• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modi fi ed super twisting controller for servicing to uncontrolled spacecraft

    2015-12-23 10:09:05

    Research Center of Satellite Technology,Harbin Institute of Technology,Harbin 150080,China

    Modi fi ed super twisting controller for servicing to uncontrolled spacecraft

    Binglong Chen and YunhaiGeng*

    Research Center of Satellite Technology,Harbin Institute of Technology,Harbin 150080,China

    A relative position and attitude coupled sliding mode controller is proposed by combining the standard super twisting (ST)controland basic linearalgorithm forautonomous rendezvous and docking.Itis schemed for on-orbitservicing to a tumbling noncooperative target spacecraft subjected to external disturbances. A coupled dynamic modelis established including both kinematical and dynamic coupled effect of relative rotation on relative translation,which illustrates the relative movement between the docking port located in target spacecraft and another in service spacecraft.The modi fi ed super twisting(MST)control algorithm containing linear compensation items is schemed to manipulate the relative position and attitude synchronously.The correction provides more robustness and convergence velocity for dealing with linearly growing perturbations than the ST control algorithm. Moreover,the stability characteristic ofclosed-loop system is analyzed by Lyapunov method.Numerical simulations are adopted to verify the analysis with the comparison between MST and ST control algorithms.Simulation results demonstrate that the proposed MST controller is characterized by high precision,strong robustness and fast convergence velocity to attenuate the linearly increasing perturbations.

    autonomous rendezvous and docking,coupled dynamic model,modi fi ed super twisting,Lyapunov method.

    1.Introduction

    The ability to perform routine autonomousrendezvous and docking(ARD)is needed in future space missions including assembly of internationalspace station(ISS),autonomous deployment,manipulation and repair[1].The collision probability increases with the decreasing distance between two spacecraft,especially docking with a tumbling non-cooperative targetspacecraft[2,3].Therefore,it is important to establish the full dynamics for ARD and controllers are designed to guarantee the reliability and success rate.Numbers of control strategies have been adopted for either orbital maneuvering or attitude tracking,such as adaptive control[4,5],optimal control[6,7] and sliding modelcontrol[8,9].

    In prophase researches,models for relative translation and relative rotation are established separately,which restrictdevelopments ofits applications.Pan and Kapila[10] addressed a nonlineartracking controlproblem with adaptive feedback control to deal with unknown mass and inertia matrix of spacecraft.They took into accountthe dynamic coupled effectcaused by the gravity gradienttorque on relative translation and the globalasymptoticalstability of tracking errors is proved by the Lyapunov framework. However,the relative translation model is on the basis of point-mass model and the controller is proposed for the open-loop system.Shay and Pinisolved the errors resulted from the point-mass modelin distributed spacecraftformation fl ying[11],and developed a kinematicalcoupled relative translation modelbetween any arbitrary feature points on spacecraft.They consider the kinematical coupled effectofrelative rotation on relative translation derived from relative angular velocity,but they neglect the kinematic coupled effect caused by absolute angular velocity of the leader spacecraft and another effect introduced by disturbances.Environmental disturbance torque is inevitable existence,and therefore we consider both kinematicaland dynamical coupled effects of relative rotation on relative translation.

    As is known to all,sliding mode control(SMC)is used widely because ofthe fi nite time convergence property and robustness for system uncertainties.Its capability to suppress disturbances is independent of dynamic model instead ofmodeling with uncertain states as the system function in robustcontrol[12,13].However,the standard SMC is based on 1-sliding mode[14]and itinduces controlchattering phenomenon caused by high frequency switching of control.Therefore,high order sliding mode(HOSM)technique is invented to eliminate the chattering phenomenon [15]by acting on the higher order time derivatives of thesystem deviation from the constraint.Consequently,there are increasing information demands in implementation of HOSMand the arbitrary order sliding mode controllaw is mostly stilltheoretically studied.However,2-sliding mode (SOSM)algorithms,such as twisting and super twisting, have already been used successfully in realproblems[16]. Super twisting sliding mode(ST)is one of widely used SOSM control algorithms[17,18],which can suppress bounded disturbances and does notneed to use the derivative ofthe switching function.In contrastto the linearalgorithm,the main disadvantage of SOSM algorithm is thatit cannotendure the linearly growing perturbation.However, the linear algorithm is not able to support strong disturbance near the equilibrium point,which is one of advantages of the SOSMalgorithm[19].

    Inspired by the aforementioned issues,a modi fi ed super twisting sliding mode(MST)controlalgorithm is proposed by adding linear correction terms to the basic ST to obtain both excellent properties of them.It is applied in this study to design a relative position and attitude coupled SOSMcontroller.We take accountof the bounded linearly increasing perturbations,the limited disturbance torques, modeluncertainties and the actuatoroutputsaturation.The paper is organized as follows.In Section 2,a coupled dynamic model is established between the docking port located in targetspacecraftwith respectto anotherin service spacecraft including both kinematical and dynamic coupled effects of relative rotation on relative translation[20]. In Section 3,ST and MST are schemed to generate control operation ofservice spacecraftformaking ARDwith target spacecraftand the second method of Lyapunov is used to analyze the stability characteristic of the closed-loop system.In Section 4,numericalsimulations are performed to verify the performance of MST by comparing with basic ST method for ARD withoutcollision.Finally,the conclusions are represented in Section 5.

