• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybridizing grey wolfoptimization with differentialevolution for globaloptimization and testscheduling for3D stacked SoC

    2015-12-23 10:09:01,,3,4

    ,,3,4

    1.Schoolof Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China; 2.Schoolof Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China; 3.Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guilin 541004,China; 4.Guilin University of Aerospace Technology,Guilin 541004,China

    Hybridizing grey wolfoptimization with differentialevolution for globaloptimization and testscheduling for3D stacked SoC

    Aijun Zhu1,ChuanpeiXu2,3,*,ZhiLi1,2,3,4,Jun Wu2,and Zhenbing Liu2

    1.Schoolof Mechano-Electronic Engineering,Xidian University,Xi’an 710071,China; 2.Schoolof Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China; 3.Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guilin 541004,China; 4.Guilin University of Aerospace Technology,Guilin 541004,China

    A new meta-heuristic method is proposed to enhance current meta-heuristic methods for global optimization and test scheduling for three-dimensional(3D)stacked system-on-chip (SoC)by hybridizing grey wolf optimization with differential evolution(HGWO).Because basic grey wolf optimization(GWO)is easy to fallinto stagnation when it carries out the operation of attacking prey,and differentialevolution(DE)is integrated into GWO to update the previous best position of grey wolf Alpha,Beta and Delta,in order to force GWO to jump out of the stagnation with DE’s strong searching ability.The proposed algorithm can accelerate the convergence speed of GWO and improve its performance. Twenty-three well-known benchmark functions and an NP hard problem of test scheduling for 3D SoC are employed to verify the performance ofthe proposed algorithm.Experimentalresults show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.

    meta-heuristic,globaloptimization,NP hard problem.

    1.Introduction

    Global optimization problems(GOPs)are constantly unavoidable in modern science and engineering fi elds.Without loss of generality,a global optimization problem can be formulated as

    where n is the number of decision variables and f(x)is the objective function.R is the real fi eld,x∈Q and Q is an n-dimensionalrectangle in Rnde fi ned by the following equation:

    where l=(l1,...,ln),u=(u1,...,un),li<xi<ui(i=1,...,n)and[l,u]is the feasible region.

    In the last two decades,meta-heuristic optimization methods have become quite popular for solving global optimization problems,such as grey wolf optimization (GWO)[1],genetic algorithm(GA)[2],particle swarm optimization(PSO)[3],differential evolution(DE)[4] and antcolony optimization(ACO)[5].Such optimization methods are also widely used in various engineering fi elds.

    Tomlinson presented a model from the grey wolf(Canis lupus),and the social behavior exhibited by packs of wolves,which was shown at SIGGRAPH 2001.Vonholdt analyzed DNA samples from 555 Northern Rocky Mountain wolves in three recovery areas over the 10-year recovery period(1995-2004)[6].Matthew discussed the effect of sociality and season on grey wolf foraging behavior[7].Vucetich presented an analysis thatincorporated a previously ignored feature of wolf foraging ecology.They showed thatindividuals in large packs do accrue foraging advantages[8].

    However,there are no mathematicalmodels to solve the GOPs in the above literature.

    Mirjaliliproposed a new meta-heuristic called grey wolf optimizer inspired by grey wolves and described a model to solve the GOPs for the fi rst time[1].Experimentalresults demonstrate that the GWO can solve classical engineering design problems,such as tension/compression spring,welded beam and pressure vessel design.The GWO can be adopted in the fi eld of optical engineering,too.Results show that the GWO has excellentperformance,which can be applied to challenging problems withunknown search spaces.

    As we all know,there are three steps as to the main stages of grey wolf hunting:tracking,encircling and attacking the prey[9].Grey wolves launch the behavior of attacking the prey when|A|<1.However,grey wolves search for new prey when|A|>1.A can be formulated as follows:

    where the elements of a are linearly deceased from 2 to 0 over the process of iterations,and r1is a random vector in [0,1].

    We can summarize that the attacking behavior is similar to local search and diverging from the current prey to fi nd a better prey is similar to globalsearch.Therefore,the GWO is likely to fallinto stagnation while grey wolves are attacking the prey,which is a common disadvantage of the localsearch operation.

    In this paper,we propose a new meta-heuristic method to enhance current meta-heuristic methods by hybridizing GWO with DE.Basic GWO is easy to fallinto stagnation when itcarries outthe operation of prey attacking[1].Because of DE’s strong searching ability,DE is integrated into GWOto update the previous bestposition ofgrey wolf Alpha,Beta and Delta,in order to force GWO to jump out of the stagnation.

    The rest of this paper is organized as follows.The basics of GWO is brie fl y introduced in Section 2.The basics of DE is presented in Section 3.The proposed algorithm is introduced in details in Section 4.Twenty-three wellknown benchmark functions are employed to evaluate the proposed algorithm in Section 5.An NP hard problem of test scheduling for 3D stacked SoC is adopted to verify the proposed algorithm in Section 6.Finally,concluding remarks are given in Section 7.

    2.Basics of GWO

    2.1 Socialhierarchy of grey wolves

    The GWO is a stochastic global optimization method inspired by the leadership hierarchy and hunting mechanism of grey wolves in nature[1].

    The leaderin a grey wolves group is called Alpha,which is responsible for making decisions about almost everything including hunting[7].The second level hierarchy in the grey wolves is Beta,which helps Alpha make decisions.Beta is also the best candidate in case of Alpha passing away or getting old.The lowest level is Omega, which plays the role of scapegoat.Omega can satisfy the whole group and maintain the dominantarchitecture ofthe group.The third level is Delta,which must submit to Alpha and Beta.Delta should scoutto protectand guarantee the safety of the group.

    2.2 Hunting behavior and mathematicalmodel

    The social hierarchy of wolves is a special characteristic and group hunting is another particular social behavior. There are three steps as to the main stages of grey wolf hunting[9]:fi rst,they track and approach the prey;second,they run after,encircle and harass the prey;fi nally, they attack the prey.

