• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Archimedean copula estimation ofdistribution algorithm based on arti fi cialbee colony algorithm

    2015-12-23 10:09:14

    Schoolof Information Science and Engineering,Shandong University,Jinan 250100,China

    1.Introduction

    Archimedean copula estimation ofdistribution algorithm based on arti fi cialbee colony algorithm

    Haidong Xu,Mingyan Jiang*,and Kun Xu

    Schoolof Information Science and Engineering,Shandong University,Jinan 250100,China

    The arti fi cial bee colony(ABC)algorithm is a competitive stochastic population-based optimization algorithm.However,the ABC algorithm does not use the social information and lacks the knowledge of the problem structure,which leads to insuf fi ciency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm(ACEDA) is a relatively simple,time-economic and multivariate correlated EDA.This paper proposes a novelhybrid algorithm based on the ABC algorithm and ACEDA called Archimedean copula estimation of distribution based on the arti fi cial bee colony(ACABC) algorithm.The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help arti fi cial bees to search more ef fi ciently in the search space.Six benchmark functions are introduced to assess the performance of the ACABC algorithm on numericalfunction optimization.Experimentalresults show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm,ACEDA and the globalbest(gbest)-guided ABC(GABC)algorithm in most ofthe experiments.

    arti fi cial bee colony(ABC)algorithm,Archimedean copula estimation of distribution algorithm(ACEDA),ACEDA based on arti fi cialbee colony(ACABC)algorithm,numericalfunction optimization.

    1.Introduction

    Population-based optimization algorithms are biologicalinspired optimization algorithmswhich are capable of fi nding the near-optimal solutions to complicated numerical and real-valued problems.Some classic algorithms such as the genetic algorithm(GA)[1],the estimation of distribution algorithm(EDA)[2]and the arti fi cialbee colony (ABC)algorithm[3]are allpopulation-based optimization algorithms.

    The ABC algorithm was proposed by Karaboga in 2005 [3],which is inspired by the foraging behavior of bees. The ABC algorithm is simple and uses only common control parameters such as the population size and the max cycle number.Experimentalresults on function optimization have shown that the ABC algorithm outperforms,or atleast performs as well as other well known populationbased algorithms like GA,PSO[4,5],etc.

    However,there are still insuf fi ciencies in the ABC algorithm.The population reproduction mechanism of the ABC algorithm reveals that this algorithm does not take advantage of the socialinformation such as the globalbest value ofthe currentswarm,and lacks the knowledge ofthe problem structure when searching for the optimal value, which leads to insuf fi ciency in both convergentspeed and searching precision.Moreover,the solution search equation reveals thatthe ABC algorithm is good atexploration butpoor atexploitation.To conquer this problem,various improved strategies have been proposed.Zhu and Kwong [6]proposed global best(gbest)-guided ABC(GABC)by incorporating the information of the gbest solution into the solution search equation to improve the exploitation. Leietal.[7]proposed an improved ABC algorithm,which introduced an inertialweightto the originalABC iteration equation to balance local and global searching processes. Akay and Karaboga[8]modi fi ed the original ABC algorithm by employing two new solution search strategies,including frequency and magnitude of the perturbation.Gao and Liu[9]improved the ABCalgorithm by combining the mutation scheme of the differentialevolution(DE).Experimental results[6-9]show that these variant ABC algorithms improved the convergent speed and the searching precision to a certain extent.

    Estimation of distribution algorithm(EDA)is an evolutionary algorithm which derives from GA[10],and it combines intelligence computation and the knowledge of statistics.EDA uses the probability modeling technique toguide the generation of new population.Population-based incrementallearning(PBIL)proposed by Baluja[11],the Bayesian optimization algorithm(BOA)proposed by Pelikan[12]are allpopular EDAs.

    The copula theory was introduced into EDA by Fabrizio and Carlo[13].In copula EDA(CEDA),joint distribution of all variables is used to describe the correlation among variables,which can estimate the problem structure in a simple way.Archimedean copula EDA(ACEDA)is an importantbranch in CEDA,and a number of researches have been done in this fi eld[14,15].

    In this paper,we propose a new hybrid algorithm based on the ABC algorithm and the ACEDA,which is called Archimedean copula ABC(ACABC)algorithm.This hybrid algorithmutilizes the ACEDAto estimate the distribution model(thatis,to learn the problem structure)and then uses the information to guide arti fi cialbees to search more ef fi ciently in the search space.This hybrid algorithm combines the advantages of both ABC and ACEDA.On one hand,ACABC keeps learning the problem structure during the searching process by incorporating the ACEDAmechanism,and uses the information to generate new population. This mechanism can guide bees to search directly,which accelerates the convergent speed and improves the exploration ability.On the otherhand,an improved gbest-guided mechanism is introduced into ACABC to improve the exploitation ability.The experimentalresults tested on six numericalbenchmark functions show thatthe ACABC algorithm converges much faster with greater precision compared with the ABC algorithm,ACEDA and the GABC algorithm in mostof the experiments.

    The rest of the paper is organized as follows.Section 2 summarizes the ABC algorithm.Section 3 introduces the basic copula theory and ACEDA.The hybrid ACABC algorithm is described in Section 4 and experimentalsettings and results are given in Section 5.Finally,the conclusion is drawn in Section 6.

    2.ABC algorithm

    As mentioned above,ABC is a swarm intelligence algorithm by simulating the foraging behaviors of the bee swarm.In a natural bee swarm,there are three kinds of bees to search food,the employed bees,the onlookers,and the scouts.The employed bees search food around the food source in their memories,then they share the food information with the onlookers through waggle dancing.Each onlookerbee chooses a food source found by the employed bees,and then further searches around the selected food source.The food source with more nectarhas largerchance to be selected by the onlooker bees than the one with less nectar.The scouts are a few employed bees which abandon their original food sources and randomly search for new ones.

    For an optimization problem in a D-dimensionalspace, the position of a food source represents a potential solution,and the nectar amount of a food source represents the fi tness value of the solution.The number of employed bees or the onlooker bees is equal to the number of food sources,which means one food source is exploited by one employed bee.