    2.Coupled dynamic relative model

    A coupled relative motion model is derived from the traditional point-mass model for relative motion between center-of-masses(CMs)of the target spacecraft and the service spacecraft.We take into consideration the kinematical coupled effect caused by relative attitude angular velocity,relative attitude quaternion and absolute attitude angular velocity of the service spacecraftand the dynamic coupled effectderived from externaldisturbance torques.

    2.1 Coordinate systems

    We de fi ne some coordinate systems to illustrate the relative motion between the two docking ports,so that the origins of coupled effects are distinct.The usefulcoordinate systems are shown in Fig.1.

    Fig.1 Coordinate systems

    The earth-centered inertial coordinate system(Fi): OXiYiZiis fi xed in an inertial space.It is a right-handed system with the origin atthe earth center O.Xiaxis points the vernal equinox direction,Ziaxis is along the North Pole and Yiaxis completes the setup to yield a Cartesian righthand system.

    Euler-Hillreference frame(Fo):OsXoYoZois fi xed to the CM of the service spacecraft with the origin Os.Xoaxis is directing from the radially outward,Zoaxis is normal to the orbital plane,Yoaxis is pointing to the velocity direction of the service spacecraft in the orbital plane and perpendicular with OsXo.This frame is used to describe the attitude of the service spacecraftand the relative motion of the targetspacecraft with respect to the service spacecraft.

    Orbit coordinate system of the target spacecraft(Ft): OtXtYtZtis fi xed to the CMof the targetspacecraftwith the origin Ot.Ztaxis is pointing to the earth center O,Ytaxis is along the opposite direction of orbit angular rate and Xtis along the velocity direction of the target spacecraftcompleting a righthand system.This frame is used to describe the attitude of the targetspacecraft.

    Body coordinate system(Fb):It is a Cartesian righthand reference frame fi xed on the spacecraftand originates atthe spacecraft’s CM.The body coordinate systems ofthe service spacecraftand the targetspacecraftare denoted Fbsand Fbtrespectively.Itis assumed that Fbsand Fbtcoincide with Foand Ftseparately atthe initialtime.

    Therefore,euler angles and attitude angular velocities of the service spacecraft and the target spacecraft are defi ned respectively by relative rotationalmotion of Fbwith respectto Foand Ft.Then de fi nition of absolute attitude angular velocities,severally noted byωbsandωbt,are rotational velocity of Fbsand Fbtrelative to Fi.Similarly, relative angular velocityωris rotational velocity of Fbtwith respectto Fbs.Therefor,ωrcan be expressed as

    Then,the attitude can be parameterized by quaternion:

    where =[q1,q2,q3]is the vector part and q4is thescalar part.It is subjected to the constraint that=1.qsand qtare denotations for attitude of the service spacecraftand the targetspacecraft.qrdenotes relative quaternion of Fbtwith respect to Fbs.Then,the rotation matrix can be expressed as

    where[·×]denotes the cross productmatrix.

    2.2 Relative rotation

    Let a be an arbitrary vector measured with respect to the origin of Fiand˙a|Fdenotes time derivative of a measured in the reference frame F and(a)Fis the expression in F. According to(1),ωbtcan be rewritten in Fbtas follows:

    Due to the angularmomentum theorem,the time derivative of(4)can be rewritten as

    where J is the inertia matrix and T consists of controltorque Tc,gravity gradient torque Tgand disturbance torque Tdas follows:

    whereω?is the magnitude of the orbit angular velocity, μis the earth gravitationalconstant,r is the magnitude of the radius vector from the CM of spacecraftto the earth’s center and Z0is the unit radius vector of r.Then,time derivative of the quaternion kinematical equation can be expressed as

    Then the relative rotational model can be obtained by substituting(5)into(6).Express the vectorpartand itprovides us with the following expression:

    and components of?2can be limited by

    where i=1,2,3;λmax(·)is the maximum eigenvalue of a matrix and max(·)represents the maximum elementofa vector.

    2.3 Relative translation

    Consider two docking ports located in the target spacecraftand the service spacecraftseparately,as illustrated in Fig.2.denotes a vectordirected from the origin of Fbtto the docking portandis directed from the origin of Fbsto the docking portBy observing,we can obtain the relative position vectorρijas

    where rt,rsare CM position vectors of the target spacecraft and the service spacecraft respectively.Then the second-order derivative ofρijwith respect to time in Focan be calculated as

    whereω?is the orbitalangular velocity,ascis the control acceleration ofthe service spacecraft,asd=(1+kdt)asd0, atd=(1+kdt)atd0where kdis the increasing rate.

    Fig.2 Relative translation of docking ports

    Moreover,the relative translational model can be expressed as

    where

    3.Controllaw design

    where i=x,y,z.

    Let us de fi ne the desired control objective xd=,the state error e=x-xdand˙e=˙x-˙xd.

    The controlgoalis to enforce the sliding mode on the manifold s=˙e+λe.

    3.1 Standard ST design

    According to the inequalities(9)and(13),we can suppose that the i th component ofδis bounded by positive constants expressingThus,the ST controlleris designed as follows:

    where Mj(j=1,2)is the main diagonalmatrix with diagonal elements Mji>0.The function sign(s)1/2is defi ned as follows:

    Therefore,the system can converge to zero in fi nite time when the inequalities are satis fi ed.

