• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Archimedean copula estimation ofdistribution algorithm based on arti fi cialbee colony algorithm

    2015-12-23 10:09:14

    Schoolof Information Science and Engineering,Shandong University,Jinan 250100,China

    1.Introduction

    Archimedean copula estimation ofdistribution algorithm based on arti fi cialbee colony algorithm

    Haidong Xu,Mingyan Jiang*,and Kun Xu

    Schoolof Information Science and Engineering,Shandong University,Jinan 250100,China

    The arti fi cial bee colony(ABC)algorithm is a competitive stochastic population-based optimization algorithm.However,the ABC algorithm does not use the social information and lacks the knowledge of the problem structure,which leads to insuf fi ciency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm(ACEDA) is a relatively simple,time-economic and multivariate correlated EDA.This paper proposes a novelhybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estimation of distribution based on the arti fi cial bee colony(ACABC) algorithm.The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help arti fi cial bees to search more ef fi ciently in the search space.Six benchmark functions are introduced to assess the performance of the ACABC algorithm on numericalfunction optimization.Experimentalresults show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm,ACEDA and the globalbest(gbest)-guided ABC(GABC)algorithm in most ofthe experiments.

    arti fi cial bee colony(ABC)algorithm,Archimedean copula estimation of distribution algorithm(ACEDA),ACEDA based on arti fi cialbee colony(ACABC)algorithm,numericalfunction optimization.

    1.Introduction

    Population-based optimization algorithms are biologicalinspired optimization algorithmswhich are capable of fi nding the near-optimal solutions to complicated numerical and real-valued problems.Some classic algorithms such as the genetic algorithm(GA)[1],the estimation of distribution algorithm(EDA)[2]and the arti fi cialbee colony (ABC)algorithm[3]are allpopulation-based optimization algorithms.

    The ABC algorithm was proposed by Karaboga in 2005 [3],which is inspired by the foraging behavior of bees. The ABC algorithm is simple and uses only common control parameters such as the population size and the max cycle number.Experimentalresults on function optimization have shown that the ABC algorithm outperforms,or atleast performs as well as other well known populationbased algorithms like GA,PSO[4,5],etc.

    However,there are still insuf fi ciencies in the ABC algorithm.The population reproduction mechanism of the ABC algorithm reveals that this algorithm does not take advantage of the socialinformation such as the globalbest value ofthe currentswarm,and lacks the knowledge ofthe problem structure when searching for the optimal value, which leads to insuf fi ciency in both convergentspeed and searching precision.Moreover,the solution search equation reveals thatthe ABC algorithm is good atexploration butpoor atexploitation.To conquer this problem,various improved strategies have been proposed.Zhu and Kwong [6]proposed global best(gbest)-guided ABC(GABC)by incorporating the information of the gbest solution into the solution search equation to improve the exploitation. Leietal.[7]proposed an improved ABC algorithm,which introduced an inertialweightto the originalABC iteration equation to balance local and global searching processes. Akay and Karaboga[8]modi fi ed the original ABC algorithm by employing two new solution search strategies,including frequency and magnitude of the perturbation.Gao and Liu[9]improved the ABCalgorithm by combining the mutation scheme of the differentialevolution(DE).Experimental results[6-9]show that these variant ABC algorithms improved the convergent speed and the searching precision to a certain extent.

    Estimation of distribution algorithm(EDA)is an evolutionary algorithm which derives from GA[10],and it combines intelligence computation and the knowledge of statistics.EDA uses the probability modeling technique toguide the generation of new population.Population-based incrementallearning(PBIL)proposed by Baluja[11],the Bayesian optimization algorithm(BOA)proposed by Pelikan[12]are allpopular EDAs.

    The copula theory was introduced into EDA by Fabrizio and Carlo[13].In copula EDA(CEDA),joint distribution of all variables is used to describe the correlation among variables,which can estimate the problem structure in a simple way.Archimedean copula EDA(ACEDA)is an importantbranch in CEDA,and a number of researches have been done in this fi eld[14,15].

    In this paper,we propose a new hybrid algorithm based on the ABC algorithm and the ACEDA,which is called Archimedean copula ABC(ACABC)algorithm.This hybrid algorithmutilizes the ACEDAto estimate the distribution model(thatis,to learn the problem structure)and then uses the information to guide arti fi cialbees to search more ef fi ciently in the search space.This hybrid algorithm combines the advantages of both ABC and ACEDA.On one hand,ACABC keeps learning the problem structure during the searching process by incorporating the ACEDAmechanism,and uses the information to generate new population. This mechanism can guide bees to search directly,which accelerates the convergent speed and improves the exploration ability.On the otherhand,an improved gbest-guided mechanism is introduced into ACABC to improve the exploitation ability.The experimentalresults tested on six numericalbenchmark functions show thatthe ACABC algorithm converges much faster with greater precision compared with the ABC algorithm,ACEDA and the GABC algorithm in mostof the experiments.

    The rest of the paper is organized as follows.Section 2 summarizes the ABC algorithm.Section 3 introduces the basic copula theory and ACEDA.The hybrid ACABC algorithm is described in Section 4 and experimentalsettings and results are given in Section 5.Finally,the conclusion is drawn in Section 6.

    2.ABC algorithm

    As mentioned above,ABC is a swarm intelligence algorithm by simulating the foraging behaviors of the bee swarm.In a natural bee swarm,there are three kinds of bees to search food,the employed bees,the onlookers,and the scouts.The employed bees search food around the food source in their memories,then they share the food information with the onlookers through waggle dancing.Each onlookerbee chooses a food source found by the employed bees,and then further searches around the selected food source.The food source with more nectarhas largerchance to be selected by the onlooker bees than the one with less nectar.The scouts are a few employed bees which abandon their original food sources and randomly search for new ones.

    For an optimization problem in a D-dimensionalspace, the position of a food source represents a potential solution,and the nectar amount of a food source represents the fi tness value of the solution.The number of employed bees or the onlooker bees is equal to the number of food sources,which means one food source is exploited by one employed bee.