    Xi=(xi1,xi2,...,xiD)denotes the i th food source in the population,where D is the dimension of the problem. The exploitation mechanism used by both the employed bees and the onlookers is given as follows:

    where Vi=(vi1,vi2,...,viD)is the new candidate solution generating from the neighborhood of current solution Xi(i=1,2,...,N),N is the population size,Xkis a randomly selected solution in the population(k= 1,2,...,N and k/=i),j=1,2,...,D is a random index, andφijis a uniform random number in the range[-1,1]. Then the greedy selection is operated between Viand Xito retain the better solution.

    When all the employed bees fi nish their neighborhood search according to(1),they share allthe food information with allthe onlookers.Each onlookerselects a food source to do furthersearch according to the probability calculated by(2).

    where f itiis the fi tness value of the i th solution in the population,and piis called the following probability.As shown in(2),piis proportionalto the fi tness value,and the solution with a larger fi tness value has a higher chance to be selected.

    Ifone food source is notupdated overa prede fi ned numberofcycles,which means there is no betterfood source in its neighborhood,this food source is abandoned by the employed bee.The prede fi ned number of cycles is a control parameter called“l(fā)imit”.When the employed bee abandons its food source,it becomes a scout and searches a new food source randomly in the whole searching space according to(3).

    3.ACEDA

    EDA is an evolutionary algorithm derived from GA[16], which combines intelligence computation and the knowl-edge of statistics.EDA retains the selection operator in GA,but replaces the crossover and the mutation operator with the statisticalmodeland the sampling theory.One of the most essentialparts in EDA is to build a proper statisticalmodel.

    The copula theory is a new branch in statistics,which constructs a multivariate joint distribution function with a given marginal distribution function and correlations among all variables.Basic de fi nitions and theorems are given in[16].One essential theorem in the copula theory is the Sklar theorem[16].This theorem expounds the construction method of multivariate jointdistribution by using the copula function and marginaldistribution functions.In the copula theory,the multivariate joint distribution function is constructed based on the essential Sklar theorem.

    Copula functions mainly includes elliptic functions[17] and Archimedean copula functions[18].De fi nitions of the Archimedean copula function are given in[19].Two types of Archimedean copula functions Clayton and Gumbelare mainly used in this paper,as is shown in Table 1.

    Table 1 Clayton and Gumbelfunction

    ACEDA is based on EDA and the copula theory,which constructs the statistical model with the Archimedean copula function and the marginaldistribution function based on the Sklar theorem.In this algorithm,the estimation of the statistical model includes copula function estimation and marginal function estimation,then new population is generated by sampling from the copula function. The framework of ACEDA is shown in Fig.1.

    Fig.1 Framework of ACEDA

    In the following,the estimation of the marginal distribution function and the sampling method of the ndimensional Archimedean copula function are fi rst introduced,then the speci fi c processofthe Archimedean copula EDA is listed.

    In the n-dimensional ACEDA,there are mainly two marginaldistribution estimation methods.One is based on the empiricalfunction,and the other is based on the Gaussian probability model.In this paper,the Gaussian probability model is used to estimate the marginal distribution. After selecting the dominantpopulation which consists of S individuals,mean valueμjand standard deviationσjof the j th dimension variable are calculated according to(4) and(5)respectively.The j th Gaussian marginal distribution is denoted as

    The sampling method of the n-dimensional Archimedean copula function is as follows.C denotes the Archimedean copula function,and?represents its generator,while(U1,U2,...,Un)is the random vector which obeys the jointdistribution C.According to the algorithm proposed by Marshall and Olkin in[20],if there is a distribution function F which yields that F(0)=0,and the Laplace transform of F is equalto the inverse function of generator?,thatis to say??1=L?1[F],then the samples (u1,u2,...,un)of(U1,U2,...,Un)can be generated as follows.

    Algorithm 1The sampling method of the ndimensionalArchimedean copula function

    Step 1Generate variable v which obeys the distribution F,v~F=L?1[??1],where L?1[??1]denotes the inverse Laplace transform of??1.

    Step 2Generate independent variables xj~U[0,1], j=1,2,...,n;

    Step 3uj=??1((-ln xj)/v),j=1,2,...,n,then the sample(u1,u2,...,un)which obeys the jointdistribution function C is generated.

    The process of Clayton and Gumbel ACEDA is shown as follows.

    Algorithm 2The Clayton and GumbelACEDA

    Step 1Population initialization.Initialize the population size NP,iterations Cycle,selection ratio s,and mutation ratio c.Randomly generate population size solutions as the initialpopulation,and then calculate the fi tness value of each population.

    Step 2Construct dominantpopulation.Sortthe population in descending order according to the fi tness values; select the top S individuals according to(6)to construct the dominantpopulation.

    Step 3Estimate the marginal Gaussian distribution of each dimension N(μj,σ2j)(j=1,2,...,n),according to (4)and(5).

    Step 4Perform sampling operation on the given copula function to generate L new individuals which obey the jointdistribution.

    Step 4.1The inverse Laplace transform of??1for the Clayton and Gumbel function obeys Gamma distribution and Alpha-stable distribution respectively[21],as is shown in(7)and(8).Generate variable v which subjects to Gamma distribution or Alpha-stable distribution according to(7)or(8).Generate independentvariables vj(j=1,2,...,n),which is uniformly distributed in the range[0,1],and then uj(j=1,2,...,n),for the Clayton or Gumbelfunction which is obtained according to(9)or (10).

    Step 4.2According to(11),generate the k th new individualbased on the combination of the one-dimension Gaussian distribution and the Clayton or Gumbelcopula function value.

    Step 5Constructnew population.The new population consists of the top S individuals from the previous generation,L new individuals which subjectto the jointdistribution and NP-S-L mutated individuals which are randomly generated in the searching space.

    Step 6Judge whetherthe algorithm satis fi es the terminal condition or not.If the terminal condition is reached, the program willstop.Otherwise,return to Step 2.

    4.ACABC algorithm

    In this paper,we propose an improved ABC algorithm by combining ABC with ACEDA to improve the convergent speed and searching precision.The novelhybrid algorithm is ACABC algorithm.

