [23]J.Borge-Holthoefer,A.Rivero,Y.Moreno.Locating privileged spreaders on an online socialnetwork.Physical Review E,2012,85(6):066123.

    [24]C.Gao,X.Lan,X.G.Zhang,etal.A bio-inspired methodology of identifying in fl uential nodes in complex networks. PloS One,2013,8(6):e66732.

    [25]M.G.Gong,X.W.Chen,L.J.Ma,et al.Identi fi cation of multi-resolution network structures with multi-objective immune algorithm.Applied SoftComputing,2013,13(4):1705-1717.

    [26]T.Opsahl,F.Agneessens,J.Skvoretz.Node centrality in weighted networks:Generalizing degree and shortest paths. Social Networks,2010,32(3):245-251.

    [27]L.C.Freeman.Centrality in socialnetworks conceptualclarifi cation.Social Networks,1979,1(3):215-239.

    [28]D.B.Chen,L.Y.L¨u,M.S.Shang,etal.Identifying in fl uential nodes in complex networks.Physica A:Statistical Mechanics and its Applications,2012,391(4):1777-1787.

    [29]B.Hou,Y.Yao,D.Liao.Identifying all-around nodes for spreading dynamics in complex networks.Physica A:Statistical Mechanics and its Applications,2012,391(15):4012-4017.

    [30]S.Brin,L.Page.The anatomy of a large-scale hypertextual Web search engine.Computer Networks and ISDN systems, 1998,30(1):107-117.

    [31]L.Y.L¨u,Y.C.Zhang,C.H.Yeung,et al.Leaders in social networks,the delicious case.PloS One,2011,6(6):e21202.

    [32]A.P.Dempster.Upper and lower probabilities induced by a multivalued mapping.The Annals of Mathematical Statistics, 1967,38(2):325-339.

    [33]G.Shafer.A mathematical theory of evidence.Princeton: Princeton University Press,1976.

    [34]X.Y.Deng,Y.Hu,Y.Deng,et al.Supplier selection using AHP methodology extended by D numbers.Expert Systems with Applications,2014,41(1):156-167.

    [35]B.Y.Kang,Y.Deng,R.Sadiq,et al.Evidential cognitive maps.Knowledge-Based Systems,2012,35:77-86.

    [36]C.W.Zhang,Y.Hu,F.T.Chan,et al.A new method to determine basic probability assignment using core samples. Knowledge-Based Systems,2014,69:140-149.

    [37]S.Y.Huang,X.Y Su,Y.Hu,et al.A new decision making method by incomplete preferences based on evidence distance. Knowledge-Based Systems,2014,56:264-272.

    [38]X.Y.Deng,Y.Hu,Y.Deng,et al.Environmental impactassessment based on D numbers.Expert Systems with Applications,2014,41(2):635-643.

    [39]Z.G.Liu,Q.Pan,J.Dezert.A belief classi fi cation rule for imprecise data.Applied Intelligence,2014,40(2):214-228.

    [40]Z.G.Liu,G.Mercier,J.Dezert,et al.Change detection in heterogeneous remote sensing images based on multidimensional evidential reasoning.IEEE Trans.on Geoscience and Remote Sensing Letters,2014,11(1):168-172.

    [41]B.Suo,Y.S.Cheng,C.Zeng,etal.Computationalintelligence approach for uncertainty quanti fi cation using evidence theory. Journal of Systems Engineering and Electronics,2013,24(2): 250-260.

    [42]Y.Q.Tan,J.Y.Yang,L.C.Li,etal.Data fusion of radar and IFF for aircraftidenti fi cation.Journal of Systems Engineering and Electronics,2012,23(5):715-722.

    [43]Y.He,L.F.Hu,X.Guan,et al.New con fl ict representation model in generalized power space.Journal of Systems Engineering and Electronics,2012,23(1):1-9.

    [44]D.J.Wei,X.Y.Deng,X.G.Zhang,et al.Identifying in fl uential nodes in weighted networks based on evidence theory. Physica A:Statistical Mechanics and its Applications,2013, 392(10):2564-2575.