    Xi=(xi1,xi2,...,xiD)denotes the i th food source in the population,where D is the dimension of the problem. The exploitation mechanism used by both the employed bees and the onlookers is given as follows:

    where Vi=(vi1,vi2,...,viD)is the new candidate solution generating from the neighborhood of current solution Xi(i=1,2,...,N),N is the population size,Xkis a randomly selected solution in the population(k= 1,2,...,N and k/=i),j=1,2,...,D is a random index, andφijis a uniform random number in the range[-1,1]. Then the greedy selection is operated between Viand Xito retain the better solution.

    When all the employed bees fi nish their neighborhood search according to(1),they share allthe food information with allthe onlookers.Each onlookerselects a food source to do furthersearch according to the probability calculated by(2).

    where f itiis the fi tness value of the i th solution in the population,and piis called the following probability.As shown in(2),piis proportionalto the fi tness value,and the solution with a larger fi tness value has a higher chance to be selected.

    Ifone food source is notupdated overa prede fi ned numberofcycles,which means there is no betterfood source in its neighborhood,this food source is abandoned by the employed bee.The prede fi ned number of cycles is a control parameter called“l(fā)imit”.When the employed bee abandons its food source,it becomes a scout and searches a new food source randomly in the whole searching space according to(3).

    3.ACEDA

    EDA is an evolutionary algorithm derived from GA[16], which combines intelligence computation and the knowl-edge of statistics.EDA retains the selection operator in GA,but replaces the crossover and the mutation operator with the statisticalmodeland the sampling theory.One of the most essentialparts in EDA is to build a proper statisticalmodel.

    The copula theory is a new branch in statistics,which constructs a multivariate joint distribution function with a given marginal distribution function and correlations among all variables.Basic de fi nitions and theorems are given in[16].One essential theorem in the copula theory is the Sklar theorem[16].This theorem expounds the construction method of multivariate jointdistribution by using the copula function and marginaldistribution functions.In the copula theory,the multivariate joint distribution function is constructed based on the essential Sklar theorem.

    Copula functions mainly includes elliptic functions[17] and Archimedean copula functions[18].De fi nitions of the Archimedean copula function are given in[19].Two types of Archimedean copula functions Clayton and Gumbelare mainly used in this paper,as is shown in Table 1.

    Table 1 Clayton and Gumbelfunction

    ACEDA is based on EDA and the copula theory,which constructs the statistical model with the Archimedean copula function and the marginaldistribution function based on the Sklar theorem.In this algorithm,the estimation of the statistical model includes copula function estimation and marginal function estimation,then new population is generated by sampling from the copula function. The framework of ACEDA is shown in Fig.1.

    Fig.1 Framework of ACEDA

    In the following,the estimation of the marginal distribution function and the sampling method of the ndimensional Archimedean copula function are fi rst introduced,then the speci fi c processofthe Archimedean copula EDA is listed.

    In the n-dimensional ACEDA,there are mainly two marginaldistribution estimation methods.One is based on the empiricalfunction,and the other is based on the Gaussian probability model.In this paper,the Gaussian probability model is used to estimate the marginal distribution. After selecting the dominantpopulation which consists of S individuals,mean valueμjand standard deviationσjof the j th dimension variable are calculated according to(4) and(5)respectively.The j th Gaussian marginal distribution is denoted as

    The sampling method of the n-dimensional Archimedean copula function is as follows.C denotes the Archimedean copula function,and?represents its generator,while(U1,U2,...,Un)is the random vector which obeys the jointdistribution C.According to the algorithm proposed by Marshall and Olkin in[20],if there is a distribution function F which yields that F(0)=0,and the Laplace transform of F is equalto the inverse function of generator?,thatis to say??1=L?1[F],then the samples (u1,u2,...,un)of(U1,U2,...,Un)can be generated as follows.

    Algorithm 1The sampling method of the ndimensionalArchimedean copula function

    Step 1Generate variable v which obeys the distribution F,v~F=L?1[??1],where L?1[??1]denotes the inverse Laplace transform of??1.

    Step 2Generate independent variables xj~U[0,1], j=1,2,...,n;

    Step 3uj=??1((-ln xj)/v),j=1,2,...,n,then the sample(u1,u2,...,un)which obeys the jointdistribution function C is generated.

    The process of Clayton and Gumbel ACEDA is shown as follows.

    Algorithm 2The Clayton and GumbelACEDA

    Step 1Population initialization.Initialize the population size NP,iterations Cycle,selection ratio s,and mutation ratio c.Randomly generate population size solutions as the initialpopulation,and then calculate the fi tness value of each population.

    Step 2Construct dominantpopulation.Sortthe population in descending order according to the fi tness values; select the top S individuals according to(6)to construct the dominantpopulation.

    Step 3Estimate the marginal Gaussian distribution of each dimension N(μj,σ2j)(j=1,2,...,n),according to (4)and(5).

    Step 4Perform sampling operation on the given copula function to generate L new individuals which obey the jointdistribution.

    Step 4.1The inverse Laplace transform of??1for the Clayton and Gumbel function obeys Gamma distribution and Alpha-stable distribution respectively[21],as is shown in(7)and(8).Generate variable v which subjects to Gamma distribution or Alpha-stable distribution according to(7)or(8).Generate independentvariables vj(j=1,2,...,n),which is uniformly distributed in the range[0,1],and then uj(j=1,2,...,n),for the Clayton or Gumbelfunction which is obtained according to(9)or (10).

    Step 4.2According to(11),generate the k th new individualbased on the combination of the one-dimension Gaussian distribution and the Clayton or Gumbelcopula function value.

    Step 5Constructnew population.The new population consists of the top S individuals from the previous generation,L new individuals which subjectto the jointdistribution and NP-S-L mutated individuals which are randomly generated in the searching space.

    Step 6Judge whetherthe algorithm satis fi es the terminal condition or not.If the terminal condition is reached, the program willstop.Otherwise,return to Step 2.

    4.ACABC algorithm

    In this paper,we propose an improved ABC algorithm by combining ABC with ACEDA to improve the convergent speed and searching precision.The novelhybrid algorithm is ACABC algorithm.