    In the ABC algorithm,the onlookers obtain food information from all employed bees,choose a better food source and then do further search around it.The onlooker mechanism is one of the mostessentialmechanisms in the ABC algorithm.In the ACABC algorithm,we combine the ACEDA with onlookers and propose a modi fi ed onlooker mechanism.After obtaining all the food information,the modi fi ed onlookers select excellentfood sources with a certain ratio,analyze the distribution rule of excellent food sources by estimating the distribution of them. Then these onlookers take the following strategies to update the currentfood sources.Firstly,preserve the excellent food sources selected previously,then predict the location ofnew food sources according to the estimated distribution information,and fi nally replace those poor food sources with these predicted new ones.Thatis to say,the onlookers adjust the searching direction of the whole colony based on the distribution of promising food sources.This modifi ed onlooker mechanism has learning and analyzing ability and enhanced globalperformance,which is a more intelligentonlookermechanism.The implementation fl ow of this modi fi ed onlooker mechanism is shown as follows.

    Algorithm 3Modi fi ed onlookermechanism

    Step 1Sortthe solutions obtained by employed bees in descending orderbased on the fi tness values,and calculate the following probability ofeach solution according to(2).

    Step 2Set the selection ratio s=0.3,and select the top S solutions according to(6)to constructthe dominant population.

    Step 3Estimate the marginal Gaussian distribution of each variable according to(4)and(5).

    Step 4After choosing one solution according to the following probability,the onlooker decides the sort order of this solution.If the sort order is less than S,then the neighborhood search mechanism of ABC is operated to generate new candidate solution;otherwise,the new candidate solution is generated based on ACEDA.

    Step 5Calculate the fi tness value of new solutions, choose a better solution between the new candidate solution and the old one based on the greedy criterion to constructthe new population.

    On the basis of the modi fi ed onlooker mechanism,two more improved strategies are proposed to enhance the adaptability and the exploitation.

    4.1 Dynamicaladjustment of the searching strategyThe modi fi ed onlooker mechanism shown above includes two searching strategies.According to the selection ratio s=0.3,the top 30%individuals are updated by the neighborhood search strategy while the rest 70%are updated based on ACEDA.However,as the iteration goes on,an increasing number of individuals are approaching the global best solution and the ratio of excellent individuals is getting larger.As a result,a growing number of individuals can notbe updated by ACEDA,which leads to the searching inef fi ciency.To improve this situation,an adaptive selection ratio is introduced,as is shown in(12).

    where iter denotes the currentiteration number,and Cycle is the maximaliteration number.The initialvalue is set as 0.3,and the selection ratio grows linearly as the iteration increases.The numberof selected individuals in each iteration is calculated according to(13),which indicates that more individuals are updated by the neighborhood searching mechanism while fewer of them are updated by copula EDA.In a word,the searching strategies are adjusted dynamically by introducing the adaptive parameter to improve the search ef fi ciency.

    4.2 Improved gbest-guided neighborhood search mechanism

    Inspired by the gbest-guided mechanism in[6],the neighborhood search equation is modi fi ed to improve the exploitation of the algorithm,as is shown in(14).

    where the third term is a new added term,and yjis the j th element of the current global best solution.As it is in(15),a new adaptive parameter w is introduced to adjust the neighborhood search strategy dynamically.w decreases linearly as the iteration goes on,which means that the generation ofthe new candidate solution is increasingly dependenton the globalbestvalue,while the in fl uence ofthe current solution xijis weakened progressively.The new candidate solution is driven towards the global best solution in this way to improve the exploitation.

    The process of the ACABC algorithm is shown as follows.

    Algorithm 4Archimedean copula estimation of distribution by the ABC algorithm

    Step 1Parameterinitialization.Initialize the population size NP,iterations Cycle,trial,limit,selection ratio s, and the parameterθused in ACEDA.

    Step 2Population initialization.Randomly generate NP solution X={Xi|i=1,2,...,NP}as the initial population,calculate the fi tness value of each population, set triali=0 for each solution Xiand then initialize the gbestsolution.

    Step 3Employed bee stage.Each employed bee conducts the gbest-guided neighborhood search according to (14)to generate the new candidate solution,calculates the fi tness value,and updates the currentsolution based on the greedy criterion.If Xiis updated as the new candidate solution,set triali=0;otherwise,triali=triali+1.

    Step 4Calculate the following probability according to (2),sort allsolutions in descending order according to fi tness values,compute the numberofexcellentindividuals S according to(12)and(13),and selectthe top S individuals to constructthe dominantpopulation.

    Step 5The onlooker stage.Carry out Step 3-Step 5 in Algorithm 3.

    Step 6Update the globalbestsolution.Selectthe solution with the largest fi tness value as the currentgbestsolution.

    Step 7The scouts stage.Give up the solution Xiwith tiraliexceeding the prede fi ned value limit,randomly generate a new solution in the search space,calculate the fi tness value,and set tirali=0.

    Step 8Judge whetherthe algorithm satis fi es the terminal condition or not.If the terminal condition is reached, outputthe globalbestsolution as the fi naloptimization result.Otherwise,return to Step 3.

    5.Experiments and results

    In this paper,two types of ACABC algorithms,namely the Clayton ACABC algorithm and the Gumbel ACABC algorithm are proposed based on Archimedean Clayton and Gumbel functions.In this part,the performance of the Clayton ACABC algorithm and the Gumbel ACABC algorithm are compared with ABC,GABC,Clayton CEDA and Gumbel CEDA by optimizing benchmark functions.

    5.1 Benchmark functions

    The details of six benchmark functions used in this paper are given in Table 2.

    Table 2 Benchmark functions

    5.2 Optimalparameter selection

    Population size NP and maximaliteration times Cycle are essentialparameters which have a signi fi cantimpacton the performance of all population-based algorithms.The experimental results in[14,15,21]showed that the ACEDA obtains the best performance with large population sizes and few iteration times,while the ABC algorithm requires small population sizes and more iteration times[4-9].As a result,experiments are designed in this partto select the best parameters for the novel hybrid algorithms Clayton ACABC and Gumbel ACABC.

    In this paper,the fi tness evaluation times,namely the productof population and iteration times of differentalgorithms,are equalto each other to evaluate the performance of differentalgorithms fairly.