    [45]C.Gao,D.J.Wei,Y.Hu,etal.A modi fi ed evidential methodology of identifying in fl uentialnodes in weighted networks. Physica A:Statistical Mechanics and its Applications,2013, 392(21):5490-5500.

    [46]W.W.Zachary.An information fl ow model for con fl ict and fi ssion in small groups.Journal of Anthropological Research, 1977:452-473.

    [47]L.J.Allen.Some discrete-time SI,SIR and SIS epidemic models.Mathematical Biosciences,1994,124(1):83-105.

    [48]G.Yan,T.Zhou,J.Wang,et al.Epidemic spread in weighted scale-free networks.Chinese Physics Letters,2005,22(2): 510.

    Biographies

    Hongming Mo was born in 1983.He received his B.S.degree from Chongqing NormalUniversity in 2006.He is now an assistantresearcher in Sichuan University of Nationalities.His research interests include uncertain information modeling and processing.

    E-mail:mohongmingswu@163.com

    Cai Gao was born in 1989.He received his B.S.degree in textile engineering from Southwest Univerity,Chongqing,China,in 2012.He is now a second year graduate student in Southwest University.His research interest is uncertain information modeling and processing.

    E-mail:gaocaiswu@163.com

    Yong Deng was born in 1975.He received his B.S. degree in physics education from Shaanxi Normal University in 1997.He then received his M.S.degree in measurement technology and instrument from Hunan University in 2000 and Ph.D.degree from Shanghai Jiaotong University in 2003.He is now a professor in Southwest University.His research interests include uncertain information modeling and processing.

    E-mail:ydeng@swu.edu.cn;prof.deng@hotmail. com

    10.1109/JSEE.2015.00044

    Manuscriptreceived May 9,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61174022),the National High Technology Research and Development Program of China(863 Program)(2013AA013801),the Open Funding Project of State Key Laboratory of Virtual Reality Technology and Systems,Beihang University(BUAA-VR-14KF-02),the General Research Program of the Science Supported by Sichuan Provincial Departmentof Education(14ZB0322),and the Fundamental Research Funds for the Central Universities(XDJK2014D008).