    Fig.1 Hierarchy of grey wolves

    A mathematicalmodelfor the hunting behavior can be formulated.To model the encircling behavior,the following equations[1]are putforward:

    where t stands for the currentiteration,A and C are coef fi cientvectors,X indicates the position vector of a grey wolf,and Xpindicates the position vectorof the prey.The coef fi cientvectors A and C can be formulated as follows:

    where r2is a random vectorin[0,1].

    Grey wolves fi rst fi nd out the position of the prey,and then encircle it.In fact,the position of the optimalprey is unknown in a search space.For the sake of simulating the hunting behaviorof grey wolves,we suppose thatthe grey wolf Alpha,Beta and Delta are aware ofthe potentialposition ofa prey.So,the fi rstthree bestsolutions gained so far are stored and the other members in the pack mustupdate their positions in the lightof the bestthree solutions.Such behavior can be formulated as follows:

    By decreasing the value of a(t)in a,we mathematically model the grey wolf’s behavior of approaching the prey, and a(t)can be formulated as follows:

    where t is an integer between 0 and Max iter and it is increased by one each time over the course of the iteration; Max iter is the maximum number of the iteration.Therefore,a(t)is linearly deceased from 2 to 0 over the process of iterations.

    Naturally using(5),we fi nd values of A are random values in the interval[-2a,2a].When random values of A are in[-1,1],it means that the next position of the grey wolf must be in any position between its current position and the position of the prey.We force the grey wolf to launch the behavior of attacking the prey by making |A|<1.We can also force the grey wolves to search for a new prey by making|A|>1.Here grey wolves diverge from the prey to fi nd a better prey.

    3.Basics of DE

    DE was fi rst proposed by Storn[4]to solve global optimization.Because DE is simple and powerful,which is a stochastic algorithm with quite few controlparameters,it has been widely used in various engineering fi elds[10-12].

    First,DE begins with a randomly generated population, and then the next generation population is generated by mutation,crossover and selection operations.Each part is introduced as follows.

    3.1 Generation of initialpopulation

    Generally speaking,initial population can be randomly generated for almost all evolutionary algorithms,so we generate a random population atthe beginning of DE.

    3.2 Mutation operation

    DE adopts a typical differential strategy to produce the variation ofan individual.First,three individuals which are notthe same are randomly selected,and then the difference vector of two individuals is zoomed.Finally,the zoomed difference vectoris synthesized with the third individualto achieve the mutation operation as follows:

    where r1/=r2/=r3/=i,g is the generation number,F is the scaling factor,g=0,1,2,...,MaxGen,and MaxGen is the maximum numberof the iteration.

    Such differentialstrategy is widely used,which is called DE/rand/1/bin,because it can remain the diversity of the population.

    3.3 Crossover operation

    The g th generation{X1(g),X2(g),...,Xk(g),..., Xpsize(g)}and its variantare crossed as follows:

    where CR represents the crossover probability,and jrandis a random integer between 1 and d.d is the number of the dimension of the solution(individual).

    3.4 Selection operation

    In DE,the greedy strategy is adopted to select individuals for the nextgeneration as follows:

    4.Proposed algorithm

    The hybridizing GWO with DE(HGWO)is introduced in details in this section.Three groups with the same population size are adopted.In the fi rst step of the algorithm, the three populations are randomly generated in a feasible region using(20).Let POP representa population,which can be de fi ned as below:

    where psize is the population size;k is the serial number

    of individuals,and k=1,2,3,...,psize.Each individual can be expressed as

    where p=1,2,...,d,and k=1,2,3,...,psize.

    In the following step,we sortthe parentpopulation in a non-decreasing order and fi nd the fi rst,the second and the third individuals in the parent population of grey wolves, which are called Alpha,Beta and Delta.

    Over the course of the iteration,we update the position of each individualin the parentpopulation of grey wolves using(13).Then we obtain a mutantpopulation and a child population using(15)and(16),respectively.Next,we update the parent population using(17).After that,we update A,C and a using(5),(6)and(14).Then,to update Parentα,Parentβand Parentδ,we sortthe parent population ofgrey wolves in a non-decreasing order.Once the course of the iteration is over,it returns Parentαand f(Parentα).

    When each individual in the parent population of grey wolves updates its position and violates the boundary constrain,the violating value is changed using the following equation:

    where j=1,2,...,d;i=1,2,...,psize.

    The pseudo code of the HGWO algorithm is demonstrated in Algorithm 1.

    Algorithm 1:HGWO

    InputObjective function f,population size psize,the lower bound of feasible region L={l1,...,ln}and the upper bound of feasible region U={u1,...,un}.

    OutputThe optimal solution and the best objective function value.

    Initialize a parent population of grey wolf Parenti(i=1,2,...,psize)with a random position in a feasible region using(20);

    Initialize a mutant population of grey wolf Mutanti(i=1,2,...,psize)with a random position in a feasible region using(20);

    Initialize a child population of grey wolf Childi(i= 1,2,...,psize)with a random position in a feasible region using(20);

    Initialize crossover probability Pc and scaling factor F; Initialize a,A and C;

    Evaluate f for allindividuals in the parentpopulation; Sortthe parentpopulation in a non-decreasing order,according to the objective function value;

    Parentαis the best individualin the parentpopulation of grey wolves;

    Parentβis the second individualin the parent population of grey wolves;

    Parentδis the third individualin the parentpopulation of grey wolves;

    While(t<MaxGen)

    for each individualin the parentpopulation ofgrey wolves

    Update the position using(13);

    end for

    Obtain a mutant population of grey wolves using (15);

    Obtain a child population of grey wolves using (16);

    for each individual Parentiin a parentpopulation of grey wolves

    if f(Childi)<f(Parenti) Replace Parentiwith Childi

    end if

    end for

    Update A,C and a using(5),(6)and(14);

    Sortthe parentpopulation of grey wolves in a nondecreasing order;

    Update Parentα,Parentβ,Parentδ;

    t=t+1;

    end while

    Return Parentαand f(Parentα).