    3.2 MST controller design

    In this section,MST is designed based on standard ST algorithm and basic linear algorithm.These modi fi cation allows the controlsystem to have both exponentialand fi nite time convergence properties.According to the components of?,itcan be divided into two parts as follows:

    and they are assumed to be bounded by some positive constantsδji(j=1,2,...,4)as follows:

    whereδ1i=|ζ1i|max,δ2i=|ζ2i|max,δ3i>0,δ4i>0; x1iis the i th componentof switching function x1de fi ned in the following section.The proposed MST controller is designed as follows:

    and Kj(j=1,...,4)is the main diagonal matrix with kji>0 as the diagonalelements.

    Let us de fi ne vector x=[x1,x2]where x1=s,Thus the dynamic functions of the closed-loop system can be expressed as

    In what follows,the proof of fi nite time convergence to equilibrium point in MST law is given by the second method of Lyapunov.

    3.3 MST stability analysis

    The Lyapunov function forsystem(21)is de fi ned with perturbations as follows:

    Note that Viis continuous but it is not differentiable at x1i=0 and it is positive de fi nite and radially unbounded if kji>0.

    whereλmin(P)andλmax(P)denote the minimum and maximum eigenvalues of the matrix P.Then the derivative of Viwith respectto time can be expressed as

    can be established if x1ix2i>0,where

    Thus,(24)can be rewritten as˙Vi

    Then(24)can be rewritten as

    Thus,we can deriveV˙<0 if kjiare appropriately chosen to make the matrices Qjibe positive de fi nite.Under this condition,system(22)is the globalasymptotic stability and has fi nite time convergence property.When Q1iis positive de fi nite,the every sequentialprincipalminorof Q1ihas a positive determinant.It can be represented by the formula as follows:

    Thus we can getthe following solutions

    Itis noted thatthe fi rstand second orderprincipalminor determinants of Q3iare the same as Q1i’s.Thus we only need to guarantee the determinant of Q3iis positive.It is noticeable that|Q3i|>0 can be consequentially satis fi ed as long as|Q1i|>0.

    Next,we calculate the conditions to make sure that Q2iis positive de fi nite.By using the same method mentioned above,we getthe following conditions

    Therefore,the solutions can be expressed as

    Finally,we note thatthe fi rstand second order principal minor determinants of Q4iare the same as Q2i.Then we need only to guarantee|Q4i|>0 is satis fi ed.By the same method above,we get

    As mentioned above,the matrices Qji(j= 1,...,4;i=1,...,6)are positive de fi nite when(26),(28) and(29)are satis fi ed.Thus the origin x=012×1is an equilibrium point that is strongly globally asymptotically stable.

    According to(23),we can obtain

    whereλmin(Qji)is represented as the minimum eigenvalue of Qji.Consequently,derivative of Viwith respect to time can be rewritten as

    Since the solution of differentialequation

    is given as follows:

    Thus we can obtain that Viconverges to zero in fi nite time and reaches zero atmostafter max(Tfi)units oftime.

    4.Simulation results

    4.1 Parameters initialization

    The classical orbit elements of the target spacecraft and the service spacecraft are listed in Table 1.ωtb(ωsb)denotes the angular velocity of Fbt(Fbs)with respect to Ft(Fo).The initialization values of them are separately ωsb0=03×1(?)/s andωtb0=[-3.0 2.0 3.0](?)/s.The mass characteristics are in Table 2.The numerical simulations are performed with linearly increasing disturbance accelerations of atd=(1+kdt)[2.5 4.0 3.8]T×10?5m/s2and asd=(1+kdt)[2.0 4.2 3.8]T×10?5m/s2.

    Table 1 Classicalorbit elements

    Table 2 Mass characteristics ofthe service spacecraftand the target spacecraft

    The docking port vectors on the service spacecraft and the targetspacecraftare expressed in respective body coordinate systems as follows:

    The control parameters of standard ST and MST algorithms are designed separatelyBipropellantorbitand attitude controlengines are chosen to operate relative position and attitude maneuverssynchronously.Outputlimitations oforbitand attitude control engines are amax=0.2 m/s2and Tmax=0.8 N·m.The control object is xd=˙xd=06×1.In simulations,measurements ofrelative position,relative velocity and relative attitude angular velocity are assumed to be given by state estimator and so measure errors are ignored.

    4.2 Results

    When kd=0,the relative translation of docking port P0t

    with respectto P0sis shown in Fig.3.Through comparing the two sliding mode control methods,illustrations show that the convergence time is approximate 30 s in MST while the standard ST needs more than 35 s to converge. The relative translationalcontrolaccuracy of the two controllers are both calculated with data from 65 s to 100 s. The controlaccuracies are expressed as errors in 3σ(σis the standard deviation).The relative position errors and relative velocity errors are listed in Table 3.As a result,the relative position errors are less than 2.4×10?6m(3σ)and relative velocity errors are less than 5.4×10?4m/s(3σ) in MST technique.By contrast,we can easily conclude that the MST algorithm has almost the same control effects withoutdisturbances butMST has fasterconvergence time than ST method.

    Fig.3 Relative translation of docking ports in Fbs

    Table 3 Relative translation errors in 3σ

    Meanwhile,the relative rotation of the targetspacecraft with respect to the service spacecraftare shown in Fig.4. The control errors of relative attitude angles and relative angular velocity are listed in Table 4 by the same method as previously.Thusthe relative attitude angle errorsare less than 4.6×10?6(?)(3σ)and relative angularvelocity errors are less than 5.1×10?4(?)/s(3σ)in MST algorithm.It is shown clearly again thatthe controlaccuracies of MST are higher than ST.