    啦啦啦视频在线资源免费观看| 插阴视频在线观看视频| a 毛片基地| 国产中年淑女户外野战色| 久久精品夜色国产| 尤物成人国产欧美一区二区三区| 青春草视频在线免费观看| 精品一品国产午夜福利视频| 在线精品无人区一区二区三 | 日本av免费视频播放| 亚洲国产高清在线一区二区三| 成人免费观看视频高清| 亚洲av欧美aⅴ国产| 亚洲av中文av极速乱| 亚洲熟女精品中文字幕| 99热网站在线观看| 久久人人爽av亚洲精品天堂 | 国产高清三级在线| 亚洲经典国产精华液单| 欧美亚洲 丝袜 人妻 在线| 男女下面进入的视频免费午夜| 成人特级av手机在线观看| 91在线精品国自产拍蜜月| 日本一二三区视频观看| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 国产精品99久久久久久久久| 色网站视频免费| 男女免费视频国产| 啦啦啦在线观看免费高清www| 久久人人爽av亚洲精品天堂 | 亚洲色图av天堂| 高清黄色对白视频在线免费看 | 国产黄色免费在线视频| 色婷婷av一区二区三区视频| 一级二级三级毛片免费看| 亚洲综合精品二区| 国产91av在线免费观看| 老司机影院毛片| 久久热精品热| 一级二级三级毛片免费看| 在线 av 中文字幕| 亚洲av不卡在线观看| 美女视频免费永久观看网站| 色综合色国产| 制服丝袜香蕉在线| 3wmmmm亚洲av在线观看| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 在线免费观看不下载黄p国产| 亚洲av在线观看美女高潮| 久久久精品免费免费高清| 免费av不卡在线播放| 亚洲av国产av综合av卡| 大码成人一级视频| 精品久久久久久久末码| 久久久久久久大尺度免费视频| 一级毛片aaaaaa免费看小| 日本-黄色视频高清免费观看| 国产 一区精品| 国产国拍精品亚洲av在线观看| 久久 成人 亚洲| 狂野欧美白嫩少妇大欣赏| 联通29元200g的流量卡| 全区人妻精品视频| 看非洲黑人一级黄片| 男人舔奶头视频| 一级毛片 在线播放| 国产综合精华液| 成年免费大片在线观看| 午夜视频国产福利| av在线蜜桃| 亚州av有码| 亚洲精品久久午夜乱码| 国产视频内射| 80岁老熟妇乱子伦牲交| 高清午夜精品一区二区三区| 国产国拍精品亚洲av在线观看| 六月丁香七月| 成年av动漫网址| 国产成人一区二区在线| av播播在线观看一区| 午夜激情久久久久久久| 日韩亚洲欧美综合| 欧美极品一区二区三区四区| 高清午夜精品一区二区三区| 精品国产三级普通话版| 美女福利国产在线 | 男女无遮挡免费网站观看| 久久久久国产网址| 亚洲天堂av无毛| 亚洲精品色激情综合| 日本一二三区视频观看| 观看免费一级毛片| 久久久久久久久久人人人人人人| 五月玫瑰六月丁香| 毛片女人毛片| 国产成人午夜福利电影在线观看| 亚洲av中文av极速乱| 亚洲av电影在线观看一区二区三区| 免费观看的影片在线观看| 久久久久久久大尺度免费视频| 亚洲精华国产精华液的使用体验| 男女边摸边吃奶| 激情 狠狠 欧美| 下体分泌物呈黄色| 亚洲三级黄色毛片| 精品熟女少妇av免费看| 3wmmmm亚洲av在线观看| 欧美成人a在线观看| 一级av片app| av在线老鸭窝| 欧美高清成人免费视频www| 夫妻性生交免费视频一级片| 国产 一区精品| 国产亚洲最大av| 丰满乱子伦码专区| 亚洲国产最新在线播放| 国产人妻一区二区三区在| 国产视频内射| 18+在线观看网站| 高清午夜精品一区二区三区| 国产成人91sexporn| av不卡在线播放| 亚洲精品乱码久久久v下载方式| 中国美白少妇内射xxxbb| 两个人的视频大全免费| 在线观看美女被高潮喷水网站| 黄色视频在线播放观看不卡| 赤兔流量卡办理| 欧美日韩综合久久久久久| 日本色播在线视频| 日日摸夜夜添夜夜爱| 人妻系列 视频| 不卡视频在线观看欧美| 日本色播在线视频| 久久国内精品自在自线图片| 久久久精品免费免费高清| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 亚洲欧美中文字幕日韩二区| 日韩一区二区视频免费看| 成人亚洲欧美一区二区av| 各种免费的搞黄视频| 毛片一级片免费看久久久久| 欧美 日韩 精品 国产| 熟女av电影| 免费观看av网站的网址| 亚洲av中文字字幕乱码综合| 日韩一本色道免费dvd| 大码成人一级视频| 99久久综合免费| 国产高清三级在线| 永久免费av网站大全| 亚洲国产欧美在线一区| 国产淫片久久久久久久久| 国产亚洲av片在线观看秒播厂| 性高湖久久久久久久久免费观看| 亚洲国产av新网站| 午夜老司机福利剧场| 免费黄网站久久成人精品| 欧美97在线视频| 高清午夜精品一区二区三区| 