    5.Results and analysis

    To test the effectiveness of the proposed algorithm,we benchmark the HGWO algorithm in this section on 23 classical and popular benchmark functions used by a lot of researchers[13-18].The 23 benchmark functions can be divided into three groups:unimodal benchmark functions,multimodal benchmark functions and fi xeddimension multimodal benchmark functions.The fi rst group is listed as follows:

    The above benchmark functions f1-f7are unimodal benchmark functions,and their 2D versions are as follows:

    Fig.2 2D versions graph of unimodalbenchmark functions

    The following benchmark functions f8-f13are multimodalbenchmark functions:

    Their 2D versions are as follows:

    Fig.3 2D versions graph of multimodalbenchmark functions

    The following benchmark functions f14-f23are fi xeddimension multimodalbenchmark functions:

    Their 2D versions are as follows:

    Fig.4 2D versions graph of fixed-dimension multimodal benchmark functions

    The HGWO algorithm and other algorithms used for comparison run thirty times on each above benchmark function.The experimentalresults are composed of some statistical parameters,such as average,standard deviation,best and worst.Statistical results are reported in Tables 1-6.

    To test the effectiveness of the proposed algorithm,we setthe same population size and the same maximum number of iterations for allalgorithms.

    The HGWO parameter con fi guration is carried out as follows:ScalingFactor F=0.5;crossover probability Pc=0.2;population size SearchAgents no=30;maximum number of iterations Max iteration=500.

    The GWO parameter con fi guration is carried out as follows:population size SearchAgents no=30;maximum number of iterations Max iteration=500.

    The DE parameter con fi guration is carried out as follows:ScalingFactor F=0.5;crossover probability Pc=0.2; population size SearchAgents no=30;maximum number of iterations Max iteration=500.

    The PSO parameter con fi guration is carried out as follows:population size SearchAgents no=30;maximum number of iterations Max iteration=500;Vmax=6;wMax=0.9;wMin=0.2;c1=2;c2=2.

    Table 1 Experimentalresults(Best,Worst)of unimodalbenchmark functions

    Table 2 Experimental results(Best,Worst)of multimodalbenchmark functions

    Table 3 Experimentalresults(Best,Worst)of fixed-dimension multimodalbenchmark functions

    Table 4 Experimental results(Average,Standard)of unimodalbenchmark functions

    Table 5 Experimental results(Average,Standard)of multimodalbenchmark functions

    Table 6 Experimentalresults(Average,Standard)of fixed-dimension multimodalbenchmark functions

    Every algorithm is run independently thirty times,and the experimentalresults are listed in Tables 1-6.

    5.1 Exploitation discussion

    Table 1 shows the best and worst results of unimodal benchmark functions.According to Table 1,the HGWO is quite competitive and itoutperforms allothers in f1,f2, f3,f4,f7,in the bestand worstresults.Table 4 shows the average and standard deviation results of unimodalbenchmark functions.According to Table 4,the HGWO outperforms all others in f1,f2,f3,f4,f5,f7in the average results.As we all know,unimodal benchmark functions are much fi tted for benchmarking exploitation.Consequently, the results prove the superior performance of the HGWO for exploiting the optimum.

    5.2 Exploration discussion

    Compared with the unimodalbenchmark functions,multimodal benchmark functions have a lot of local optimums with the increasing number of dimensions.Such feature makes them fi tted for the benchmarking exploration performance of an algorithm.On the basis of the results of Table 5 and Table 6,the HGWO can also obtain competitive results on the multimodal benchmark functions.The proposed algorithm outperforms GWO and PSO on the majority of multimodalbenchmark functions.The HGWO obtains quite competitive results compared with DE.Such results prove that the proposed algorithm has advantages in terms of exploration.

    5.3 Avoidance of localminima

    The localminima avoidance of an algorithm can be tested in multimodalbenchmark functions,due to theirvastnumberoflocalminimals.On the basis ofthe results of Table 2, Table 3,Table 5 and Table 6,the proposed algorithm outperforms GWO and PSO on the majority of multimodal benchmark functions.The HGWOoutperforms DE on half of multimodalfunctions.These results prove that the proposed algorithm has a good balance between exploitationand exploration.This superior performance is due to the adaptive value of A and the import of DE for updating Alpha,Beta and Delta.Over the course of iterations,half of them are dedicated to exploitation when|A|is less than 1;the rest half of them are dedicated to exploration when |A|is equalto or more than 1.

    In brief,the above experimental results verify the performance of the proposed algorithm in working out various benchmark functions compared with eminent metaheuristics.In addition,we further observe and study the performance of the proposed algorithm.A well-known NP hard problem in engineering optimization is employed in the following section.

    6.Application of HGWO for test scheduling in 3D SoC with hard dies

    Test scheduling is a well-known NP hard problem in design for testability in SoC[19].With the development of 3Dintegrated circuit,there are more diesstacked in a stack. With the increase of the die number in a stack,the traditionalmethod integerlinearprogramming(ILP)is notsuitable for solving the test scheduling for a stack with more than fi ve dies[19].Therefore,we can use the HGWO to solve this NP hard problem.

    3Dstacked SoC[20]is referred to the creation ofa complete system which is directly stacked and bonded by dieon-die.Through-silicon via(TSV)is used as verticalconnection,as itobtains the highestverticalinterconnectdensity.In order to test the dies and the relative cores,a test access mechanism(TAM)is needed to transport test data to the cores on the dies.In general,we also need a 3DTAM [21-25]to transport test data from the stack input/output porton the bottom.As we design the testarchitecture,we should consider not only minimizing the test length,but also minimizing the numberof TSVused to route 3D TAM and the number of stack testpins.The reason is that every TSV needs area costs and is a possible source of defectin 3D SoC.

    Above all,the test time(test length)lies on the test architecture and the corresponding test schedule with constraints of the number of TSV and test pins used.Here, we only consider 3D SoC with hard dies.The problem of 3D So C with hard dies can be described as:Given a stack with a set of M dies,the total number of test pins Pinmaxusable forthe testand the maximalnumberof TSV (TSVmax),employed globally for 3D TAM design.For each die n∈N,the number of the test pin Pinnused to test the die and the corresponding test length Tnis given. We aim at determining a TAM design and the associated test scheduling for the 3D stack,such that the total test length is minimized,at the same time,the total test pin does not outnumber Pinmaxand the total TSV used does notoutnumber TSVmax.