    In the ABC algorithm,the onlookers obtain food information from all employed bees,choose a better food source and then do further search around it.The onlooker mechanism is one of the mostessentialmechanisms in the ABC algorithm.In the ACABC algorithm,we combine the ACEDA with onlookers and propose a modi fi ed onlooker mechanism.After obtaining all the food information,the modi fi ed onlookers select excellentfood sources with a certain ratio,analyze the distribution rule of excellent food sources by estimating the distribution of them. Then these onlookers take the following strategies to update the currentfood sources.Firstly,preserve the excellent food sources selected previously,then predict the location ofnew food sources according to the estimated distribution information,and fi nally replace those poor food sources with these predicted new ones.Thatis to say,the onlookers adjust the searching direction of the whole colony based on the distribution of promising food sources.This modifi ed onlooker mechanism has learning and analyzing ability and enhanced globalperformance,which is a more intelligentonlookermechanism.The implementation fl ow of this modi fi ed onlooker mechanism is shown as follows.

    Algorithm 3Modi fi ed onlookermechanism

    Step 1Sortthe solutions obtained by employed bees in descending orderbased on the fi tness values,and calculate the following probability ofeach solution according to(2).

    Step 2Set the selection ratio s=0.3,and select the top S solutions according to(6)to constructthe dominant population.

    Step 3Estimate the marginal Gaussian distribution of each variable according to(4)and(5).

    Step 4After choosing one solution according to the following probability,the onlooker decides the sort order of this solution.If the sort order is less than S,then the neighborhood search mechanism of ABC is operated to generate new candidate solution;otherwise,the new candidate solution is generated based on ACEDA.

    Step 5Calculate the fi tness value of new solutions, choose a better solution between the new candidate solution and the old one based on the greedy criterion to constructthe new population.

    On the basis of the modi fi ed onlooker mechanism,two more improved strategies are proposed to enhance the adaptability and the exploitation.

    4.1 Dynamicaladjustment of the searching strategyThe modi fi ed onlooker mechanism shown above includes two searching strategies.According to the selection ratio s=0.3,the top 30%individuals are updated by the neighborhood search strategy while the rest 70%are updated based on ACEDA.However,as the iteration goes on,an increasing number of individuals are approaching the global best solution and the ratio of excellent individuals is getting larger.As a result,a growing number of individuals can notbe updated by ACEDA,which leads to the searching inef fi ciency.To improve this situation,an adaptive selection ratio is introduced,as is shown in(12).

    where iter denotes the currentiteration number,and Cycle is the maximaliteration number.The initialvalue is set as 0.3,and the selection ratio grows linearly as the iteration increases.The numberof selected individuals in each iteration is calculated according to(13),which indicates that more individuals are updated by the neighborhood searching mechanism while fewer of them are updated by copula EDA.In a word,the searching strategies are adjusted dynamically by introducing the adaptive parameter to improve the search ef fi ciency.

    4.2 Improved gbest-guided neighborhood search mechanism

    Inspired by the gbest-guided mechanism in[6],the neighborhood search equation is modi fi ed to improve the exploitation of the algorithm,as is shown in(14).

    where the third term is a new added term,and yjis the j th element of the current global best solution.As it is in(15),a new adaptive parameter w is introduced to adjust the neighborhood search strategy dynamically.w decreases linearly as the iteration goes on,which means that the generation ofthe new candidate solution is increasingly dependenton the globalbestvalue,while the in fl uence ofthe current solution xijis weakened progressively.The new candidate solution is driven towards the global best solution in this way to improve the exploitation.

    The process of the ACABC algorithm is shown as follows.

    Algorithm 4Archimedean copula estimation of distribution by the ABC algorithm

    Step 1Parameterinitialization.Initialize the population size NP,iterations Cycle,trial,limit,selection ratio s, and the parameterθused in ACEDA.

    Step 2Population initialization.Randomly generate NP solution X={Xi|i=1,2,...,NP}as the initial population,calculate the fi tness value of each population, set triali=0 for each solution Xiand then initialize the gbestsolution.

    Step 3Employed bee stage.Each employed bee conducts the gbest-guided neighborhood search according to (14)to generate the new candidate solution,calculates the fi tness value,and updates the currentsolution based on the greedy criterion.If Xiis updated as the new candidate solution,set triali=0;otherwise,triali=triali+1.

    Step 4Calculate the following probability according to (2),sort allsolutions in descending order according to fi tness values,compute the numberofexcellentindividuals S according to(12)and(13),and selectthe top S individuals to constructthe dominantpopulation.

    Step 5The onlooker stage.Carry out Step 3-Step 5 in Algorithm 3.

    Step 6Update the globalbestsolution.Selectthe solution with the largest fi tness value as the currentgbestsolution.

    Step 7The scouts stage.Give up the solution Xiwith tiraliexceeding the prede fi ned value limit,randomly generate a new solution in the search space,calculate the fi tness value,and set tirali=0.

    Step 8Judge whetherthe algorithm satis fi es the terminal condition or not.If the terminal condition is reached, outputthe globalbestsolution as the fi naloptimization result.Otherwise,return to Step 3.

    5.Experiments and results

    In this paper,two types of ACABC algorithms,namely the Clayton ACABC algorithm and the Gumbel ACABC algorithm are proposed based on Archimedean Clayton and Gumbel functions.In this part,the performance of the Clayton ACABC algorithm and the Gumbel ACABC algorithm are compared with ABC,GABC,Clayton CEDA and Gumbel CEDA by optimizing benchmark functions.

    5.1 Benchmark functions

    The details of six benchmark functions used in this paper are given in Table 2.

    Table 2 Benchmark functions

    5.2 Optimalparameter selection

    Population size NP and maximaliteration times Cycle are essentialparameters which have a signi fi cantimpacton the performance of all population-based algorithms.The experimental results in[14,15,21]showed that the ACEDA obtains the best performance with large population sizes and few iteration times,while the ABC algorithm requires small population sizes and more iteration times[4-9].As a result,experiments are designed in this partto select the best parameters for the novel hybrid algorithms Clayton ACABC and Gumbel ACABC.