    The relative distance between CMs ofthe service spacecraft and the target spacecraft and that of the two docking ports are illustrated in Fig.5 by designed MST and ST algorithms respectively.The symbol|ρij|indicates relative distance of docking port

    and distance between permanentCMs of the targetspacecraftand the service spacecraftis denoted by|ρ00|.The controlerrors of relative distance between the two docking ports are 2.038×10?6m(3σ)by MST method and 2.098×10?6m (3σ)in ST controller.It shows visibly that the MST controller has distinctadvantages in terms ofless convergence time and higher control precision than the basic ST algorithm.

    Table 4 Relative rotation errors in 3σ

    Fig.4 Relative rotation of T with respect to the service spacecraft

    Fig.5 Relative distance of docking ports

    Furthermore,the control forces and torques outputted by the orbitand attitude controlengines with saturation limits in MST and ST are illustrated in Fig.6.Meanwhile, the sliding surfaces are described in Fig.7,where Sx,Syand Szare relative position sliding surface components; Sq1,Sq2and Sq3are vector components of the relative quaternion.They presentobviously again thatthe convergence time with MST algorithm is less than thatused in ST method.

    In order to verify the robustness of MST for linearly increasing disturbances,we increase kdseveral times and the control accuracies of relative translation are listed in Table 5 by comparison with ST controllerin the same other simulation conditions and the same precision calculation method.Simulation results indicate obviously thatthe proposed MST algorithm has stronger robustness for linearly increasing perturbations than ST method and the previous analytic analysis can be proofed accordingly.

    Then we increase the inertia matrix by±15%to verify the robustness of MST for modeling uncertainty and inertial matrix parameters uncertainties.Emulation programs are performed again with kd=1.0 and the same other parameters as before and the control accuracies are shown in Table 6.The results show that the proximity operation can be performed with almost the same magnitude of precision as the previous simulation.The analysis of control accuracy can be obtained as follows.The precision of relative position is 3.983×10?6m(3σ),relative velocity accuracy is 5.354×10?4m/s(3σ)and control error of relative distance between two docking ports is 4.088×10?6m (3σ).Moreover,the accuracy of relative attitude angle is 9.790×10?6(?)(3σ)and the relative angular velocity erroris less than 8.6×10?4(?)/s(3σ).As a consequence,the strong robustness and high reliability of MST are demonstrated,which can guaranty the ARD process is collisionsfree.

    Fig.6 Actuators outputs in Fbs

    Fig.7 Sliding surfaces

    Table 5 Controlprecisions in 3σof relative translation under linearly increasing disturbances

    Table 6 Controlaccuracy with modeluncertainties in 3σ

    5.Conclusions

    In this paper,a coupled relative motion model was established for the docking port located in target spacecraft and another in service spacecraft with the coupled effects of relative rotation on relative translation.The considered coupling effects belong to both kinematical and dynamic coupled effects.On the basis of this dynamic model,a modi fi ed super twisting sliding mode controller with linear correction terms was proposed to operate the relative position and attitude synchronously for on-orbit servicing to a tumbling non-cooperative target spacecraft subjected to some disturbances.Furthermore,by using the second method of Lyapunov,the fi nite time convergence property of the closed-loop system was proved.Numerical simulations were presented to validate the previous analysis by contrast with the standard super twisting algorithm.Simulation results illustrated that the revised super twisting controllerhas highercontrolprecision,strongerrobustness and faster convergence velocity for linearly increasing perturbations and mode uncertainties than the basic one.

    [1]A.Flores-Abad,O.Ma,K.Pham,et al.A review of space robotics technologies for on-orbit servicing.Progress in Aerospace Sciences,2014,68:1-26.

    [2]K.Miller,J.Masciarelli,R.Rohrschneider.Advances in multimission autonomous rendezvous and docking and relative navigation capabilities.Proc.of the IEEE Aerospace Conference,2012:1-9.

    [3]S.D’Amico,J.S.Ardaens,G.Gaias,et al.Noncooperative rendezvous using angles-only optical navigation:system design and fl ightresults.Journal of Guidance,Control,and Dynamics,2013,36(6):1576-1595.

    [4]V.I.Utkin,A.S.Poznyak.Adaptive sliding mode control with application to super-twist algorithm:equivalent control method.Automatica,2013,49(1):39-47.

    [5]X.G.Dong,X.B.Cao,J.X.Zhang,et al.A robust adaptive control law for satellite formation fl ying.Acta Automatica Sinica,2013,39(2):132-141.

    [6]D.W.Gao,J.J.Luo,W.H.Ma,etal.Nonlinearoptimalcontrolof spacecraft approaching and tracking a non-cooperative maneuvering object.Journal of Astronautics,2013,34(6): 773-781.

    [7]X.Y.Gao,K.L.Teo,G.R.Duan.An optimal control approach to robust control of nonlinear spacecraft rendezvous system withθ-D technique.International Journal Innovative Computing,Information and Control,2013,9(5):2099-2110.

    [8]C.Pukdeboon.Finite-time second-order sliding mode controllers for spacecraft attitude tracking.Mathematical Problems in Engineering,2013,Article ID 930269.

    [9]S.Janardhanan,M.Un Nabi,P.M.Tiwari.Attitude control ofmagnetic actuated spacecraftusing super-twisting algorithm with nonlinear sliding surface.Proc.of the 12th International Workshop on Variable Structure Systems,2012:46-51.

    [10]H.Z.Pan,V.Kapila.Adaptive nonlinear control for spacecraft formation fl ying with coupled translational and attitude dynamics.Proc.ofthe IEEE Conference on Decision and Control,2001:2057-2062.