    To calculate the total test length,we fi rst de fi ne a variable Pij,which equals 1 if die i is tested in parallelwith j, and 0 otherwise.Then,we de fi ne the second variable PLi, which equals 0 if die i is tested in parallelwith any lower die,and 1 otherwise.The totaltest length is the sum of all the maximum testlengths in allthe testsessions which are tested in series.In other words,all the test schedules in a tested session are testin parallel,and differenttestsessions are tested in series.

    The testlength TL can be formulated as follows:

    where the variable Pijequals 1 if die i is tested in parallel with j,and 0 otherwise.The variable PLiequals 0 if die i is tested in parallel with any lower die,and Tjis the test length of die j.

    For each die i,itmustbe in a testsession;therefore,the total test pins in any test session cannot exceed Pinmax. We can formulate itas follows:

    where Pinmaxis the totalnumber of testpins available for testing,the variable Pijequals 1 if die i is tested in parallelwith j,and 0 otherwise.Pinjis the numberof testpins used to testdie j.

    At the same time,the total number of TSV used could notoutnumberthe upperbound TSVmax.We can calculate the numberof TSV used as follows:

    The above formulation can be explained as follows:the number of TSV employed to connect lay i and lay i-1 is the maximalnumberof pins needed by layerator above lay i thattakes the most test pin connections and the sum of dies tested in parallel at or above lay i in the same test session.

    Therefore,the test schedule problem with hard dies can be formulated as follows:

    From ITC’02 SoC test benchmarks,we have crafted benchmarks by hand as the die inside the 3D So C.The SoCs employed are f2126,d695,p22810,p34392 and p93791.The hard dies are shown in Table 7.

    Table 7 Number of test pins and test lengths for hard dies[17]

    There are two SICs.SIC1 is made up of 10 hard dies from top to bottom,which are d695,d695,f2126,f2126, p22810,p22810,p34392,p34392,p93791 and p93791. SIC2 is also made up of 10 hard dies from top to bottom,which are p93791,p93791,p34392,p34392,p22810, p22810,f2126,f2126,d695 and d695.

    In this section,we make the same parameter con fi guration as thatin Section 5.

    Every algorithm is run independently thirty times,and the best results of each algorithm are listed in Table 8 and Table 9.

    Table 8 Experimental results of SIC1

    Table 9 Experimental results of SIC2(N/A means not available)

    From Table 8,we can fi nd that the proposed algorithm can obtain a test length nine times shorter than that obtained from GWO.We can also conclude thatthe proposed algorithmcan obtain a testlength twenty times shorterthan thatobtained from PSO.The results show thatthe proposed algorithm can obtain a test length six times shorter than thatobtained from DE.

    From Table 9,we can fi nd that the proposed algorithm can obtain a test length eight times shorter than that obtained from GWO.We can also conclude thatthe proposed algorithm can obtain a testlength eleven times shorterthan that obtained from PSO.The experimental results show that the proposed algorithm can obtain a test length three times shorter than thatobtained from DE.

    7.Conclusions

    We propose a new meta-heuristic method to enhance current meta-heuristic methods by hybridizing GWO with DE.Considering the problem that the basic GWO is easy to fall into stagnation when it carries out the operation of prey attacking,DE is integrated into GWO to update the previous bestposition of grey wolves Alpha,Beta and Delta,so as to make GWO jump out of the stagnation with DE’s strong searching ability.The proposed algorithm can accelerate GWO’s convergence speed and improve its performance.Twenty-three well-known benchmark functions and one NP hard problem of test scheduling for 3D stacked SoC are adopted to test and verify the excellentperformance of the proposed algorithm.Experimental results show the superior performance of the proposed algorithm for exploiting the optimum and it has advantages in terms of exploration.

    [1]S.Mirjalili,S.M.Mirjalili,A.Lewis.Grey wolf optimizer. Advances in Engineering Software,2014,69(3):46-61.

    [2]E.Bonabeau,M.Dorigo,G.Theraulaz.Swarm intelligence: from natural to artificial systems.New York:Oxford University Press,1999.

    [3]J.Kennedy,R.Eberhart.Particle swarm optimization.Proc.of the IEEE International Conference on Neural Networks,1995: 1942-1948.

    [4]R.Storn,K.Price.Differential evolution--a simple and ef ficientheuristic forglobaloptimization over continuous spaces. Journal ofGlobal Optimization,1997,11(4):341-359.

    [5]M.Dorigo,M.Birattari,T.Stutzle.Ant colony optimization. IEEE Computational Intelligence Magazine,2006,1(4):28-39.

    [6]B.M.Vonholdt,D.R.Stahler,E.E.Bangs.A novel assessmentofpopulation structure and gene fl ow in grey wolf populations ofthe Northern Rocky Mountains ofthe United States. Molecular Ecology,2010,19(20):4412-4427.

    [7]C.M.Matthew,J.A.Vucetich.Effectof sociality and season on gray wolf foraging behavior.Plos One,2011,6(3):1-10.

    [8]J.A.Vucetich,R.O.Peterson,T.A.Waite.Raven scavenging favours group foraging in wolves.Animal Behavior,2004, 67(6):1117-1126.

    [9]C.Muro,R.Escobedo,L.Spector,etal.Wolf-pack(Canis lupus)hunting strategies emerge from simple rules in computational simulations.Behavioral Processes,2011,88(3):192-197.

    [10]R.Storn.System design by constraint adaptation and differential evolution.IEEE Trans.on Evolutionary Computation, 1999,3(1):22-34.

    [11]S.Harish,B.J.Chand,K.V.Arya.Fitness based differential evolution.Memetic Computing,2012,4(4):303-316.

    [12]V.H.Carbajal-G′omez.Optimizing the positive Lyapunov exponent in multi-scroll chaotic oscillators with differential evolution algorithm.Applied Mathematics and Computation, 2013,219(15):8163-8168.

    [13]X.Yao,Y.Liu,G.Lin.Evolutionary programming made faster. IEEE Trans.on Evolutionary Computation,1999,3(2):82-102.

    [14]J.Digalakis,K.Margaritis.On benchmarking functions forgenetic algorithms.International Journal of Computer Mathematics,2001,77(4):481-506.