精品午夜福利在线看| 插阴视频在线观看视频| 精品久久久噜噜| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 国产在视频线精品| 久久久久久久国产电影| 插逼视频在线观看| 一边亲一边摸免费视频| 99热6这里只有精品| 国产精品国产av在线观看| 天天躁夜夜躁狠狠久久av| 黑人高潮一二区| videossex国产| 欧美极品一区二区三区四区| 欧美最新免费一区二区三区| 一级毛片 在线播放| 日韩免费高清中文字幕av| av在线app专区| 久久久久久久久久久免费av| 99久久中文字幕三级久久日本| 久久综合国产亚洲精品| 91精品伊人久久大香线蕉| 国产成人一区二区在线| 午夜免费观看性视频| 精品人妻熟女av久视频| 天堂俺去俺来也www色官网| 18禁动态无遮挡网站| 国产91av在线免费观看| 国产免费又黄又爽又色| 蜜桃在线观看..| 精品少妇黑人巨大在线播放| 美女脱内裤让男人舔精品视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品一区二区性色av| 国产精品福利在线免费观看| 精品久久久久久电影网| 国产男女内射视频| 一级毛片我不卡| 少妇 在线观看| 欧美极品一区二区三区四区| 国产伦精品一区二区三区四那| 国产精品.久久久| 高清黄色对白视频在线免费看 | 国产精品福利在线免费观看| 久久影院123| 丝瓜视频免费看黄片| 黄色一级大片看看| 久久人人爽人人爽人人片va| 99热全是精品| 精品国产一区二区三区久久久樱花 | 五月开心婷婷网| 国内揄拍国产精品人妻在线| 亚洲av免费高清在线观看| 老女人水多毛片| 人体艺术视频欧美日本| 我要看日韩黄色一级片| 午夜精品国产一区二区电影| 寂寞人妻少妇视频99o| 新久久久久国产一级毛片| 日韩一区二区视频免费看| 只有这里有精品99| 男人和女人高潮做爰伦理| 国产色婷婷99| 一区二区三区精品91| a级毛片免费高清观看在线播放| 在线亚洲精品国产二区图片欧美 | 一区二区三区乱码不卡18| 在线观看人妻少妇| 永久免费av网站大全| 九九久久精品国产亚洲av麻豆| 国产淫片久久久久久久久| 午夜免费男女啪啪视频观看| 久久久久精品久久久久真实原创| 久久久久网色| 18+在线观看网站| 国产 一区精品| 国产成人a∨麻豆精品| 国产深夜福利视频在线观看| 欧美三级亚洲精品| 久久久精品94久久精品| 特大巨黑吊av在线直播| 91久久精品电影网| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 精品久久久久久久久av| 亚洲精品一区蜜桃| 在线观看av片永久免费下载| 免费观看性生交大片5| 蜜桃久久精品国产亚洲av| 欧美日韩综合久久久久久| 免费大片18禁| 高清在线视频一区二区三区| 国产亚洲5aaaaa淫片| av不卡在线播放| 国产精品国产av在线观看| 久久国产乱子免费精品| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 草草在线视频免费看| 好男人视频免费观看在线| 日日摸夜夜添夜夜添av毛片| 日本wwww免费看| 中文乱码字字幕精品一区二区三区| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 国产成人免费观看mmmm| 三级国产精品片| 黄色一级大片看看| 国产精品一区二区在线不卡| 高清毛片免费看| 精品酒店卫生间| 午夜激情久久久久久久| 国产爽快片一区二区三区| 午夜福利在线观看免费完整高清在| 一级a做视频免费观看| 国产爽快片一区二区三区| av网站免费在线观看视频| 欧美性感艳星| 又黄又爽又刺激的免费视频.| 自拍偷自拍亚洲精品老妇| 精品久久久久久久末码| 97超碰精品成人国产| 婷婷色麻豆天堂久久| 亚洲欧美清纯卡通| 人人妻人人爽人人添夜夜欢视频 | 亚洲天堂av无毛| 日本欧美国产在线视频| 伊人久久精品亚洲午夜| 日韩av免费高清视频| 水蜜桃什么品种好| 亚洲成人av在线免费| 精品久久久久久久久av| 午夜精品国产一区二区电影| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 国产成人精品一,二区| 日韩一本色道免费dvd| 欧美日韩视频高清一区二区三区二| videos熟女内射| 国产精品无大码| 免费观看的影片在线观看| 精品久久久噜噜| 永久网站在线| 26uuu在线亚洲综合色| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说 | 美女高潮的动态| 精品视频人人做人人爽| 亚洲av二区三区四区| 日日啪夜夜撸| 色哟哟·www| 