    [11]S.Shay,G.Pini.Effect of kinematic rotation-translation coupling on relative spacecraft translationaldynamics.Journal of Guidance,Control,and Dynamics,2009,32(3):1045-1050.

    [12]A.Capua,A.Shapiro,D.Choukroun.Robust nonlinear H∞output-feedback for spacecraft attitude control.Proc.of the AIAA Guidance,Navigation,and Control Conference-SciTech Forum and Exposition,2014:AIAA-0455.

    [13]A.M.Zou,K.D.Kumar.Robust attitude coordination control for spacecraft formation fl ying under actuator failures.Journalof Guidance,Control,and Dynamics,2012,35(4):1247-1255.

    [14]A.Levant.Sliding order and sliding accuracy in sliding mode control.International Journal of Control,1993,58(6):1247-1263.

    [15]W.Perruquetti,J.P.Barbot.Sliding mode control in engineering.New York:Marcel Dekker,2002.

    [16]A.Levant.Principles of 2-sliding mode design.Automatica, 2007,43(4):576-586.

    [17]V.I.Utkin.About second order sliding mode control,relative degree,fi nite-time convergence and disturbance rejection. Proc.ofthe 11th InternationalWorkshop on Variable Structure Systems,2010:528-533.

    [18]C.Pukdeboon.Second-order sliding mode controllers for spacecraftrelative translation.Applied MathematicalSciences, 2012,6(100):4965-4979.

    [19]J.A.Moreno,M.Osorio.A Lyapunov approach to secondorder sliding mode controllers and observers.Proc.of the 47th IEEE Conference on Decision and Control,2008:2856-2861.

    [20]B.L.Chen,Y.H.Geng.Relative motion coupled dynamic modeling between two docking ports.Systems Engineering and Electronics,2014,36(4):714-720.(in Chinese)

    Biographies

    Binglong Chen was born in 1984.He received his B.E.and M.E.degrees in the Schoolof Astronautics,Harbin Institute of Technology,in 2008 and 2010,respectively.He is now a Ph.D.student in the Research Center of Satellite Technology,Harbin Institute of Technology.His research interests are spacecraft navigation and spacecraft attitude and orbitcontrolmethods.

    E-mail:chenbinglonghit@163.com

    Yunhai Geng was born in 1970.He received his B.E.degree in engineering mechanics from Tongji University,M.E.and Ph.D.degrees in spacecraftdesign from Harbin Institute of Technology,in 1992, 1995 and 2003 respectively.Currently,he is a professor and doctoral advisor of spacecraft design, Harbin Institute of Technology.He has published about 60 journal and conference papers.His research interests include spacecraft attitude and orbit control,and spacecraftdynamics navigation guidance and controltechnology.

    E-mail:gengyh@hit.edu.cn

    10.1109/JSEE.2015.00039

    Manuscriptreceived April02,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(61104026).