    [15]M.Gaviano,D.Lera.Test functions with variable attraction regions for global optimization problems.Journal of Global Optimization,1998,13(2):207-233.

    [16]M.Jamil,X.S.Yang.A literature survey of benchmark functions for global optimisation problems.International Journal of Mathematical Modelling and Numerical Optimization, 2013,4(2):150-194.

    [17]S.Mirjalili,A.Lewis.S-shaped versus V-shaped transfer functions for binary particle swarm optimization.Swarm and Evolutionary Computation,2013,9(4):1-14.

    [18]S.Mirjalili,S.M.Mirjalili,X.S.Yang.Binary batalgorithm. Neural Computing and Applications,2014,25(3):663-681.

    [19]B.Noia,K.Chakrabarty.Test-architecture optimization and test scheduling for TSV-based 3-D stacked ICs.IEEE Trans. on Computer-Aided Design ofIntegrated Circuits and Systems, 2011,30(11):1705-1718.

    [20]B.Noia,K.Chakrabarty.Test-wrapper optimization for embedded cores in through-silicon via-based three-dimensional system on chips.IET Computers&Digital Techniques,2011, 5(3):186-197.

    [21]A.J.Zhu,Z.Li,W.C.Zhu,etal.Design of testwrapper scan chain based on differential evolution.Journal of Engineering Science and Technology Review,2013,6(2):10-14.

    [22]E.J.Marinissen,V.Iyengar,K.Chakrabarty.A setof benchmarks for modular testing of SOCs.Proc.of the International Test Conference,2002:519-528.

    [23]X.X.Wu,Y.B.Chen,K.Chakrabarty.Test-access mechanism optimization for core-based three-dimensional SOCs.Microelectronics Journal,2010,41(10):601-615.

    [24]D.L.Lewis,S.Panth,X.Zhao,etal.Designing 3D testwrappers for pre-bond and post-bond test of 3D embedded cores. Proc.ofthe IEEE International Conference on Computer Design:VLSI in Computers and Processors,2011:90-95.

    [25]H.F.Azmadi,Y.T.E.Chua,Y.Tomokazu,et al.RedSOCs: 3D Thermal-safe test scheduling for 3D-stacked SOC.Proc. of the IEEE Asia-Pacific Conference on Circuits and Systems, 2010:264-267.

    Biographies

    Aijun Zhu was born in 1978.He received his B.Eng degree and M.Eng degree from Chengdu University of Technology in 2001 and 2004,respectively.He is a Ph.D.candidate at Xidian University and a lecturer at Guilin University of Electronic Technology.His main research interests are meta-heuristic and integrated circuittesting theory and technology.

    E-mail:zbluebird@guet.edu.cn

    Chuanpei Xu was born in 1968.She received her Ph.D.degree from Xidian University in 2006.She is a professor at Guilin University of Electronic Technology.Hermain research directions are intelligentinstrumentsystem and integrated circuittesting theory and technology.

    E-mail:xcp@guet.edu.cn

    Zhi Li was born in 1965.He received his Ph.D. degree from University of Electronic Science and Technology in 2003.He is a Ph.D.supervisor atXidian University,and a professor at Guilin University of Electronic Technology and Guilin University of Aerospace Technology.His main research direction is intelligent instrumentsystem.

    E-mail:cclizhi@guet.edu.cn

    Jun Wu was born in 1973.He received his Ph.D. degree from Wuhan University in 2004.He is a professor at Guilin University of Electronic Technology.His main research interests are embedded system and FPGA development for parallelimage processing.

    E-mail:wujun93161@hotmail.com

    Zhenbing Liu was born in 1980.He received his Ph.D.degree from Huazhong University of Science and Technology in 2010.He is an associate professor at Guilin University of Electronic Technology. His main research interests include machine learning image processing.

    E-mail:liuzb0618@hotmail.com

    10.1109/JSEE.2015.00037

    Manuscriptreceived April17,2014.

    *Corresponding author.

    This work was supported by the National Natural Science Foundation of China(60766001;61105004),the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ14110),and the Program for Innovative Research Team of Guilin University of Electronic Technology(IRTGUET).