    The numberof fi tness evaluation is setas 200 000 times, and fi ve different parameter combinations are selected to optimize six benchmark functions respectively.The other parameters used in the algorithms are as follows.The dimension of allfunctions is D=100,for Clayton ACABC the parameter withθ=0.1,while for Gumbel ACABC withθ=1.In differenttestenvironments,each algorithm runs 10 times and computes the mean value as the fi nalresults.Results for Clayton ACABC and Gumbel ACABC are shown in Table 3 and Table 4 respectively.

    Table 3 Optimization results of Clayton ACABC with different population sizes and iterations

    Table 4 Optimization results of Gumbel ACABC with different population sizes and iterations

    As shown in Table 3,data in bold are the best optimization results ofeach function.For Griewank,Rastrigin, Ackley and Rosenbrock,the bestoptimization resultis obtained when the parameters are NP=40,Cycle=5 000, especially for Rastrigin,the optimization result is much betterthan the others.While for Sphere and Schwefel2.22, the best optimization results are obtained when NP= 100,Cycle=2 000.However,we can also observe that the optimization results when NP=40,Cycle=5 000 are nearly the same with the bestones.

    According to the results shown in Table 4,for Griewank, the bestoptimization resultis obtained when NP=100, Cycle=2 000,and when NP=40,Cycle=5 000,the optimization result is very close to the best result.While for the other fi ve functions,the best optimization results are allobtained when NP=40,Cycle=5 000.

    Based on the results shown in Table 3 and Table 4,we can draw the conclusion thatboth the Clayton ACABC algorithm and the Gumbel ACABC algorithm can get the best performance when NP=40,Cycle=5 000.Thus in the following experiments,the population size is 40 and the iteration times is 5 000 for the Clayton ACABC algorithm and the GumbelACABC algorithm.

    5.3 Performance comparison of different algorithmsIn this part,six algorithms including ABC,GABC,Clayton CEDA,Gumbel CEDA,Clayton ACABC and Gumbel ACABC are used to optimize six benchmark functions respectively,and the performance on search accuracy and the convergentspeed of the six algorithms are compared.

    The numberof fi tness evaluation is setas 200 000 times. In ABC,GABC,Clayton ACABC and Gumbel ACABC, NP=40 and Cycle=5 000,while for Clayton CEDA and Gumbel CEDA,NP=100 and Cycle=2 000.The other parameters are setas follows.D=100,limit=50, θ=0.1 in Clayton ACABC andθ=1 in Gumbel ACABC.Each algorithm run 30 times and the mean value is calculated as the fi nal results.Experimental results are shown in Table 5.

    Table 5 Simulation results achieved by different algorithms

    As the results shown in Table 5,allof the six algorithms can optimize successfully on Sphere,Griewank,Ackley and Schwefel 2.22,and both Clayton ACABC and GumbelACABCcan obtain optimization results with higheraccuracy compared with the other four algorithms.The optimization results on Rastrigin indicate that only Clayton ACABC and Gumbel ACABC can optimize successfully with high precision,while ABC,GABC,Clayton CEDA and Gumbel CEDA cannot optimize Rastrigin successfully.However,the results on Rosenbrock show that all algorithms cannot achieve satisfying optimization results, and ABC and GABC outperform the CEDA and ACABC algorithms.

    According to the optimization results,we can obtain the conclusion that both Clayton ACABC and Gumbel ACABC can optimize mostof the test functions with high precision and outperform ABC,GABC,Clayton CEDA, and Gumbel CEDA.

    In orderto evaluate the convergentspeed ofthe proposed ACABC algorithms,the convergence curves of fi ve functions except Rosenbrock are drawn in Figs.2-6 respectively.It can be observed that Clayton ACABC and Gumbel ACABC accelerate the search speed and improve the convergentspeed signi fi cantly.

    According to the experimental results in this part,we can draw the conclusion that Clayton ACABC and Gumbel ACABC can speed up the convergent speed with greater precision for mosttestfunctions.The novelhybridACABC algorithms outperform the ABC algorithms and ACEDA.

    Fig.2 Convergence curve on Sphere(Sphere with dim=100)

    Fig.3 Convergence curve on Griewank(Griewank with dim=100)

    Fig.4 Convergence curve on Rastrigin(Rastrigin with dim=100)

    Fig.5 Convergence curve on Ackley(Ackley with dim=100)

    Fig.6 Convergence curve on Schwefel 2.22(Schwefel 2.22 with dim=100)

    6.Conclusions

    In this paper,we propose a novelhybrid algorithm called ACABC algorithm.The ABC algorithm is a biologicalinspired optimization algorithm with a random search process.In order to improve the search ef fi ciency,we introduce ACEDA into the onlooker stage and propose a more intelligent onlooker mechanism.In the modi fi ed mechanism,onlookers fi rst sort all solutions obtained by employed bees in descending order according to the fi tness values,select excellent individuals to construct dominant population,then constructa probability distribution model based on ACEDA,and sample based on the estimated distribution to generate new individuals.The updating strategy ensures that the new population obeys the distribution ofthe dominantpopulation.In addition,we modify the neighborhood search strategy with the gbestvalue by guiding the operatorand the adaptive parameter to improve the exploitation of the algorithm.Experimental results show thatthe ACABCalgorithm speeds up the convergentspeedwith greater precision for most test functions.In conclusion,the novelhybrid ACABC algorithms outperform the ABC algorithms and ACEDA.

    [1]K.S.Tang,K.F.Man,S.Kwong,etal.Genetic algorithms and their applications.IEEE Signal Processing Magazine,1996, 13(6):22-37.

    [2]S.Baluja.Population-based incremental learning:a method for integrating genetic search based function optimization and competitive learning.Pittsburgh:Carnegie Mellon University, 1994.

    [3]D.Karaboga.An idea based on honey bee swarm fornumerical optimization.Technical report-tr06.Kayseri:Erciyes University,2005.

    [4]D.Karaboga,B.Basturk.On the performance of arti fi cialbee colony(ABC)algorithm.Applied Soft Computing,2008,8(1): 687-697.

    [5]D.Karaboga,B.Akay.A comparative study of arti fi cial bee colony algorithm.Applied Mathematics and Computation, 2009,214(1):108-132.