    In this paper,the fi tness evaluation times,namely the productof population and iteration times of differentalgorithms,are equalto each other to evaluate the performance of differentalgorithms fairly.

    The numberof fi tness evaluation is setas 200 000 times, and fi ve different parameter combinations are selected to optimize six benchmark functions respectively.The other parameters used in the algorithms are as follows.The dimension of allfunctions is D=100,for Clayton ACABC the parameter withθ=0.1,while for Gumbel ACABC withθ=1.In differenttestenvironments,each algorithm runs 10 times and computes the mean value as the fi nalresults.Results for Clayton ACABC and Gumbel ACABC are shown in Table 3 and Table 4 respectively.

    Table 3 Optimization results of Clayton ACABC with different population sizes and iterations

    Table 4 Optimization results of Gumbel ACABC with different population sizes and iterations

    As shown in Table 3,data in bold are the best optimization results ofeach function.For Griewank,Rastrigin, Ackley and Rosenbrock,the bestoptimization resultis obtained when the parameters are NP=40,Cycle=5 000, especially for Rastrigin,the optimization result is much betterthan the others.While for Sphere and Schwefel2.22, the best optimization results are obtained when NP= 100,Cycle=2 000.However,we can also observe that the optimization results when NP=40,Cycle=5 000 are nearly the same with the bestones.

    According to the results shown in Table 4,for Griewank, the bestoptimization resultis obtained when NP=100, Cycle=2 000,and when NP=40,Cycle=5 000,the optimization result is very close to the best result.While for the other fi ve functions,the best optimization results are allobtained when NP=40,Cycle=5 000.

    Based on the results shown in Table 3 and Table 4,we can draw the conclusion thatboth the Clayton ACABC algorithm and the Gumbel ACABC algorithm can get the best performance when NP=40,Cycle=5 000.Thus in the following experiments,the population size is 40 and the iteration times is 5 000 for the Clayton ACABC algorithm and the GumbelACABC algorithm.

    5.3 Performance comparison of different algorithmsIn this part,six algorithms including ABC,GABC,Clayton CEDA,Gumbel CEDA,Clayton ACABC and Gumbel ACABC are used to optimize six benchmark functions respectively,and the performance on search accuracy and the convergentspeed of the six algorithms are compared.

    The numberof fi tness evaluation is setas 200 000 times. In ABC,GABC,Clayton ACABC and Gumbel ACABC, NP=40 and Cycle=5 000,while for Clayton CEDA and Gumbel CEDA,NP=100 and Cycle=2 000.The other parameters are setas follows.D=100,limit=50, θ=0.1 in Clayton ACABC andθ=1 in Gumbel ACABC.Each algorithm run 30 times and the mean value is calculated as the fi nal results.Experimental results are shown in Table 5.

    Table 5 Simulation results achieved by different algorithms

    As the results shown in Table 5,allof the six algorithms can optimize successfully on Sphere,Griewank,Ackley and Schwefel 2.22,and both Clayton ACABC and GumbelACABCcan obtain optimization results with higheraccuracy compared with the other four algorithms.The optimization results on Rastrigin indicate that only Clayton ACABC and Gumbel ACABC can optimize successfully with high precision,while ABC,GABC,Clayton CEDA and Gumbel CEDA cannot optimize Rastrigin successfully.However,the results on Rosenbrock show that all algorithms cannot achieve satisfying optimization results, and ABC and GABC outperform the CEDA and ACABC algorithms.

    According to the optimization results,we can obtain the conclusion that both Clayton ACABC and Gumbel ACABC can optimize mostof the test functions with high precision and outperform ABC,GABC,Clayton CEDA, and Gumbel CEDA.

    In orderto evaluate the convergentspeed ofthe proposed ACABC algorithms,the convergence curves of fi ve functions except Rosenbrock are drawn in Figs.2-6 respectively.It can be observed that Clayton ACABC and Gumbel ACABC accelerate the search speed and improve the convergentspeed signi fi cantly.

    According to the experimental results in this part,we can draw the conclusion that Clayton ACABC and Gumbel ACABC can speed up the convergent speed with greater precision for mosttestfunctions.The novelhybridACABC algorithms outperform the ABC algorithms and ACEDA.

    Fig.2 Convergence curve on Sphere(Sphere with dim=100)

    Fig.3 Convergence curve on Griewank(Griewank with dim=100)

    Fig.4 Convergence curve on Rastrigin(Rastrigin with dim=100)

    Fig.5 Convergence curve on Ackley(Ackley with dim=100)

    Fig.6 Convergence curve on Schwefel 2.22(Schwefel 2.22 with dim=100)

    6.Conclusions

    In this paper,we propose a novelhybrid algorithm called ACABC algorithm.The ABC algorithm is a biologicalinspired optimization algorithm with a random search process.In order to improve the search ef fi ciency,we introduce ACEDA into the onlooker stage and propose a more intelligent onlooker mechanism.In the modi fi ed mechanism,onlookers fi rst sort all solutions obtained by employed bees in descending order according to the fi tness values,select excellent individuals to construct dominant population,then constructa probability distribution model based on ACEDA,and sample based on the estimated distribution to generate new individuals.The updating strategy ensures that the new population obeys the distribution ofthe dominantpopulation.In addition,we modify the neighborhood search strategy with the gbestvalue by guiding the operatorand the adaptive parameter to improve the exploitation of the algorithm.Experimental results show thatthe ACABCalgorithm speeds up the convergentspeedwith greater precision for most test functions.In conclusion,the novelhybrid ACABC algorithms outperform the ABC algorithms and ACEDA.

    [1]K.S.Tang,K.F.Man,S.Kwong,etal.Genetic algorithms and their applications.IEEE Signal Processing Magazine,1996, 13(6):22-37.

    [2]S.Baluja.Population-based incremental learning:a method for integrating genetic search based function optimization and competitive learning.Pittsburgh:Carnegie Mellon University, 1994.

    [3]D.Karaboga.An idea based on honey bee swarm fornumerical optimization.Technical report-tr06.Kayseri:Erciyes University,2005.