    日日干狠狠操夜夜爽| 99久久99久久久精品蜜桃| 少妇熟女aⅴ在线视频| 亚洲专区中文字幕在线| 国产精品免费一区二区三区在线| 欧美xxxx黑人xx丫x性爽| 久久久国产成人精品二区| 99精品在免费线老司机午夜| 成年女人看的毛片在线观看| 他把我摸到了高潮在线观看| 久久久久九九精品影院| 天堂网av新在线| 精品不卡国产一区二区三区| 热99在线观看视频| 国产精品 国内视频| 蜜桃亚洲精品一区二区三区| 国产亚洲精品av在线| 久久久久久九九精品二区国产| 日韩欧美三级三区| 毛片女人毛片| 黄色视频,在线免费观看| 久久香蕉国产精品| 欧美日韩福利视频一区二区| 人妻丰满熟妇av一区二区三区| 国产老妇女一区| 一区福利在线观看| 日韩高清综合在线| 99热这里只有是精品50| 亚洲精品在线美女| 变态另类丝袜制服| 国产中年淑女户外野战色| 久久人妻av系列| av天堂中文字幕网| 岛国视频午夜一区免费看| a在线观看视频网站| svipshipincom国产片| 久久精品亚洲精品国产色婷小说| 日本熟妇午夜| 亚洲色图av天堂| 伊人久久大香线蕉亚洲五| 草草在线视频免费看| 一二三四社区在线视频社区8| 欧美一区二区亚洲| 国产亚洲精品久久久com| 久久精品国产99精品国产亚洲性色| 婷婷丁香在线五月| 校园春色视频在线观看| 在线播放无遮挡| 国产极品精品免费视频能看的| 美女免费视频网站| 国产精品一及| АⅤ资源中文在线天堂| 亚洲av日韩精品久久久久久密| 国产精品精品国产色婷婷| 国产精品自产拍在线观看55亚洲| 国产黄色小视频在线观看| 丝袜美腿在线中文| 精品一区二区三区视频在线 | 日本熟妇午夜| 久久久久久人人人人人| 国产精品香港三级国产av潘金莲| 久久久精品欧美日韩精品| 性色avwww在线观看| 国产97色在线日韩免费| 亚洲在线自拍视频| 日本熟妇午夜| 人人妻人人澡欧美一区二区| 九九久久精品国产亚洲av麻豆| 有码 亚洲区| 母亲3免费完整高清在线观看| 久99久视频精品免费| 国产高清videossex| 国产熟女xx| 亚洲一区二区三区不卡视频| 中文亚洲av片在线观看爽| 村上凉子中文字幕在线| 99精品欧美一区二区三区四区| 男女床上黄色一级片免费看| 国产精品久久久久久精品电影| 老汉色av国产亚洲站长工具| 天天添夜夜摸| 91久久精品国产一区二区成人 | www.www免费av| 精品一区二区三区视频在线 | 在线视频色国产色| 香蕉av资源在线| 精品乱码久久久久久99久播| 国内毛片毛片毛片毛片毛片| 亚洲男人的天堂狠狠| 国产精品国产高清国产av| 午夜福利欧美成人| 18禁裸乳无遮挡免费网站照片| 久久人妻av系列| 国产免费一级a男人的天堂| 女生性感内裤真人,穿戴方法视频| 1024手机看黄色片| 一级毛片高清免费大全| 亚洲真实伦在线观看| 观看美女的网站| 欧美一级毛片孕妇| 九九在线视频观看精品| 噜噜噜噜噜久久久久久91| 国产亚洲欧美98| 老司机深夜福利视频在线观看| 欧美日本亚洲视频在线播放| 亚洲熟妇中文字幕五十中出| 国产精品久久久人人做人人爽| 国产毛片a区久久久久| 亚洲精品在线观看二区| 香蕉av资源在线| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 9191精品国产免费久久| 午夜免费成人在线视频| 少妇裸体淫交视频免费看高清| 欧美色欧美亚洲另类二区| 国产亚洲精品综合一区在线观看| 两个人的视频大全免费| 国产免费av片在线观看野外av| 久久久久久久精品吃奶| 欧美3d第一页| 国产精品久久电影中文字幕| 国产伦一二天堂av在线观看| 欧美又色又爽又黄视频| 亚洲av电影在线进入| 51国产日韩欧美| 久久人妻av系列| 变态另类成人亚洲欧美熟女| 少妇丰满av| 国产精品久久久久久人妻精品电影| av片东京热男人的天堂| 国产精品野战在线观看| 国产精品99久久99久久久不卡| 日韩欧美精品v在线| 国产成人福利小说| 午夜精品久久久久久毛片777| 午夜久久久久精精品| 变态另类成人亚洲欧美熟女| 99久久精品热视频| 欧美黑人巨大hd| 在线看三级毛片| 免费一级毛片在线播放高清视频| 亚洲成人免费电影在线观看| 少妇丰满av| 欧美激情在线99| 色视频www国产| 中文字幕av在线有码专区| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 亚洲美女视频黄频| 少妇的逼好多水| 日日干狠狠操夜夜爽| 亚洲人与动物交配视频| 丰满人妻熟妇乱又伦精品不卡| 午夜视频国产福利| 精品国产超薄肉色丝袜足j| 欧美bdsm另类| 舔av片在线| 日韩亚洲欧美综合| www.熟女人妻精品国产| 老司机深夜福利视频在线观看| 午夜福利18| 男女视频在线观看网站免费| av专区在线播放| 搡老岳熟女国产| 俺也久久电影网| 成人精品一区二区免费| 少妇丰满av| 1024手机看黄色片| 国产乱人伦免费视频| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式 | 禁无遮挡网站| 久久久久国产精品人妻aⅴ院| 亚洲av美国av| xxxwww97欧美| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 亚洲国产精品久久男人天堂| 中文字幕av成人在线电影| 偷拍熟女少妇极品色| 国产视频内射| 一本综合久久免费| 男人舔奶头视频| 91麻豆精品激情在线观看国产| 日本免费a在线| 操出白浆在线播放| 天堂网av新在线| 变态另类成人亚洲欧美熟女| 日韩欧美精品v在线| 国产一区二区三区在线臀色熟女| 成人性生交大片免费视频hd| 亚洲不卡免费看| 日本熟妇午夜| 美女大奶头视频| a级毛片a级免费在线| 国产欧美日韩一区二区精品| 久久久久国产精品人妻aⅴ院| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 可以在线观看毛片的网站| eeuss影院久久| 午夜精品在线福利| 网址你懂的国产日韩在线| 亚洲精品国产精品久久久不卡| 亚洲av电影不卡..