    [6]G.Zhu,S.Kwong.Gbest-guided arti fi cial bee colony algorithm for numericalfunction optimization.Applied Mathematics and Computation,2010,217(7):3166-3173.

    [7]X.Lei,X.Huang,A.Zhang.Improved arti fi cial bee colony algorithm and its application in data clustering.Proc.of the 5th IEEE International Conference on Bio-Inspired Computing:Theories and Applications(BIC-TA),2010:514-521.

    [8]B.Akay,D.Karaboga.A modi fi ed arti fi cial bee colony algorithm for real-parameter optimization.Information Sciences, 2012,192(1):120-142.

    [9]W.Gao,S.Liu.Improved arti fi cial bee colony algorithm for global optimization.Information Processing Letters,2011, 111(17):871-882.

    [10]H.Muhlenbein,G.PaaB.From combination ofgenes to the estimation of distribution:binary parameters.Proc.of the Conference on Lecture Notes in Computer Science 1411,Parallel Problem Solving from Nature-PPSN IV,H.M.Voigt(eds.). 1996:178-187.

    [11]S.Baluja.Population-based incremental learning:a method for integrating genetic search based on function optimization and competitive learning.Pittsburgh:Carnegie Mellon University,1994.

    [12]M.Pelikan,D.E.Goldberg,E.Cantu-paz.BOA:the Bayesian optimization algorithm.Proc.ofthe Conference on the Genetic and Evolutionary Computation,1999:525-532.

    [13]F.Durante,C.Sempi.Copula theory:an introduction.Copula Theory and Its Applications,2010(198):3-31.

    [14]L.F.Wang,J.C.Zeng,Y.Hong.Estimation of distribution algorithm based on archimedean copulas.Proc.of the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation,2009:993-996.

    [15]Y.Gao.Multivariate estimation of distribution algorithm with laplace transform archimedean copula.Proc.of the International Conference on Information Engineering and Computer Science,2009:1-5.

    [16]R.B.Nelsen.An introduction to copulas.2nd ed.New York: Springer,2006

    [17]D.Y.Li,L.Peng.Goodness-of-fi ttestfortailcopulas modeled by ellipticalcopulas.Statistics and Probability Letters,2009, 79(8):1097-1104.

    [18]M.Denuit,O.Purcaruff,I.Van Keilegorni.Bivariate Archimedean copula models for censored data in non-life insurance.Brussel:Universit′e catholique de Louvain,2006.

    [19]M.R.F.Mendez,R.Landa.An EDA based on Bayesian networks constructed with Archimedean copulas.Proc.ofthe 4th World Congress on Nature and Biologically Inspired Computing(NaBIC),2012:188-193.

    [20]A.W.Marshall,I.Olkin.Families of multivariate distributions.Journal of the American Statistical Association,1988, 83(403):834-841.

    [21]L.F.Wang.The research on estimation of distribution algorithm based on copula theory.Lanzhou:Lanzhou University of Technology,2011:37-50.

    Biographies

    Haidong Xu was born in 1990.She received her B.S.degree from Shandong University in June, 2012 in communication engineering and now she is an M.Sc.student in the same University.Her main research area includes arti fi cial intelligence and computing intelligence,arti fi cial neural network,swarm intelligence algorithms and mathematicalstatistics.

    E-mail:xu-hai-dong1990@163.com

    Mingyan Jiang was born in 1964.He received his M.S.degree from Shandong University in 1992 and his Ph.D.degree in 2005.He fi nished his postdoctoral research in Spain(CTTC)in communication signaland system in 2007.Now he is a fullprofessor and a doctoral supervisor in the School of Information Science and Engineering in Shandong University,China.His research interests include softcomputing,signal and image processing,computer network,arti fi cial intelligence and data mining.He has published more than 200 professional papers and 6 books.

    E-mail:jiangmingyan@sdu.edu.cn

    Kun Xu was born in 1988.He received his B.S. degree from Shandong Normal University in June, 2011 in electronic information engineering and now is an M.Sc.student in Shandong University.His main research interests include machine learning, parallel computation,optimization and arti fi cial intelligence.

    E-mail:xukun sdu@163.com

    10.1109/JSEE.2015.00045

    Manuscriptreceived on March 19,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61201370),the Special Funding Project for Independent Innovation Achievement Transform of Shandong Province (2012CX30202)and the Natural Science Foundation of Shandong Province(ZR2014FM039).