    [4]D.Karaboga,B.Basturk.On the performance of arti fi cialbee colony(ABC)algorithm.Applied Soft Computing,2008,8(1): 687-697.

    [5]D.Karaboga,B.Akay.A comparative study of arti fi cial bee colony algorithm.Applied Mathematics and Computation, 2009,214(1):108-132.

    [6]G.Zhu,S.Kwong.Gbest-guided arti fi cial bee colony algorithm for numericalfunction optimization.Applied Mathematics and Computation,2010,217(7):3166-3173.

    [7]X.Lei,X.Huang,A.Zhang.Improved arti fi cial bee colony algorithm and its application in data clustering.Proc.of the 5th IEEE International Conference on Bio-Inspired Computing:Theories and Applications(BIC-TA),2010:514-521.

    [8]B.Akay,D.Karaboga.A modi fi ed arti fi cial bee colony algorithm for real-parameter optimization.Information Sciences, 2012,192(1):120-142.

    [9]W.Gao,S.Liu.Improved arti fi cial bee colony algorithm for global optimization.Information Processing Letters,2011, 111(17):871-882.

    [10]H.Muhlenbein,G.PaaB.From combination ofgenes to the estimation of distribution:binary parameters.Proc.of the Conference on Lecture Notes in Computer Science 1411,Parallel Problem Solving from Nature-PPSN IV,H.M.Voigt(eds.). 1996:178-187.

    [11]S.Baluja.Population-based incremental learning:a method for integrating genetic search based on function optimization and competitive learning.Pittsburgh:Carnegie Mellon University,1994.

    [12]M.Pelikan,D.E.Goldberg,E.Cantu-paz.BOA:the Bayesian optimization algorithm.Proc.ofthe Conference on the Genetic and Evolutionary Computation,1999:525-532.

    [13]F.Durante,C.Sempi.Copula theory:an introduction.Copula Theory and Its Applications,2010(198):3-31.

    [14]L.F.Wang,J.C.Zeng,Y.Hong.Estimation of distribution algorithm based on archimedean copulas.Proc.of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation,2009:993-996.

    [15]Y.Gao.Multivariate estimation of distribution algorithm with laplace transform archimedean copula.Proc.of the International Conference on Information Engineering and Computer Science,2009:1-5.

    [16]R.B.Nelsen.An introduction to copulas.2nd ed.New York: Springer,2006

    [17]D.Y.Li,L.Peng.Goodness-of-fi ttestfortailcopulas modeled by ellipticalcopulas.Statistics and Probability Letters,2009, 79(8):1097-1104.

    [18]M.Denuit,O.Purcaruff,I.Van Keilegorni.Bivariate Archimedean copula models for censored data in non-life insurance.Brussel:Universit′e catholique de Louvain,2006.

    [19]M.R.F.Mendez,R.Landa.An EDA based on Bayesian networks constructed with Archimedean copulas.Proc.ofthe 4th World Congress on Nature and Biologically Inspired Computing(NaBIC),2012:188-193.

    [20]A.W.Marshall,I.Olkin.Families of multivariate distributions.Journal of the American Statistical Association,1988, 83(403):834-841.

    [21]L.F.Wang.The research on estimation of distribution algorithm based on copula theory.Lanzhou:Lanzhou University of Technology,2011:37-50.

    Biographies

    Haidong Xu was born in 1990.She received her B.S.degree from Shandong University in June, 2012 in communication engineering and now she is an M.Sc.student in the same University.Her main research area includes arti fi cial intelligence and computing intelligence,arti fi cial neural network,swarm intelligence algorithms and mathematicalstatistics.

    E-mail:xu-hai-dong1990@163.com

    Mingyan Jiang was born in 1964.He received his M.S.degree from Shandong University in 1992 and his Ph.D.degree in 2005.He fi nished his postdoctoral research in Spain(CTTC)in communication signaland system in 2007.Now he is a fullprofessor and a doctoral supervisor in the School of Information Science and Engineering in Shandong University,China.His research interests include softcomputing,signal and image processing,computer network,arti fi cial intelligence and data mining.He has published more than 200 professional papers and 6 books.

    E-mail:jiangmingyan@sdu.edu.cn

    Kun Xu was born in 1988.He received his B.S. degree from Shandong Normal University in June, 2011 in electronic information engineering and now is an M.Sc.student in Shandong University.His main research interests include machine learning, parallel computation,optimization and arti fi cial intelligence.

    E-mail:xukun sdu@163.com

    10.1109/JSEE.2015.00045

    Manuscriptreceived on March 19,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61201370),the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province (2012CX30202)and the Natural Science Foundation of Shandong Province(ZR2014FM039).