在线观看| 亚洲av成人不卡在线观看播放网| 久久亚洲真实| 欧美乱码精品一区二区三区| 色吧在线观看| 亚洲欧美精品综合久久99| 亚洲一区二区三区色噜噜| 性色av乱码一区二区三区2| xxx96com| avwww免费| 国产成人aa在线观看| 99久久九九国产精品国产免费| 十八禁网站免费在线| 国产单亲对白刺激| 嫩草影视91久久| 一边摸一边抽搐一进一小说| 搞女人的毛片| a级毛片a级免费在线| 国产在视频线在精品| 日本五十路高清| 日韩欧美精品免费久久 | 日韩欧美国产一区二区入口| 中亚洲国语对白在线视频| 一区二区三区国产精品乱码| 久久精品国产清高在天天线| 欧美黄色淫秽网站| 老熟妇仑乱视频hdxx| 欧美zozozo另类| av专区在线播放| 久久99热这里只有精品18| 日本撒尿小便嘘嘘汇集6| 精品国产亚洲在线| 亚洲黑人精品在线| 美女被艹到高潮喷水动态| 国产高清激情床上av| 午夜激情福利司机影院| 亚洲人成网站在线播放欧美日韩| 国产高清有码在线观看视频| 好看av亚洲va欧美ⅴa在| 色吧在线观看| 色尼玛亚洲综合影院| 国产精品影院久久| 高清毛片免费观看视频网站| 国产黄片美女视频| 观看美女的网站| 成人一区二区视频在线观看| 黄片小视频在线播放| 久久精品国产99精品国产亚洲性色| 国产高潮美女av| 男女视频在线观看网站免费| www日本在线高清视频| 少妇的逼好多水| 国产av一区在线观看免费| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 午夜免费观看网址| 久久伊人香网站| 亚洲真实伦在线观看| 1024手机看黄色片| 国产极品精品免费视频能看的| 国产精品久久久久久人妻精品电影| 亚洲午夜理论影院| 久久久久久大精品| 夜夜躁狠狠躁天天躁| 色在线成人网| 很黄的视频免费| 国产一区二区三区视频了| 亚洲欧美一区二区三区黑人| 中文资源天堂在线| 国产国拍精品亚洲av在线观看 | 国产野战对白在线观看| 欧美日韩乱码在线| 国产成人啪精品午夜网站| av福利片在线观看| 色综合亚洲欧美另类图片| 青草久久国产| 91在线观看av| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 操出白浆在线播放| 亚洲最大成人中文| 午夜福利欧美成人| 日韩高清综合在线| 法律面前人人平等表现在哪些方面| 亚洲va日本ⅴa欧美va伊人久久| 3wmmmm亚洲av在线观看| 国产三级黄色录像| 老司机午夜十八禁免费视频| 伊人久久精品亚洲午夜| www日本黄色视频网| 日韩av在线大香蕉| 亚洲国产中文字幕在线视频| 婷婷精品国产亚洲av| 88av欧美| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 午夜福利欧美成人| 亚洲精华国产精华精| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 国产精品 欧美亚洲| 美女免费视频网站| xxxwww97欧美| 在线天堂最新版资源| 亚洲无线在线观看| 一进一出抽搐动态| 国产熟女xx| 婷婷六月久久综合丁香| 日韩av在线大香蕉| or卡值多少钱| 欧美一级毛片孕妇| 国产视频一区二区在线看| 国产成人福利小说| 国产成人aa在线观看| 香蕉久久夜色| 日韩欧美一区二区三区在线观看| www.www免费av| 看片在线看免费视频| 久久国产乱子伦精品免费另类| 成人午夜高清在线视频| 黄色丝袜av网址大全| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 可以在线观看毛片的网站| 五月伊人婷婷丁香| 午夜福利视频1000在线观看| 久久精品国产综合久久久| 国产伦精品一区二区三区视频9 | www国产在线视频色| 国产99白浆流出| 免费看美女性在线毛片视频| 国产亚洲精品一区二区www| 综合色av麻豆| 欧美乱码精品一区二区三区| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 超碰av人人做人人爽久久 | 亚洲精品美女久久久久99蜜臀| 观看免费一级毛片| 免费高清视频大片| 精品久久久久久久人妻蜜臀av| 国产欧美日韩精品亚洲av| 最新美女视频免费是黄的| 亚洲精品亚洲一区二区| 综合色av麻豆| 在线国产一区二区在线| 黄片小视频在线播放| 在线免费观看不下载黄p国产 | 亚洲成av人片免费观看| 午夜免费男女啪啪视频观看 | 欧美日韩乱码在线| 天堂影院成人在线观看| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 9191精品国产免费久久| 国产精品一及| 少妇的丰满在线观看| 一区二区三区高清视频在线| 国产精品久久久久久人妻精品电影| a级一级毛片免费在线观看| 国产精品久久久久久精品电影| 两人在一起打扑克的视频| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 一本精品99久久精品77| 亚洲av美国av| 美女被艹到高潮喷水动态| 国产精品三级大全| 欧美乱码精品一区二区三区| 91在线精品国自产拍蜜月 | 午夜精品在线福利| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| 日本五十路高清| 首页视频小说图片口味搜索| 午夜福利欧美成人| 国产高清videossex| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 久久久久久大精品| 老司机深夜福利视频在线观看| 69人妻影院| 成年版毛片免费区| 日本一二三区视频观看| 日韩欧美 国产精品| 亚洲人与动物交配视频| 午夜影院日韩av| 久久精品国产99精品国产亚洲性色| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| 国产高清激情床上av| 国产在视频线在精品| 亚洲av美国av| 成人精品一区二区免费| 国产黄色小视频在线观看| 欧美日韩瑟瑟在线播放| 久久天躁狠狠躁夜夜2o2o| 中文亚洲av片在线观看爽| 久久午夜亚洲精品久久| 久久久久久九九精品二区国产| 在线免费观看不下载黄p国产 | 亚洲专区中文字幕在线| 欧美3d第一页| 婷婷六月久久综合丁香| 天堂网av新在线| 久久精品综合一区二区三区| 