丰满少妇做爰视频| 青春草国产在线视频| 高清在线视频一区二区三区| 亚洲欧美日韩东京热| 91aial.com中文字幕在线观看| 在线观看三级黄色| 国模一区二区三区四区视频| 国产欧美日韩一区二区三区在线 | 22中文网久久字幕| 亚洲欧洲日产国产| 午夜精品国产一区二区电影| 午夜福利网站1000一区二区三区| 黄色怎么调成土黄色| 丝袜喷水一区| 国产乱人视频| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 只有这里有精品99| 99久国产av精品国产电影| 久久精品国产亚洲av涩爱| 亚洲综合色惰| 三级国产精品片| 网址你懂的国产日韩在线| 亚洲av福利一区| 人妻少妇偷人精品九色| av福利片在线观看| 欧美性感艳星| 日本欧美视频一区| 亚洲成人中文字幕在线播放| 免费观看的影片在线观看| 91精品一卡2卡3卡4卡| 国内揄拍国产精品人妻在线| 亚洲精品成人av观看孕妇| 国产精品.久久久| 免费久久久久久久精品成人欧美视频 | 精品国产三级普通话版| 简卡轻食公司| 大话2 男鬼变身卡| 99久久综合免费| 蜜桃在线观看..| 草草在线视频免费看| 国产精品蜜桃在线观看| 久久热精品热| 中文字幕精品免费在线观看视频 | freevideosex欧美| 亚洲人与动物交配视频| av视频免费观看在线观看| 国产成人精品福利久久| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 两个人的视频大全免费| 成人无遮挡网站| 欧美97在线视频| 国产男人的电影天堂91| 欧美3d第一页| 日韩av在线免费看完整版不卡| 成人无遮挡网站| 在线播放无遮挡| a级毛片免费高清观看在线播放| 精品人妻一区二区三区麻豆| 亚洲熟女精品中文字幕| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩卡通动漫| h视频一区二区三区| 亚洲国产av新网站| 成人二区视频| 午夜福利高清视频| 国产成人免费无遮挡视频| 亚洲人成网站在线观看播放| 啦啦啦在线观看免费高清www| 国产91av在线免费观看| 亚洲真实伦在线观看| 日本一二三区视频观看| 免费av不卡在线播放| 青青草视频在线视频观看| 久久久久久久亚洲中文字幕| 亚洲怡红院男人天堂| 免费看av在线观看网站| 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 大片电影免费在线观看免费| 青春草视频在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲av在线观看美女高潮| 亚洲美女黄色视频免费看| 啦啦啦啦在线视频资源| 只有这里有精品99| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久久久久婷婷小说| 男人和女人高潮做爰伦理| 人人妻人人澡人人爽人人夜夜| 午夜免费鲁丝| 色婷婷av一区二区三区视频| 亚洲精品乱码久久久v下载方式| 天天躁夜夜躁狠狠久久av| 国产成人aa在线观看| 网址你懂的国产日韩在线| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 中文字幕精品免费在线观看视频 | 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 这个男人来自地球电影免费观看 | 国模一区二区三区四区视频| 亚洲中文av在线| 久久人人爽av亚洲精品天堂 | 日韩中字成人| 久久人人爽人人片av| 1000部很黄的大片| 国产精品久久久久成人av| 亚洲av日韩在线播放| 最近手机中文字幕大全| .国产精品久久| 久久精品久久精品一区二区三区| 一个人看的www免费观看视频| 免费观看性生交大片5| 熟女av电影| 伦理电影免费视频| 亚洲av成人精品一区久久| 视频区图区小说| 免费看日本二区| 一区在线观看完整版| 黄色视频在线播放观看不卡| 国产永久视频网站| 少妇人妻精品综合一区二区| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 亚洲真实伦在线观看| 欧美xxxx性猛交bbbb| 纵有疾风起免费观看全集完整版| 男人爽女人下面视频在线观看| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 欧美高清性xxxxhd video| 最近最新中文字幕大全电影3| 亚洲国产毛片av蜜桃av| .