    午夜激情久久久久久久| 你懂的网址亚洲精品在线观看| 亚洲av在线观看美女高潮| a级毛色黄片| 91在线精品国自产拍蜜月| 久久综合国产亚洲精品| 成人特级av手机在线观看| 夫妻午夜视频| av一本久久久久| 日本vs欧美在线观看视频 | 亚洲av免费高清在线观看| 一本大道久久a久久精品| 热re99久久国产66热| 91久久精品国产一区二区成人| 在线观看三级黄色| 一边亲一边摸免费视频| 男的添女的下面高潮视频| www.av在线官网国产| 国产欧美日韩一区二区三区在线 | 亚洲四区av| 99久久综合免费| 国产av国产精品国产| 丰满乱子伦码专区| 欧美精品国产亚洲| 99久久中文字幕三级久久日本| 亚洲欧美成人综合另类久久久| 亚洲真实伦在线观看| 91午夜精品亚洲一区二区三区| 最新的欧美精品一区二区| 2022亚洲国产成人精品| a级毛片在线看网站| a级毛片在线看网站| 边亲边吃奶的免费视频| 人体艺术视频欧美日本| 亚洲成色77777| 人人妻人人澡人人爽人人夜夜| 成年人免费黄色播放视频 | 精华霜和精华液先用哪个| 国产黄频视频在线观看| 亚洲激情五月婷婷啪啪| 国产永久视频网站| 街头女战士在线观看网站| 在线看a的网站| 男女免费视频国产| 国内少妇人妻偷人精品xxx网站| 美女大奶头黄色视频| 国产免费一级a男人的天堂| 久久人妻熟女aⅴ| 99精国产麻豆久久婷婷| 国产成人一区二区在线| 一级黄片播放器| 最近的中文字幕免费完整| av女优亚洲男人天堂| 一区二区三区乱码不卡18| 国产精品久久久久成人av| 国产精品嫩草影院av在线观看| 在线观看www视频免费| 乱人伦中国视频| 高清毛片免费看| 色视频www国产| 成人二区视频| 内地一区二区视频在线| 狠狠精品人妻久久久久久综合| 最后的刺客免费高清国语| 97超碰精品成人国产| 热99国产精品久久久久久7| 欧美精品亚洲一区二区| 少妇人妻精品综合一区二区| 日韩一区二区三区影片| 99久久综合免费| 我要看黄色一级片免费的| 噜噜噜噜噜久久久久久91| 成人18禁高潮啪啪吃奶动态图 | 日本黄大片高清| 亚洲精品日韩在线中文字幕| 黄片无遮挡物在线观看| 日产精品乱码卡一卡2卡三| 街头女战士在线观看网站| 3wmmmm亚洲av在线观看| 国产欧美另类精品又又久久亚洲欧美| av一本久久久久| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久大av| 22中文网久久字幕| 免费人妻精品一区二区三区视频| 美女主播在线视频| 亚洲av.av天堂| 国产一区亚洲一区在线观看| √禁漫天堂资源中文www| 91久久精品国产一区二区三区| 成人特级av手机在线观看| 成人影院久久| 人人澡人人妻人| 国产免费视频播放在线视频| 久久久精品94久久精品| 高清av免费在线| 国产亚洲最大av| 亚洲av电影在线观看一区二区三区| 伦理电影免费视频| 亚洲内射少妇av| 午夜免费鲁丝| 精品一区在线观看国产| 亚洲av电影在线观看一区二区三区| av在线播放精品| 亚洲国产精品成人久久小说| 国产免费又黄又爽又色| 国产乱来视频区| 国产亚洲av片在线观看秒播厂| 男人添女人高潮全过程视频| 久久久久久久久久久免费av| 中文天堂在线官网| 亚洲精品乱码久久久久久按摩| 深夜a级毛片| 色婷婷av一区二区三区视频| 女人精品久久久久毛片| 日韩强制内射视频| 一区二区三区四区激情视频| 男男h啪啪无遮挡| 成年人午夜在线观看视频| 亚洲国产色片| 久久国产亚洲av麻豆专区| 亚洲婷婷狠狠爱综合网| 男人爽女人下面视频在线观看| 一级黄片播放器| 女的被弄到高潮叫床怎么办| 亚洲不卡免费看| 久久亚洲国产成人精品v| 99国产精品免费福利视频| 成人亚洲精品一区在线观看| 高清黄色对白视频在线免费看 | 精品久久久精品久久久| 欧美 亚洲 国产 日韩一| 国产成人aa在线观看| 纯流量卡能插随身wifi吗| 中文字幕久久专区| 国产成人一区二区在线| 国产高清不卡午夜福利| 亚洲精品亚洲一区二区| 日本av免费视频播放| 在线观看三级黄色| 亚洲,一卡二卡三卡| 国模一区二区三区四区视频| 男人爽女人下面视频在线观看| 国产日韩欧美视频二区| 自线自在国产av| 夜夜爽夜夜爽视频| 色吧在线观看| 国产亚洲午夜精品一区二区久久| 少妇精品久久久久久久| h日本视频在线播放| 高清午夜精品一区二区三区| 欧美精品一区二区免费开放| 久久99热这里只频精品6学生| 欧美丝袜亚洲另类| 国产无遮挡羞羞视频在线观看| 久久久a久久爽久久v久久| 久久人妻熟女aⅴ| 国产精品一区二区在线观看99| 婷婷色综合www| 我的女老师完整版在线观看| 婷婷色麻豆天堂久久| 国产一区二区在线观看日韩| 日韩大片免费观看网站| 精品午夜福利在线看| 九色成人免费人妻av| 国产黄片视频在线免费观看| 一本久久精品| 一本一本综合久久| 欧美3d第一页| 在线观看一区二区三区激情| 亚洲人成网站在线观看播放| 成人亚洲欧美一区二区av| 十八禁网站网址无遮挡 | 国产乱来视频区| av线在线观看网站| 精品少妇久久久久久888优播| 日韩,欧美,国产一区二区三区| 成年美女黄网站色视频大全免费 | 国产亚洲5aaaaa淫片| 亚洲怡红院男人天堂| 免费大片18禁| 亚洲精品日本国产第一区| 九九爱精品视频在线观看| 18+在线观看网站| 成年美女黄网站色视频大全免费 | 精品久久国产蜜桃| 精品国产国语对白av| 男人狂女人下面高潮的视频| 免费黄频网站在线观看国产| 国产一区二区三区综合在线观看 | 国产伦精品一区二区三区四那| 久久国产精品大桥未久av | 美女主播在线视频| 少妇的逼好多水| 嫩草影院入口| 国产视频内射| 久久这里有精品视频免费| 插阴视频在线观看视频| 自线自在国产av| 水蜜桃什么品种好| 狂野欧美白嫩少妇大欣赏| 久久这里有精品视频免费| 欧美日韩视频精品一区| 热99国产精品久久久久久7| 国产午夜精品一二区理论片| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 国产91av在线免费观看| 久久久亚洲精品成人影院| 久久青草综合色| 久久久久久人妻| av.