    男人操女人黄网站| 天堂8中文在线网| 亚洲天堂av无毛| 18禁国产床啪视频网站| 色在线成人网| 69av精品久久久久久 | 久久久久国内视频| av在线播放免费不卡| 女人高潮潮喷娇喘18禁视频| 欧美精品av麻豆av| 丝袜美腿诱惑在线| 国产精品国产av在线观看| videos熟女内射| 日本五十路高清| 狂野欧美激情性xxxx| 国产视频一区二区在线看| 嫁个100分男人电影在线观看| 亚洲中文av在线| 亚洲av美国av| 欧美国产精品va在线观看不卡| 精品一区二区三区四区五区乱码| 欧美精品高潮呻吟av久久| 国产精品亚洲一级av第二区| 无限看片的www在线观看| 99久久99久久久精品蜜桃| 国产精品免费大片| 日韩中文字幕视频在线看片| 国产av一区二区精品久久| 美女高潮到喷水免费观看| 深夜精品福利| 亚洲专区国产一区二区| 久久精品国产99精品国产亚洲性色 | 黄色成人免费大全| 国产黄色免费在线视频| 伊人久久大香线蕉亚洲五| 中文亚洲av片在线观看爽 | 成人手机av| 日本欧美视频一区| 亚洲熟女毛片儿| 在线观看舔阴道视频| 色尼玛亚洲综合影院| 亚洲人成电影免费在线| 免费看十八禁软件| 亚洲全国av大片| 咕卡用的链子| 成年人黄色毛片网站| 老汉色av国产亚洲站长工具| 亚洲成人免费电影在线观看| 一级毛片女人18水好多| 99热网站在线观看| 精品免费久久久久久久清纯 | 久久久久久久国产电影| 亚洲专区字幕在线| 午夜久久久在线观看| 国产在线免费精品| 亚洲欧美色中文字幕在线| 亚洲色图av天堂| 国产成+人综合+亚洲专区| 在线看a的网站| 热re99久久国产66热| 黄色片一级片一级黄色片| 两性夫妻黄色片| 亚洲av第一区精品v没综合| 国产淫语在线视频| 欧美av亚洲av综合av国产av| 欧美精品高潮呻吟av久久| 啦啦啦免费观看视频1| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 欧美大码av| 一进一出抽搐动态| 女人精品久久久久毛片| 18禁裸乳无遮挡动漫免费视频| 一区二区日韩欧美中文字幕| 无限看片的www在线观看| 黄色丝袜av网址大全| 日本一区二区免费在线视频| av网站在线播放免费| 国产成人精品久久二区二区91| 午夜视频精品福利| 高潮久久久久久久久久久不卡| www.精华液| 少妇裸体淫交视频免费看高清 | 美女国产高潮福利片在线看| 日本av手机在线免费观看| 久久精品国产亚洲av高清一级| 新久久久久国产一级毛片| 精品一区二区三区视频在线观看免费 | 亚洲精品美女久久久久99蜜臀| 免费看a级黄色片| 激情视频va一区二区三区| 一区二区三区乱码不卡18| 久久人妻av系列| 国产午夜精品久久久久久| 91av网站免费观看| 满18在线观看网站| 亚洲 国产 在线| 色老头精品视频在线观看| 黄色怎么调成土黄色| 午夜两性在线视频| 国产在线观看jvid| 两个人看的免费小视频| 国产有黄有色有爽视频| 国产亚洲精品第一综合不卡| 精品卡一卡二卡四卡免费| 亚洲 国产 在线| 国产深夜福利视频在线观看| 久久精品熟女亚洲av麻豆精品| 十八禁高潮呻吟视频| 国产欧美日韩一区二区三| 91麻豆精品激情在线观看国产 | 少妇被粗大的猛进出69影院| 国产欧美日韩精品亚洲av| 一夜夜www| 中文欧美无线码| 极品人妻少妇av视频| 高清av免费在线| 精品少妇内射三级| 欧美日韩精品网址| 三上悠亚av全集在线观看| 日韩成人在线观看一区二区三区| 黄片小视频在线播放| 国产精品 国内视频| 久久久欧美国产精品| 亚洲精品久久午夜乱码| 亚洲国产欧美日韩在线播放| svipshipincom国产片| 亚洲欧洲精品一区二区精品久久久| 麻豆国产av国片精品| 热99re8久久精品国产| 精品高清国产在线一区| 免费在线观看视频国产中文字幕亚洲| 久久精品亚洲熟妇少妇任你| 一二三四在线观看免费中文在| 中文亚洲av片在线观看爽 | 久久久国产欧美日韩av| av线在线观看网站| 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线黄色| 深夜精品福利| 大陆偷拍与自拍| 夜夜爽天天搞| 99香蕉大伊视频| 夜夜夜夜夜久久久久| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 国产精品久久久久成人av| 久久国产精品影院| 久久久久久久大尺度免费视频| 伊人久久大香线蕉亚洲五| 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 午夜福利免费观看在线| 欧美在线一区亚洲| 亚洲一码二码三码区别大吗| 久久九九热精品免费| 91av网站免费观看| 久久av网站| 久久久久久久大尺度免费视频| 午夜免费成人在线视频| 在线永久观看黄色视频| 久久精品人人爽人人爽视色| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久欧美国产精品| 亚洲成人手机| 国产精品成人在线| 亚洲精品一二三| 下体分泌物呈黄色| 777米奇影视久久| 日韩欧美免费精品| 日韩制服丝袜自拍偷拍| 色视频在线一区二区三区| 亚洲精品自拍成人| 天天躁狠狠躁夜夜躁狠狠躁| 99久久99久久久精品蜜桃| 国产精品美女特级片免费视频播放器 | 麻豆成人av在线观看| 午夜免费鲁丝| 色综合欧美亚洲国产小说| 免费av中文字幕在线| 桃红色精品国产亚洲av| 人妻一区二区av| 丰满饥渴人妻一区二区三| 两个人看的免费小视频| 久久午夜亚洲精品久久| 日本黄色日本黄色录像| 国产精品久久久久久精品古装| 成人18禁在线播放| 精品福利永久在线观看| 午夜福利乱码中文字幕| 下体分泌物呈黄色| 韩国精品一区二区三区| 精品人妻1区二区| 变态另类成人亚洲欧美熟女 | 高清av免费在线| 亚洲国产中文字幕在线视频| 视频区图区小说| 国产精品自产拍在线观看55亚洲 | 五月天丁香电影| 丰满人妻熟妇乱又伦精品不卡| 色精品久久人妻99蜜桃| 蜜桃在线观看..