    日本免费a在线| 可以在线观看毛片的网站| 欧美性猛交╳xxx乱大交人| 国产熟女xx| 成年人黄色毛片网站| 午夜福利欧美成人| 国产精品98久久久久久宅男小说| 狂野欧美白嫩少妇大欣赏| 日本 av在线| 尤物成人国产欧美一区二区三区| 淫秽高清视频在线观看| 久久精品人妻少妇| 欧美最黄视频在线播放免费| 日韩高清综合在线| 宅男免费午夜| 精品福利观看| 精品99又大又爽又粗少妇毛片 | 欧美成人免费av一区二区三区| 国产精品日韩av在线免费观看| 欧美精品啪啪一区二区三区| 色视频www国产| 极品教师在线免费播放| 亚洲第一区二区三区不卡| 欧洲精品卡2卡3卡4卡5卡区| 国产麻豆成人av免费视频| 国产亚洲av嫩草精品影院| 美女大奶头视频| 久久久久久久久中文| 国产69精品久久久久777片| 国产黄色小视频在线观看| 久久国产乱子伦精品免费另类| 国产免费男女视频| 久久精品国产99精品国产亚洲性色| 日韩欧美三级三区| 三级国产精品欧美在线观看| 精品久久久久久久久久免费视频| 欧美色视频一区免费| 日本a在线网址| 国产精品久久久久久亚洲av鲁大| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | www.色视频.com| 国产乱人伦免费视频| 三级毛片av免费| www.999成人在线观看| 中文亚洲av片在线观看爽| 国产大屁股一区二区在线视频| 99在线视频只有这里精品首页| 欧美黄色片欧美黄色片| av在线蜜桃| 最近最新中文字幕大全电影3| 欧美成狂野欧美在线观看| 国产不卡一卡二| 在线十欧美十亚洲十日本专区| 久久伊人香网站| 久9热在线精品视频| 国产一区二区在线av高清观看| 少妇丰满av| 91字幕亚洲| 国产精品亚洲美女久久久| 日本黄色片子视频| 免费搜索国产男女视频| 欧美黑人欧美精品刺激| 中文字幕av成人在线电影| 看免费av毛片| 麻豆av噜噜一区二区三区| 丝袜美腿在线中文| 日本精品一区二区三区蜜桃| ponron亚洲| 757午夜福利合集在线观看| 欧美极品一区二区三区四区| 亚洲成av人片免费观看| 少妇裸体淫交视频免费看高清| 亚洲激情在线av| 97碰自拍视频| 国产成+人综合+亚洲专区| 亚洲男人的天堂狠狠| 一级作爱视频免费观看| 91在线精品国自产拍蜜月| 深夜精品福利| 精品国产三级普通话版| 99国产极品粉嫩在线观看| or卡值多少钱| 精品乱码久久久久久99久播| 精品一区二区三区人妻视频| 高潮久久久久久久久久久不卡| 老司机午夜十八禁免费视频| 亚洲狠狠婷婷综合久久图片| 人人妻,人人澡人人爽秒播| 白带黄色成豆腐渣| 天堂影院成人在线观看| 别揉我奶头~嗯~啊~动态视频| a级毛片a级免费在线| 九九久久精品国产亚洲av麻豆| 悠悠久久av| 人妻制服诱惑在线中文字幕| 欧美一级a爱片免费观看看| 国产真实乱freesex| 欧美xxxx黑人xx丫x性爽| 国产av不卡久久| 18禁黄网站禁片免费观看直播| 日本黄色视频三级网站网址| 一个人看视频在线观看www免费| 啦啦啦韩国在线观看视频| 精品久久久久久成人av| 亚洲人成电影免费在线| 老鸭窝网址在线观看| 亚洲无线在线观看| 日韩欧美免费精品| 亚洲欧美清纯卡通| 国产亚洲精品久久久com| 亚洲av第一区精品v没综合| 国产亚洲欧美在线一区二区| 88av欧美| 久久久成人免费电影| 精品人妻1区二区| 精品国产亚洲在线| 亚洲av二区三区四区| 熟妇人妻久久中文字幕3abv| 美女被艹到高潮喷水动态| 国产综合懂色| 日韩欧美在线二视频| 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久久久久久免 | 免费在线观看亚洲国产| 成人av在线播放网站| www.www免费av| 欧美日韩中文字幕国产精品一区二区三区| eeuss影院久久| 2021天堂中文幕一二区在线观| 91久久精品电影网| 国产精品综合久久久久久久免费| 黄色一级大片看看| 老司机深夜福利视频在线观看| 成人永久免费在线观看视频| 脱女人内裤的视频| 久久国产精品人妻蜜桃| 成熟少妇高潮喷水视频| 极品教师在线视频| 国产日本99.免费观看| 日韩亚洲欧美综合| 俺也久久电影网| 91久久精品国产一区二区成人| 丝袜美腿在线中文| 丝袜美腿在线中文| 欧美性感艳星| 观看美女的网站| 国产精品女同一区二区软件 | 一区二区三区高清视频在线| 又紧又爽又黄一区二区| 一个人看的www免费观看视频| 欧美日本视频| 午夜视频国产福利| 精品国内亚洲2022精品成人| 国产色爽女视频免费观看| 亚洲精品456在线播放app | 欧美激情在线99| 日本免费a在线| 亚洲aⅴ乱码一区二区在线播放| 99久久无色码亚洲精品果冻| 亚洲五月天丁香| 桃红色精品国产亚洲av| 中国美女看黄片| 一a级毛片在线观看| 亚洲中文字幕一区二区三区有码在线看| 亚洲最大成人中文| 亚洲国产精品999在线| 日韩人妻高清精品专区| 三级国产精品欧美在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲无线观看免费| 亚洲,欧美,日韩| 亚洲国产精品合色在线| 午夜免费男女啪啪视频观看 | 少妇被粗大猛烈的视频| 精华霜和精华液先用哪个| 好看av亚洲va欧美ⅴa在| 精品人妻一区二区三区麻豆 | 精品久久久久久久末码| 一夜夜www| 性色av乱码一区二区三区2| 欧美激情在线99| 色播亚洲综合网| 狠狠狠狠99中文字幕| 超碰av人人做人人爽久久| 在线观看美女被高潮喷水网站 | 男插女下体视频免费在线播放| 午夜福利在线观看吧| 亚洲最大成人手机在线| 99精品久久久久人妻精品| 成年女人毛片免费观看观看9| 国产精品久久久久久久久免 | 久久久久免费精品人妻一区二区| 亚洲欧美日韩东京热| 亚洲精品在线观看二区| 男女床上黄色一级片免费看| 成人特级av手机在线观看| 一区二区三区四区激情视频 | 观看美女的网站| 夜夜爽天天搞| 男人和女人高潮做爰伦理| 色视频www国产| 亚洲第一欧美日韩一区二区三区| 国产精品久久电影中文字幕| 欧美一级a爱片免费观看看| 亚洲av中文字字幕乱码综合| 午夜日韩欧美国产| 