在线天堂| 国产高清国产精品国产三级| 观看免费一级毛片| 午夜av观看不卡| 嫩草影院入口| 国产精品99久久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 久热久热在线精品观看| 日本免费在线观看一区| 最近中文字幕高清免费大全6| 久久久国产欧美日韩av| 久久国产乱子免费精品| 亚洲国产色片| 波野结衣二区三区在线| 最近最新中文字幕免费大全7| 一边亲一边摸免费视频| 2018国产大陆天天弄谢| 中国三级夫妇交换| 日韩大片免费观看网站| 色婷婷av一区二区三区视频| av一本久久久久| 高清欧美精品videossex| 国产 精品1| 丝袜脚勾引网站| 91精品国产九色| 如何舔出高潮| 中文字幕制服av| 亚洲精品456在线播放app| 成人午夜精彩视频在线观看| 极品人妻少妇av视频| 中文乱码字字幕精品一区二区三区| 亚洲无线观看免费| 国产成人精品婷婷| 九九爱精品视频在线观看| 亚洲激情五月婷婷啪啪| 在现免费观看毛片| 久久久久久久久久人人人人人人| 精品一区在线观看国产| 亚洲不卡免费看| 男女免费视频国产| 嫩草影院入口| 国产一区二区三区综合在线观看 | 国产精品一区二区性色av| 黄色怎么调成土黄色| 日韩精品免费视频一区二区三区 | 国产精品一区二区三区四区免费观看| 国产精品欧美亚洲77777| 三上悠亚av全集在线观看 | 欧美成人精品欧美一级黄| 亚洲电影在线观看av| 欧美另类一区| 精品亚洲成a人片在线观看| 亚洲精品视频女| 91精品伊人久久大香线蕉| 人妻 亚洲 视频| 日本wwww免费看| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 国产精品不卡视频一区二区| 大片电影免费在线观看免费| 精品人妻一区二区三区麻豆| 69精品国产乱码久久久| 国产中年淑女户外野战色| 免费看光身美女| 又粗又硬又长又爽又黄的视频| 免费看日本二区| 交换朋友夫妻互换小说| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 青春草亚洲视频在线观看| av黄色大香蕉| 成人国产麻豆网| 久久人人爽人人片av| 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 精品国产乱码久久久久久小说| 丝袜脚勾引网站| 九九在线视频观看精品| av在线播放精品| 久久精品熟女亚洲av麻豆精品| 日本午夜av视频| 欧美xxxx性猛交bbbb| 欧美最新免费一区二区三区| 亚洲色图综合在线观看| 免费看不卡的av| 大片电影免费在线观看免费| 国产日韩欧美在线精品| 国产成人免费观看mmmm| 亚洲国产成人一精品久久久| 日本午夜av视频| 免费在线观看成人毛片| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 亚洲av二区三区四区| 多毛熟女@视频| 高清在线视频一区二区三区| 九九久久精品国产亚洲av麻豆| 青春草国产在线视频| 国产精品一区二区性色av| 午夜91福利影院| av有码第一页| av国产精品久久久久影院| 三上悠亚av全集在线观看 | 国产亚洲av片在线观看秒播厂| 亚洲天堂av无毛| 精品人妻熟女av久视频| 亚洲av日韩在线播放| 国语对白做爰xxxⅹ性视频网站| 不卡视频在线观看欧美| 成人特级av手机在线观看| 91成人精品电影| 日本色播在线视频| 香蕉精品网在线| 久久久午夜欧美精品| 欧美日韩av久久| 永久网站在线| 夜夜骑夜夜射夜夜干| av福利片在线观看| 精品少妇内射三级| 五月开心婷婷网| 视频中文字幕在线观看| 内射极品少妇av片p| 国产亚洲午夜精品一区二区久久| 久久这里有精品视频免费| 在线观看三级黄色| 国产精品麻豆人妻色哟哟久久| 久久久午夜欧美精品| 高清不卡的av网站| 少妇人妻精品综合一区二区| 久久国内精品自在自线图片| 久久精品久久久久久久性| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 国产精品人妻久久久影院| 久久97久久精品| 精品久久久精品久久久| 女性被躁到高潮视频| 国产精品久久久久久精品古装| 亚洲欧美精品自产自拍| 午夜免费观看性视频| 久久亚洲国产成人精品v| 黄色日韩在线| 欧美日韩在线观看h| 国产亚洲午夜精品一区二区久久| 亚洲精品第二区| videos熟女内射| 黑丝袜美女国产一区| 桃花免费在线播放| 亚洲综合精品二区| 一个人免费看片子| 亚洲第一区二区三区不卡| 777米奇影视久久| 日韩欧美精品免费久久| 精品亚洲乱码少妇综合久久| 久久人妻熟女aⅴ| 国产一区亚洲一区在线观看| 亚洲精品第二区| 97超碰精品成人国产| 又大又黄又爽视频免费| 精品人妻熟女av久视频| 日韩,欧美,国产一区二区三区| 欧美少妇被猛烈插入视频| av线在线观看网站| 久久99蜜桃精品久久| 插阴视频在线观看视频| 色94色欧美一区二区| 9色porny在线观看| 亚洲丝袜综合中文字幕| 五月伊人婷婷丁香| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 我的女老师完整版在线观看| 在线免费观看不下载黄p国产| 国产黄片美女视频| 国产精品一区二区在线不卡| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄| 人妻系列 视频| 亚洲在久久综合| 亚洲欧洲日产国产| 久久久久久久久久久丰满| 最新的欧美精品一区二区| 亚洲av免费高清在线观看| www.av在线官网国产| 国国产精品蜜臀av免费| videos熟女内射| 九九久久精品国产亚洲av麻豆| 三级国产精品片| 精品熟女少妇av免费看| 亚洲av电影在线观看一区二区三区| 精品人妻一区二区三区麻豆| 日本av免费视频播放| 久久 成人 亚洲| 99久久人妻综合| 蜜臀久久99精品久久宅男| 日日爽夜夜爽网站| 亚洲av不卡在线观看| 成人亚洲精品一区在线观看| 9色porny在线观看| 亚洲第一av免费看| .