| 成人特级黄色片久久久久久久 | 美女福利国产在线| 一区二区av电影网| 精品久久久久久久毛片微露脸| 女人高潮潮喷娇喘18禁视频| 女人爽到高潮嗷嗷叫在线视频| 国产单亲对白刺激| 母亲3免费完整高清在线观看| h视频一区二区三区| 黄色成人免费大全| 欧美久久黑人一区二区| 亚洲色图 男人天堂 中文字幕| 久久中文看片网| 动漫黄色视频在线观看| 欧美成人午夜精品| 女人高潮潮喷娇喘18禁视频| 美国免费a级毛片| 91字幕亚洲| 美女高潮喷水抽搐中文字幕| 免费观看av网站的网址| 久久精品成人免费网站| 亚洲人成伊人成综合网2020| 最近最新中文字幕大全免费视频| 日本vs欧美在线观看视频| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 久久人妻福利社区极品人妻图片| 国产精品秋霞免费鲁丝片| 丁香六月欧美| 国产深夜福利视频在线观看| 国产精品久久久人人做人人爽| 满18在线观看网站| 一区在线观看完整版| 午夜福利视频精品| 下体分泌物呈黄色| 他把我摸到了高潮在线观看 | 桃花免费在线播放| 亚洲专区字幕在线| 午夜福利欧美成人| 国产伦人伦偷精品视频| 一本色道久久久久久精品综合| 香蕉久久夜色| 欧美 日韩 精品 国产| 亚洲中文av在线| av福利片在线| 日日夜夜操网爽| 老司机靠b影院| 亚洲熟妇熟女久久| 一区二区三区精品91| 国产熟女午夜一区二区三区| 视频区图区小说| tube8黄色片| 亚洲精品久久午夜乱码| 国产单亲对白刺激| 免费人妻精品一区二区三区视频| 成人亚洲精品一区在线观看| 日本欧美视频一区| 久久久久久免费高清国产稀缺| 午夜91福利影院| www.熟女人妻精品国产| 黄色视频,在线免费观看| 好男人电影高清在线观看| 九色亚洲精品在线播放| 9色porny在线观看| 久久久久视频综合| 后天国语完整版免费观看| 国产亚洲精品久久久久5区| 人人妻人人爽人人添夜夜欢视频| 乱人伦中国视频| 亚洲五月色婷婷综合| 国产在视频线精品| 亚洲精品久久午夜乱码| 欧美另类亚洲清纯唯美| 黄色片一级片一级黄色片| 国产精品久久久久久人妻精品电影 | 老熟女久久久| 亚洲欧美日韩另类电影网站| 男男h啪啪无遮挡| 久久ye,这里只有精品| 免费不卡黄色视频| 大香蕉久久成人网| 99国产精品一区二区蜜桃av | 极品少妇高潮喷水抽搐| 亚洲熟女毛片儿| 一本久久精品| 色视频在线一区二区三区| www.精华液| 欧美黄色淫秽网站| 国产欧美日韩综合在线一区二区| 久久久久久久久久久久大奶| 免费高清在线观看日韩| 一本一本久久a久久精品综合妖精| 无遮挡黄片免费观看| 老司机靠b影院| 国产精品亚洲一级av第二区| 一本综合久久免费| 成人精品一区二区免费| 淫妇啪啪啪对白视频| 大片电影免费在线观看免费| 日本wwww免费看| 欧美精品一区二区免费开放| 国产成人精品久久二区二区91| 大陆偷拍与自拍| 亚洲中文av在线| 亚洲精品美女久久久久99蜜臀| 久热这里只有精品99| 精品亚洲乱码少妇综合久久| 日韩免费高清中文字幕av| 国产精品电影一区二区三区 | 99精品欧美一区二区三区四区| 欧美精品高潮呻吟av久久| 超碰97精品在线观看| 国产激情久久老熟女| 在线看a的网站| 五月开心婷婷网| 欧美黑人欧美精品刺激| 80岁老熟妇乱子伦牲交| 无遮挡黄片免费观看| 久久精品国产a三级三级三级| 精品一区二区三区视频在线观看免费 | 99香蕉大伊视频| 久久国产亚洲av麻豆专区| 少妇精品久久久久久久| 黄色视频,在线免费观看| 男人操女人黄网站| 91麻豆av在线| 日日夜夜操网爽| 久久国产精品影院| 亚洲第一av免费看| 久久毛片免费看一区二区三区| 午夜免费成人在线视频| 国产男靠女视频免费网站| 国产野战对白在线观看| 免费黄频网站在线观看国产| 久久 成人 亚洲| 女人精品久久久久毛片| 国产精品久久久久成人av| 亚洲人成电影观看| 性色av乱码一区二区三区2| 久久久水蜜桃国产精品网| 国产主播在线观看一区二区| 久久精品aⅴ一区二区三区四区| 精品亚洲成国产av| 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| 国产精品久久久久久精品古装| 妹子高潮喷水视频| 国产无遮挡羞羞视频在线观看| 亚洲欧美激情在线| 在线观看www视频免费| 999精品在线视频| 国产高清视频在线播放一区| 日韩免费av在线播放| 韩国精品一区二区三区| 丁香六月天网| 午夜视频精品福利| 日韩欧美国产一区二区入口| 日本五十路高清| 亚洲第一av免费看| 国产高清激情床上av| 国产高清激情床上av| a级片在线免费高清观看视频| 黄片小视频在线播放| 人妻一区二区av| 十八禁网站免费在线| 日韩熟女老妇一区二区性免费视频| 国产精品.久久久| 国产有黄有色有爽视频| 交换朋友夫妻互换小说| 最新的欧美精品一区二区| 日韩大码丰满熟妇| 国产精品一区二区在线不卡| 夜夜爽天天搞| 啪啪无遮挡十八禁网站| 视频在线观看一区二区三区| 欧美精品一区二区大全| 在线观看免费日韩欧美大片| 亚洲人成电影免费在线| 成人国产av品久久久| 女警被强在线播放| 女人精品久久久久毛片| 美女扒开内裤让男人捅视频| 国产一区二区 视频在线| 一级毛片女人18水好多| 王馨瑶露胸无遮挡在线观看| 久久精品亚洲精品国产色婷小说| 欧美日韩精品网址| 成年人午夜在线观看视频| 在线观看免费视频日本深夜| 婷婷成人精品国产| 国产在线一区二区三区精| 十八禁高潮呻吟视频| 久久狼人影院| 日韩欧美三级三区| 亚洲av电影在线进入| 国产伦人伦偷精品视频| 汤姆久久久久久久影院中文字幕| 一进一出抽搐动态| 精品欧美一区二区三区在线| 国产一区二区 视频在线| 夫妻午夜视频| 亚洲欧洲精品一区二区精品久久久| 丁香六月欧美| 精品国产国语对白av| 亚洲三区欧美一区| www.999成人在线观看| 精品午夜福利视频在线观看一区 | 18禁裸乳无遮挡动漫免费视频| 精品福利观看| 一二三四在线观看免费中文在| 国产高清视频在线播放一区| 精品久久久久久久毛片微露脸| 国产片内射在线| 午夜福利视频在线观看免费| 99精品久久久久人妻精品| 