国产精品久久| 欧美少妇被猛烈插入视频| 老女人水多毛片| 国产精品一及| 国产 一区 欧美 日韩| av一本久久久久| 成人亚洲欧美一区二区av| 亚洲精品色激情综合| 一级av片app| 亚洲精品久久久久久婷婷小说| 男人爽女人下面视频在线观看| 免费看不卡的av| 黄片wwwwww| 插阴视频在线观看视频| 国产午夜精品一二区理论片| 最黄视频免费看| 成人无遮挡网站| 成人美女网站在线观看视频| 三级国产精品欧美在线观看| 国产亚洲最大av| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区| 国产亚洲最大av| 亚洲不卡免费看| 久久久午夜欧美精品| 天天躁日日操中文字幕| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 国产淫片久久久久久久久| 亚洲久久久国产精品| 中国三级夫妇交换| 韩国av在线不卡| av天堂中文字幕网| 91久久精品国产一区二区三区| 久久久久久人妻| 亚洲精品自拍成人| 午夜老司机福利剧场| 国产av一区二区精品久久 | 国产熟女欧美一区二区| 深爱激情五月婷婷| 青春草视频在线免费观看| 一区在线观看完整版| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 国精品久久久久久国模美| 99久久精品一区二区三区| 男女下面进入的视频免费午夜| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 国产国拍精品亚洲av在线观看| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 91在线精品国自产拍蜜月| 美女中出高潮动态图| 日韩不卡一区二区三区视频在线| 女性被躁到高潮视频| 十八禁网站网址无遮挡 | 岛国毛片在线播放| 啦啦啦在线观看免费高清www| 免费看日本二区| 国产女主播在线喷水免费视频网站| 久久99热这里只频精品6学生| 青春草视频在线免费观看| 免费观看a级毛片全部| 丰满少妇做爰视频| 中文资源天堂在线| 久久久久久伊人网av| 久久99热6这里只有精品| av天堂中文字幕网| 亚洲国产欧美人成| 熟妇人妻不卡中文字幕| 两个人的视频大全免费| 99热这里只有是精品50| 欧美日韩在线观看h| 我要看黄色一级片免费的| 免费大片黄手机在线观看| 男女边吃奶边做爰视频| 老熟女久久久| 欧美精品一区二区大全| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 亚洲高清免费不卡视频| 午夜免费观看性视频| 在线观看一区二区三区| 亚洲国产色片| 黄色一级大片看看| 国产男人的电影天堂91| 啦啦啦啦在线视频资源| 国产精品久久久久久久电影| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 免费高清在线观看视频在线观看| 毛片一级片免费看久久久久| 国产午夜精品一二区理论片| 亚洲av男天堂| 亚洲欧美日韩另类电影网站 | 男人和女人高潮做爰伦理| av专区在线播放| 国产一区二区三区av在线| 色视频在线一区二区三区| av线在线观看网站| 午夜福利高清视频| 精品久久久精品久久久| a级一级毛片免费在线观看| 搡女人真爽免费视频火全软件| 麻豆成人午夜福利视频| www.av在线官网国产| 免费av中文字幕在线| 亚洲图色成人| 街头女战士在线观看网站| 亚洲va在线va天堂va国产| 国产午夜精品一二区理论片| 日韩制服骚丝袜av| 亚洲av免费高清在线观看| 日韩,欧美,国产一区二区三区| 国产伦精品一区二区三区视频9| 亚洲欧美中文字幕日韩二区| 国产在线男女| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 国产欧美亚洲国产| 欧美另类一区| 又爽又黄a免费视频| 街头女战士在线观看网站| 国产老妇伦熟女老妇高清| 国产在线免费精品| 色婷婷av一区二区三区视频| 韩国高清视频一区二区三区| av天堂中文字幕网| 丰满迷人的少妇在线观看| 亚洲精品乱码久久久v下载方式| 自拍偷自拍亚洲精品老妇| 下体分泌物呈黄色| av.在线天堂| 99热网站在线观看| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| 亚洲成人手机| a级一级毛片免费在线观看| 日韩三级伦理在线观看| 纯流量卡能插随身wifi吗| 五月伊人婷婷丁香| 亚洲欧美一区二区三区国产| 全区人妻精品视频| 亚洲欧美日韩卡通动漫| 一个人免费看片子| 亚洲一区二区三区欧美精品| 久久久色成人| 国产精品一区二区三区四区免费观看| 亚洲天堂av无毛| 人妻少妇偷人精品九色| 午夜福利在线观看免费完整高清在| av卡一久久| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 97超碰精品成人国产|