人妻制服诱惑在线中文字幕| 亚洲成人免费电影在线观看| 久久热精品热| 国产不卡一卡二| 久久久成人免费电影| 国产一区二区激情短视频| 美女xxoo啪啪120秒动态图 | 色5月婷婷丁香| 国产精品98久久久久久宅男小说| 国产精品影院久久| av国产免费在线观看| 国产91精品成人一区二区三区| 男女床上黄色一级片免费看| 亚洲无线在线观看| 一个人观看的视频www高清免费观看| 久久亚洲真实| 青草久久国产| 国内精品久久久久久久电影| 亚洲国产精品久久男人天堂| 国产色爽女视频免费观看| 色综合婷婷激情| 欧美精品啪啪一区二区三区| 亚洲中文字幕日韩| 神马国产精品三级电影在线观看| 精华霜和精华液先用哪个| 国产av不卡久久| 国产一区二区激情短视频| 免费看美女性在线毛片视频| 欧美xxxx黑人xx丫x性爽| 日韩 亚洲 欧美在线| 色视频www国产| 日本三级黄在线观看| 脱女人内裤的视频| 久久久久国产精品人妻aⅴ院| 麻豆成人av在线观看| 日韩免费av在线播放| 久久99热这里只有精品18| 露出奶头的视频| 丝袜美腿在线中文| 能在线免费观看的黄片| 亚洲一区高清亚洲精品| av黄色大香蕉| 成人欧美大片| 99久久九九国产精品国产免费| 麻豆成人av在线观看| 97碰自拍视频| 国产蜜桃级精品一区二区三区| 国产一区二区在线av高清观看| 色综合站精品国产| 18美女黄网站色大片免费观看| 午夜激情福利司机影院| 国产精品永久免费网站| 免费一级毛片在线播放高清视频| 国产亚洲精品综合一区在线观看| 变态另类成人亚洲欧美熟女| 久久人人精品亚洲av| 久久中文看片网| av在线天堂中文字幕| 男插女下体视频免费在线播放| 久久精品国产99精品国产亚洲性色| 成人毛片a级毛片在线播放| 99久久精品一区二区三区| 成人国产综合亚洲| 久久久久亚洲av毛片大全| 久久这里只有精品中国| 亚洲狠狠婷婷综合久久图片| 十八禁人妻一区二区| 老司机午夜十八禁免费视频| 给我免费播放毛片高清在线观看| 一级av片app| 1024手机看黄色片| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 午夜精品一区二区三区免费看| 久久精品国产亚洲av天美| 免费人成在线观看视频色| 亚洲成av人片在线播放无| 欧美绝顶高潮抽搐喷水| 国产精品99久久久久久久久| 国产老妇女一区| 色噜噜av男人的天堂激情| 俄罗斯特黄特色一大片| 国模一区二区三区四区视频| 麻豆av噜噜一区二区三区| 亚洲人成网站在线播| 又爽又黄a免费视频| 国产精品不卡视频一区二区 | 免费高清视频大片| 日韩欧美免费精品| 51国产日韩欧美| 亚洲欧美精品综合久久99| 国产毛片a区久久久久| 搡老岳熟女国产| 亚洲国产欧美人成| 中亚洲国语对白在线视频| 可以在线观看的亚洲视频| 丰满人妻熟妇乱又伦精品不卡| 在线国产一区二区在线| .国产精品久久| 日本与韩国留学比较| 波多野结衣高清作品| 成人午夜高清在线视频| 美女 人体艺术 gogo| 最近最新中文字幕大全电影3| 成人高潮视频无遮挡免费网站| 日本黄色视频三级网站网址| 亚洲美女黄片视频| 淫秽高清视频在线观看| 成人性生交大片免费视频hd| 淫妇啪啪啪对白视频| 亚洲经典国产精华液单 | 在线观看美女被高潮喷水网站 | 91麻豆av在线| 国产午夜精品论理片| 久久精品人妻少妇| 亚洲自偷自拍三级| 久久天躁狠狠躁夜夜2o2o| 亚洲av不卡在线观看| 日本熟妇午夜| 亚洲精品一区av在线观看| 90打野战视频偷拍视频| 亚洲国产精品成人综合色| 久久久国产成人精品二区| 亚洲午夜理论影院| av在线蜜桃| 香蕉av资源在线| 最近最新免费中文字幕在线| 欧美丝袜亚洲另类 | 亚洲人与动物交配视频| 99精品在免费线老司机午夜| 亚洲第一区二区三区不卡| 97超视频在线观看视频| 午夜老司机福利剧场| 日韩欧美在线二视频| 欧美不卡视频在线免费观看| 久久国产乱子免费精品| 国产亚洲欧美在线一区二区| 精品人妻熟女av久视频| 好看av亚洲va欧美ⅴa在| 自拍偷自拍亚洲精品老妇| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 日日夜夜操网爽| 悠悠久久av| 久久精品影院6| 1024手机看黄色片| 成人美女网站在线观看视频| 波野结衣二区三区在线| 久久久久久久久大av| 成人无遮挡网站| 国产又黄又爽又无遮挡在线| av福利片在线观看| 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 内地一区二区视频在线| 欧美激情久久久久久爽电影| 亚洲精品成人久久久久久| 国产高清有码在线观看视频| 美女高潮的动态| 亚洲无线观看免费| av国产免费在线观看| 制服丝袜大香蕉在线| 国产视频内射| 欧美乱色亚洲激情| 亚洲成人中文字幕在线播放| 51午夜福利影视在线观看| 亚洲欧美精品综合久久99| 亚洲最大成人中文| 国产主播在线观看一区二区| 色播亚洲综合网| 中文在线观看免费www的网站| 999久久久精品免费观看国产| 美女高潮喷水抽搐中文字幕| 国产亚洲av嫩草精品影院| 啦啦啦韩国在线观看视频| 日本免费一区二区三区高清不卡| 黄色女人牲交| 91久久精品国产一区二区成人| 成年女人毛片免费观看观看9| 变态另类成人亚洲欧美熟女| 欧美午夜高清在线| 成年人黄色毛片网站| 国产探花在线观看一区二区| 亚洲精品在线观看二区| 一个人免费在线观看电影| 亚洲男人的天堂狠狠| 国产亚洲精品久久久久久毛片| 精品午夜福利在线看| 能在线免费观看的黄片| 色5月婷婷丁香| 热99在线观看视频| 久久九九热精品免费| 亚洲av中文字字幕乱码综合| 日韩欧美精品v在线| 91久久精品国产一区二区成人| 亚洲av成人精品一区久久| 大型黄色视频在线免费观看| 一级毛片久久久久久久久女| 亚洲男人的天堂狠狠| 欧美三级亚洲精品| 亚洲国产欧美人成| 国产单亲对白刺激| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品亚洲av| 亚洲欧美激情综合另类| 欧美绝顶高潮抽搐喷水| 久久精品国产亚洲av香蕉五月| 男人和女人高潮做爰伦理| 