国产精品久久| xxx大片免费视频| 自线自在国产av| 久久这里有精品视频免费| 日韩中字成人| 人人妻人人添人人爽欧美一区卜| 中文字幕av电影在线播放| 日本91视频免费播放| 亚洲av欧美aⅴ国产| 校园人妻丝袜中文字幕| 日本黄色片子视频| 在线观看人妻少妇| 久久精品国产亚洲网站| 亚洲丝袜综合中文字幕| a级毛片在线看网站| 亚洲美女视频黄频| 国产精品熟女久久久久浪| 99热6这里只有精品| 亚洲国产日韩一区二区| 97超视频在线观看视频| 美女xxoo啪啪120秒动态图| 天堂俺去俺来也www色官网| 免费av不卡在线播放| 国产成人精品婷婷| 亚洲精品国产av成人精品| a级一级毛片免费在线观看| 免费人妻精品一区二区三区视频| 国模一区二区三区四区视频| 日韩在线高清观看一区二区三区| 欧美精品一区二区大全| 在线观看三级黄色| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| 国产老妇伦熟女老妇高清| 国产在线男女| 菩萨蛮人人尽说江南好唐韦庄| 成年av动漫网址| av免费观看日本| 免费黄色在线免费观看| av.在线天堂| 日韩欧美精品免费久久| 亚洲av二区三区四区| 国产免费视频播放在线视频| 亚洲无线观看免费| 国产日韩一区二区三区精品不卡 | 黑人高潮一二区| 中文字幕免费在线视频6| 国产精品成人在线| 久久久久国产精品人妻一区二区| av网站免费在线观看视频| 简卡轻食公司| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 伦理电影大哥的女人| 美女xxoo啪啪120秒动态图| 久久久久久久亚洲中文字幕| av专区在线播放| 日韩强制内射视频| av在线老鸭窝| 亚洲av成人精品一二三区| 亚洲精品国产av蜜桃| 观看av在线不卡| 国产无遮挡羞羞视频在线观看| 亚洲精品视频女| 免费在线观看成人毛片| 亚洲精品亚洲一区二区| av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版| 日韩欧美精品免费久久| 五月开心婷婷网| 伦理电影免费视频| 大又大粗又爽又黄少妇毛片口| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人看| 在线亚洲精品国产二区图片欧美 | 亚洲激情五月婷婷啪啪| 国产精品一区www在线观看| 免费大片黄手机在线观看| 久久午夜综合久久蜜桃| 国产精品国产av在线观看| 色哟哟·www| 80岁老熟妇乱子伦牲交| 2018国产大陆天天弄谢| 男女无遮挡免费网站观看| 草草在线视频免费看| 亚洲精品国产av蜜桃| 3wmmmm亚洲av在线观看| 18禁动态无遮挡网站| 国产欧美日韩综合在线一区二区 | 少妇裸体淫交视频免费看高清| 2021少妇久久久久久久久久久| 你懂的网址亚洲精品在线观看| 下体分泌物呈黄色| 亚洲精品日韩在线中文字幕| 五月天丁香电影| 欧美xxⅹ黑人| 国产在视频线精品| 成人免费观看视频高清| videossex国产| 日本-黄色视频高清免费观看| 我要看黄色一级片免费的| 欧美三级亚洲精品| 精品久久久精品久久久| av有码第一页| 嫩草影院新地址| 人妻制服诱惑在线中文字幕| a级毛片免费高清观看在线播放| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片 | 黑人巨大精品欧美一区二区蜜桃 | 国产日韩欧美亚洲二区| 精品午夜福利在线看| 少妇的逼水好多| 成人国产av品久久久| 国产成人91sexporn| 亚洲精品一区蜜桃| 日韩av免费高清视频| 特大巨黑吊av在线直播| 免费人妻精品一区二区三区视频| 中文字幕亚洲精品专区| 精品国产一区二区久久| 国产精品熟女久久久久浪| 久久久久久久久久久久大奶| 国产日韩欧美视频二区| 男女免费视频国产| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 日韩一区二区三区影片| 我的老师免费观看完整版| 免费观看的影片在线观看| 国产精品一区二区在线观看99| 91精品伊人久久大香线蕉| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线观看99| 激情五月婷婷亚洲| 人人妻人人爽人人添夜夜欢视频 | 亚洲,一卡二卡三卡| 国产欧美日韩精品一区二区| 久久国产乱子免费精品| 免费在线观看成人毛片| 成人国产麻豆网| 亚洲av免费高清在线观看| 欧美xxⅹ黑人| 欧美xxxx性猛交bbbb| 欧美日本中文国产一区发布| 观看美女的网站| 国产精品一区二区三区四区免费观看| 中文字幕精品免费在线观看视频 | 欧美精品高潮呻吟av久久| 免费av中文字幕在线| videos熟女内射| 中文精品一卡2卡3卡4更新| av在线app专区| 亚洲av男天堂| 一个人免费看片子| 日韩三级伦理在线观看| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 欧美区成人在线视频| 男人爽女人下面视频在线观看| 国产毛片在线视频| 国产亚洲最大av| 国产欧美日韩一区二区三区在线 | 一级毛片 在线播放| 日本欧美视频一区| 夫妻午夜视频| kizo精华| 十八禁网站网址无遮挡 | 少妇高潮的动态图| 久久午夜福利片| 亚洲av二区三区四区| 热99国产精品久久久久久7| 日本黄色日本黄色录像| 久久久国产精品麻豆| 日本与韩国留学比较| 高清毛片免费看| 丰满人妻一区二区三区视频av| 久久久国产欧美日韩av| 亚洲精品乱久久久久久| 久久久久久久亚洲中文字幕| 不卡视频在线观看欧美| 丰满乱子伦码专区| 久久久久久久久久成人| videossex国产| 高清黄色对白视频在线免费看 | 一级av片app| 波野结衣二区三区在线| 夜夜骑夜夜射夜夜干| 亚洲av欧美aⅴ国产| 国产乱来视频区| 伊人亚洲综合成人网| 99热这里只有是精品在线观看| 国内少妇人妻偷人精品xxx网站| 男人狂女人下面高潮的视频| 亚洲一级一片aⅴ在线观看| 国产午夜精品一二区理论片| 亚洲婷婷狠狠爱综合网| av网站免费在线观看视频| 国产爽快片一区二区三区| √禁漫天堂资源中文www|