日日爽夜夜爽网站| 啪啪无遮挡十八禁网站| 亚洲精品av麻豆狂野| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| 久久精品国产a三级三级三级| 99riav亚洲国产免费| 窝窝影院91人妻| 在线观看免费视频网站a站| 久久精品国产99精品国产亚洲性色 | 欧美黄色片欧美黄色片| 久久天躁狠狠躁夜夜2o2o| 欧美黄色片欧美黄色片| 国产日韩欧美亚洲二区| a级片在线免费高清观看视频| 91av网站免费观看| 青草久久国产| 成年女人毛片免费观看观看9 | 成人国产一区最新在线观看| 精品视频人人做人人爽| 成人手机av| 黄色视频在线播放观看不卡| 久久久久久人人人人人| 丁香欧美五月| 亚洲精品国产精品久久久不卡| 人成视频在线观看免费观看| 天天躁夜夜躁狠狠躁躁| av一本久久久久| 午夜精品国产一区二区电影| 欧美老熟妇乱子伦牲交| 久久亚洲真实| 一本—道久久a久久精品蜜桃钙片| 丁香六月欧美| 国产精品久久久久久精品古装| 80岁老熟妇乱子伦牲交| 亚洲七黄色美女视频| 一进一出抽搐动态| 日本av手机在线免费观看| 黄色视频在线播放观看不卡| 免费黄频网站在线观看国产| 亚洲精品久久成人aⅴ小说| 久久亚洲精品不卡| 免费少妇av软件| 在线观看一区二区三区激情| 亚洲精品在线观看二区| 97在线人人人人妻| 99国产综合亚洲精品| 极品人妻少妇av视频| 亚洲成人手机| 飞空精品影院首页| av欧美777| 亚洲国产看品久久| 人人妻人人爽人人添夜夜欢视频| 亚洲久久久国产精品| 亚洲一码二码三码区别大吗| 日本撒尿小便嘘嘘汇集6| 精品第一国产精品| 亚洲精品av麻豆狂野| 在线观看舔阴道视频| 女人爽到高潮嗷嗷叫在线视频| 国产高清国产精品国产三级| 中文字幕人妻熟女乱码| 国产一区二区在线观看av| 99久久精品国产亚洲精品| 国产区一区二久久| 成年女人毛片免费观看观看9 | 黑人巨大精品欧美一区二区mp4| 国产成人系列免费观看| 久久人妻福利社区极品人妻图片| 精品久久久久久电影网| 精品一区二区三区av网在线观看 | 亚洲国产成人一精品久久久| 黄片小视频在线播放| 高清毛片免费观看视频网站 | 狂野欧美激情性xxxx| 久久精品国产综合久久久| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人爽人人夜夜| 国产成人av教育| 少妇猛男粗大的猛烈进出视频| 午夜视频精品福利| 女人久久www免费人成看片| 日本一区二区免费在线视频| 国产1区2区3区精品| av欧美777| 欧美在线一区亚洲| 高清av免费在线| 老熟妇乱子伦视频在线观看| 一区福利在线观看| 啪啪无遮挡十八禁网站| 成人18禁在线播放| 国产日韩欧美视频二区| 亚洲成人国产一区在线观看| 青草久久国产| 啦啦啦视频在线资源免费观看| 18禁观看日本| 90打野战视频偷拍视频| 最新在线观看一区二区三区| 国产精品熟女久久久久浪| av欧美777| 一区二区三区精品91| 脱女人内裤的视频| 丝瓜视频免费看黄片| 国产av精品麻豆| 久久久久国产一级毛片高清牌| 亚洲va日本ⅴa欧美va伊人久久| 在线观看一区二区三区激情| 交换朋友夫妻互换小说| 最新美女视频免费是黄的| 成人av一区二区三区在线看| 国产精品.久久久| 成人国语在线视频| 一边摸一边抽搐一进一出视频| 国产高清激情床上av| 欧美乱妇无乱码| 久久国产亚洲av麻豆专区| 久久久国产欧美日韩av| 国产精品一区二区在线观看99| 少妇的丰满在线观看| 成年版毛片免费区| 国产精品免费一区二区三区在线 | 中文字幕av电影在线播放| 免费看a级黄色片| 一级片免费观看大全| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品一区二区精品视频观看| 久久精品国产亚洲av香蕉五月 | 欧美老熟妇乱子伦牲交| 女警被强在线播放| 757午夜福利合集在线观看| 亚洲第一青青草原| 国产成人精品无人区| 国产精品 欧美亚洲| 免费在线观看影片大全网站| 俄罗斯特黄特色一大片| av一本久久久久| 大型黄色视频在线免费观看| 黑丝袜美女国产一区| 欧美成人免费av一区二区三区 | 在线观看免费视频网站a站| 黑丝袜美女国产一区| av福利片在线| 色视频在线一区二区三区| 又紧又爽又黄一区二区| 99国产极品粉嫩在线观看| 欧美激情 高清一区二区三区| cao死你这个sao货| 中文字幕色久视频| 国产成人精品久久二区二区免费| 亚洲精品国产区一区二| 精品国产一区二区三区四区第35| 国产免费现黄频在线看| tocl精华| 久久热在线av| 欧美精品亚洲一区二区| 少妇精品久久久久久久| 男女之事视频高清在线观看| 成人国语在线视频| 91九色精品人成在线观看| 亚洲精品在线观看二区| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 大型黄色视频在线免费观看| 视频在线观看一区二区三区| 国精品久久久久久国模美| 国产野战对白在线观看| 最新的欧美精品一区二区| 精品第一国产精品| 国产亚洲精品第一综合不卡| 大型av网站在线播放| 国产精品电影一区二区三区 | 黑人猛操日本美女一级片| 12—13女人毛片做爰片一| 免费女性裸体啪啪无遮挡网站| 黄色丝袜av网址大全| 久久人人97超碰香蕉20202| 男女免费视频国产| 国产精品电影一区二区三区 | 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| a级毛片在线看网站| 王馨瑶露胸无遮挡在线观看| 精品人妻在线不人妻| 国产麻豆69| 一级a爱视频在线免费观看| 亚洲视频免费观看视频| 国产麻豆69| 亚洲三区欧美一区| 国内毛片毛片毛片毛片毛片| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 嫁个100分男人电影在线观看| 91九色精品人成在线观看| avwww免费| aaaaa片日本免费| netflix在线观看网站| 1024香蕉在线观看| 亚洲国产欧美在线一区|