又黄又粗又硬又大视频| 国产精品 国内视频| 亚洲中文字幕日韩| 成人性生交大片免费视频hd| 2021天堂中文幕一二区在线观| 老司机午夜福利在线观看视频| 一区福利在线观看| 精品久久久久久久久久免费视频| 亚洲精品国产精品久久久不卡| 亚洲午夜理论影院| 丝袜美腿在线中文| 精品一区二区三区视频在线观看免费| 成人av在线播放网站| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 国产精品香港三级国产av潘金莲| 国产色爽女视频免费观看| 中文字幕人妻丝袜一区二区| 中文字幕av在线有码专区| 日本免费a在线| 一个人看的www免费观看视频| 桃红色精品国产亚洲av| 成人国产一区最新在线观看| 精品午夜福利视频在线观看一区| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| avwww免费| 免费看日本二区| 亚洲片人在线观看| 国产 一区 欧美 日韩| 亚洲精品美女久久久久99蜜臀| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 亚洲va日本ⅴa欧美va伊人久久| 床上黄色一级片| 最新在线观看一区二区三区| 国产视频一区二区在线看| 亚洲专区中文字幕在线| 亚洲五月婷婷丁香| 波野结衣二区三区在线 | 老司机午夜福利在线观看视频| 午夜免费成人在线视频| 日韩有码中文字幕| 动漫黄色视频在线观看| 午夜福利在线观看吧| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 国产亚洲精品综合一区在线观看| АⅤ资源中文在线天堂| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 桃色一区二区三区在线观看| 亚洲精品日韩av片在线观看 | 蜜桃亚洲精品一区二区三区| 又粗又爽又猛毛片免费看| 一本久久中文字幕| av天堂中文字幕网| 丝袜美腿在线中文| 国产探花极品一区二区| 露出奶头的视频| 日日夜夜操网爽| 五月玫瑰六月丁香| 九色国产91popny在线| 久久精品国产亚洲av香蕉五月| 成熟少妇高潮喷水视频| 日韩成人在线观看一区二区三区| 很黄的视频免费| 又粗又爽又猛毛片免费看| 成人性生交大片免费视频hd| 国产乱人视频| 精品99又大又爽又粗少妇毛片 | 婷婷六月久久综合丁香| 国产精品电影一区二区三区| 亚洲七黄色美女视频| 欧美日韩综合久久久久久 | 九九久久精品国产亚洲av麻豆| 色av中文字幕| 色噜噜av男人的天堂激情| 久久精品国产99精品国产亚洲性色| 国产三级中文精品| 亚洲人与动物交配视频| av欧美777| 国产精品亚洲av一区麻豆| 国产精品久久久久久亚洲av鲁大| 婷婷丁香在线五月| 精品国产美女av久久久久小说| av专区在线播放| 国产高清有码在线观看视频| 国内精品美女久久久久久| 美女高潮的动态| 高清日韩中文字幕在线| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看| 麻豆久久精品国产亚洲av| 国产成人欧美在线观看| 欧美黑人欧美精品刺激| 搞女人的毛片| 国产精品嫩草影院av在线观看 | 久久精品亚洲精品国产色婷小说| 嫁个100分男人电影在线观看| 国产三级中文精品| 丰满人妻熟妇乱又伦精品不卡| 色综合站精品国产| 欧美最新免费一区二区三区 | 色av中文字幕| 九色成人免费人妻av| www日本在线高清视频| 久久午夜亚洲精品久久| 搡老岳熟女国产| 午夜精品一区二区三区免费看| 制服丝袜大香蕉在线| 日本黄色视频三级网站网址| 亚洲一区高清亚洲精品| 国产精品免费一区二区三区在线| 亚洲无线观看免费| 性色avwww在线观看| av中文乱码字幕在线| 在线播放国产精品三级| 久久久国产精品麻豆| 波野结衣二区三区在线 | 999久久久精品免费观看国产| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三| 一区二区三区国产精品乱码| 国产精品久久视频播放| 女人高潮潮喷娇喘18禁视频| 最新美女视频免费是黄的| 叶爱在线成人免费视频播放| 全区人妻精品视频| 久久精品国产99精品国产亚洲性色| 亚洲av免费在线观看| 老司机深夜福利视频在线观看| 男人和女人高潮做爰伦理| 18禁黄网站禁片免费观看直播| 中文字幕久久专区| а√天堂www在线а√下载| 女同久久另类99精品国产91| 亚洲欧美激情综合另类| 在线免费观看的www视频| 熟妇人妻久久中文字幕3abv| 国产欧美日韩一区二区精品| avwww免费| 少妇的逼水好多| 一区二区三区免费毛片| 免费看a级黄色片| 国产精品一区二区免费欧美| 亚洲欧美一区二区三区黑人| 老熟妇仑乱视频hdxx| 国产久久久一区二区三区| 中文字幕熟女人妻在线| 亚洲中文字幕日韩| 国产精品久久久久久久久免 | 狠狠狠狠99中文字幕| 欧美一区二区精品小视频在线| 日本三级黄在线观看| 成人特级av手机在线观看| 少妇高潮的动态图| 99热6这里只有精品| 美女黄网站色视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品久久久久久毛片777| 日本 av在线| 在线播放无遮挡| 亚洲成av人片免费观看| 少妇丰满av| 18+在线观看网站| 禁无遮挡网站| 一a级毛片在线观看| 看片在线看免费视频| www.www免费av| 亚洲精品日韩av片在线观看 | 97超视频在线观看视频| 一个人看视频在线观看www免费 | 国产一区在线观看成人免费| 日日夜夜操网爽| 女人十人毛片免费观看3o分钟| 夜夜看夜夜爽夜夜摸| 一级黄片播放器| 久久精品国产自在天天线| 高清在线国产一区| 日本精品一区二区三区蜜桃| 中文字幕高清在线视频| 亚洲七黄色美女视频| 久久香蕉精品热| 日韩有码中文字幕| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| 99热只有精品国产| 午夜日韩欧美国产| 岛国在线免费视频观看| 亚洲中文字幕日韩| 午夜激情欧美在线| 18禁黄网站禁片免费观看直播| 午夜久久久久精精品| 亚洲内射少妇av| 欧美+日韩+精品| 欧美xxxx黑人xx丫x性爽|