色综合婷婷激情| 欧美在线黄色| 亚洲精品久久国产高清桃花| 国产激情偷乱视频一区二区| 深夜a级毛片| 午夜福利在线观看吧| 人妻丰满熟妇av一区二区三区| 精品人妻1区二区| 嫩草影院入口| 99热精品在线国产| 亚洲国产精品sss在线观看| 欧美成人a在线观看| 看免费av毛片| 在线观看一区二区三区| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 窝窝影院91人妻| xxxwww97欧美| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 久久久精品大字幕| 国产午夜精品久久久久久一区二区三区 | 国产一区二区三区在线臀色熟女| 老司机福利观看| 日本黄大片高清| 制服丝袜大香蕉在线| 一本精品99久久精品77| 男人舔奶头视频| 久久久久久久精品吃奶| 亚洲在线自拍视频| 午夜免费成人在线视频| 一区二区三区免费毛片| 国产伦精品一区二区三区四那| eeuss影院久久| 午夜精品久久久久久毛片777| 国产成+人综合+亚洲专区| 男女做爰动态图高潮gif福利片| 国产男靠女视频免费网站| 欧美精品国产亚洲| 一级黄片播放器| 亚洲av二区三区四区| 女生性感内裤真人,穿戴方法视频| 日韩欧美在线二视频| 久久热精品热| 久久6这里有精品| 精品一区二区三区av网在线观看| 日本免费一区二区三区高清不卡| 一区二区三区四区激情视频 | 色视频www国产| 亚洲专区国产一区二区| 精品久久久久久久久av| 欧美色欧美亚洲另类二区| 在线播放无遮挡| 久久99热这里只有精品18| 亚洲人与动物交配视频| 一个人看的www免费观看视频| 99在线人妻在线中文字幕| 91麻豆av在线| 亚洲中文字幕一区二区三区有码在线看| 国产精品自产拍在线观看55亚洲| 99久久成人亚洲精品观看| 97碰自拍视频| 一区二区三区免费毛片| 中文字幕av在线有码专区| 在线观看一区二区三区| 国产真实乱freesex| 老熟妇乱子伦视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 国产高清视频在线播放一区| 超碰av人人做人人爽久久| 男女那种视频在线观看| 亚洲精品一区av在线观看| 嫁个100分男人电影在线观看| 国产伦一二天堂av在线观看| 免费电影在线观看免费观看| 国产成人欧美在线观看| 亚洲第一区二区三区不卡| 免费看美女性在线毛片视频| 在线播放国产精品三级| 精品人妻偷拍中文字幕| 夜夜爽天天搞| 午夜免费男女啪啪视频观看 | 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| а√天堂www在线а√下载| 丁香六月欧美| 黄色女人牲交| 亚洲国产欧美人成| 午夜久久久久精精品| 日韩成人在线观看一区二区三区| 1024手机看黄色片| 国产黄片美女视频| 免费大片18禁| 日韩欧美国产在线观看| 亚洲成人精品中文字幕电影| 简卡轻食公司| 亚洲电影在线观看av| 一夜夜www| 精品久久久久久久人妻蜜臀av| 草草在线视频免费看| 国产精品亚洲av一区麻豆| 99久久久亚洲精品蜜臀av| 在线观看午夜福利视频| 人妻制服诱惑在线中文字幕| 国产一区二区三区在线臀色熟女| av在线老鸭窝| 亚洲成人中文字幕在线播放| 色视频www国产| 午夜福利高清视频| 美女cb高潮喷水在线观看| 亚洲国产日韩欧美精品在线观看| 亚州av有码| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久亚洲 | 别揉我奶头~嗯~啊~动态视频| 在线a可以看的网站| 欧美一区二区亚洲| 国产在线男女| 99在线人妻在线中文字幕| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产蜜桃级精品一区二区三区| 国内精品久久久久久久电影| 午夜两性在线视频| 精品久久久久久久末码| 成人高潮视频无遮挡免费网站| 免费大片18禁| 看黄色毛片网站| 亚洲国产欧美人成| 淫妇啪啪啪对白视频| 免费av毛片视频| 日韩欧美在线二视频| 97人妻精品一区二区三区麻豆| 97超级碰碰碰精品色视频在线观看| 国产免费一级a男人的天堂| 99riav亚洲国产免费| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 欧美精品啪啪一区二区三区| 国产成人福利小说| 国产色婷婷99| 国产成年人精品一区二区| 黄色丝袜av网址大全| 亚洲精品成人久久久久久| 欧美3d第一页| 久久人人精品亚洲av| 午夜激情福利司机影院| 国产爱豆传媒在线观看| 久9热在线精品视频| 日本黄大片高清| 18禁裸乳无遮挡免费网站照片| 看十八女毛片水多多多| 最近中文字幕高清免费大全6 | 久久久国产成人免费| 国产一级毛片七仙女欲春2| 嫁个100分男人电影在线观看| 波野结衣二区三区在线| 免费搜索国产男女视频| 亚洲av五月六月丁香网| 丝袜美腿在线中文| 伦理电影大哥的女人| 久久6这里有精品| 99久久九九国产精品国产免费| 嫩草影院新地址| 内射极品少妇av片p| 亚洲av一区综合| 在线观看舔阴道视频| 久久久精品欧美日韩精品| 在线观看舔阴道视频| 欧美一区二区亚洲| 国产精品亚洲美女久久久| 俄罗斯特黄特色一大片| 国产熟女xx| 嫩草影院精品99| 日日摸夜夜添夜夜添av毛片 | 久久精品影院6| 日韩欧美国产在线观看| 高清日韩中文字幕在线| 天堂影院成人在线观看| 国产精品一及| 亚洲天堂国产精品一区在线| 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 97超视频在线观看视频| 又爽又黄a免费视频| 日韩欧美三级三区| 99热精品在线国产| 九九热线精品视视频播放| 国产精品不卡视频一区二区 | 午夜精品一区二区三区免费看| 变态另类丝袜制服| a级一级毛片免费在线观看| 国产一区二区激情短视频| 在线播放无遮挡| 亚洲av一区综合| 亚洲国产精品合色在线| 亚洲七黄色美女视频| 亚洲经典国产精华液单 | 欧美精品啪啪一区二区三区| 毛片一级片免费看久久久久 | 国产精品永久免费网站|