• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-complexity fractionalphase estimation for totally blind channelestimation

    2015-12-23 10:08:46,2,*

    ,2,*

    1.Departmentof Electronic Engineering,Fudan University,Shanghai200433,China; 2.Key Laboratory of EMWInformation,Fudan University,Shanghai200433,China

    Low-complexity fractionalphase estimation for totally blind channelestimation

    Xu Wang1,Tao Yang1,and Bo Hu1,2,*

    1.Departmentof Electronic Engineering,Fudan University,Shanghai200433,China; 2.Key Laboratory of EMWInformation,Fudan University,Shanghai200433,China

    To remove the scalar ambiguity in conventional blind channel estimation algorithms,totally blind channel estimation (TBCE)is proposed by using multiple constellations.To estimate the unknown scalar,its phase is decomposed into a fractional phase and an integer phase.However,the maximum-likelihood (ML)algorithm for the fractionalphase does not have closed-form solutions and suffers from high computational complexity.By exploring the structures of widely used constellations,this paper proposes a low-complexity fractional phase estimation algorithm which requires no exhaustive search.Analyticalexpressions ofthe asymptotic mean squared error(MSE)are also derived.The theoretical analysis and simulation results indicate that the proposed fractional phase estimation algorithm exhibits almost the same performance as the ML algorithm but with signi fi cantly reduced computationalburden.

    orthogonal frequency division multiplexing(OFDM), totally blind channel estimation(TBCE),scalar ambiguity,fractionalphase,low-complexity.

    1.Introduction

    To accommodate the demand on high speed data communications,coherent detection is preferred in wireless systems,which entails channel state information and thus channel estimation at the receiver.The scheme of pilots or training sequences,though simple,signi ficantly reduces the system throughput.To eliminate the bandwidth-consuming pilotsignals,considerable research efforts have been devoted to the technique ofblind channel estimation[1-6].Forexample,Al-Naffourietal.proposed a blind maximum-likelihood(ML)estimation algorithm for orthogonal frequency division multiplexing(OFDM) systems in[5],where no constraintis imposed on the constellation.Besides,the complexity of the algorithm can be reduced by subcarrier reordering.

    Recently,the ambiguity problem in blind channel estimation attracts much attention.For conventional algorithms like Al-Naffouri’s method,there is an unknown scalar which cannot be identi fi ed.If pilots are used to estimate the ambiguous scalar,then the algorithm becomes semi-blind.It was considered as an inherent problem in blind channelestimation for many years and[7]even provided a proof for that.

    However,no a prioriinformation of the transmitted signals was assumed in[1-7].Some recent blind channelestimation algorithms fi nd that scalar ambiguity can be removed by taking advantage of information of the constellation,and then the channelis uniquely identi fi ed in a blind fashion,i.e.totally blind channel estimation(TBCE).In space-time block coding(STBC)systems,[8,9]showed thatTBCE can be achieved iftwo phase shiftkeying(PSK) constellations are used and their constellation orders are coprime.In OFDM systems,it was fi rst shown in[10] thatthe quadrature amplitude modulation(QAM)constellation can be used in TBCE.Reference[11]further proposed a multiple-constellation scheme that allows for all kinds of constellations;hence the widely used constellations,such as PSK,pulse amplitude modulation(PAM), amplitude and phase shift keying(APSK)and QAM,are allfeasible for TBCE.

    In OFDM systems,to blindly estimate the unknown scalar,its phase is decomposed into a fractionalphase and an integer phase.The integer phase can be solved with closed-form solutions.Besides,its amplitude can be easily obtained by the second-order statistics(SOS).Therefore, the mostdif fi cultproblem is the estimation ofthe fractional phase.The ML method was adopted in[10,11],which requires exhaustive search and suffers from high computationalcomplexity.

    In this paper,a low-complexity fractionalphase estimation algorithm is proposed.By exploiting the structures of widely used constellations,such as PSK,PAM,APSK andQAM,no exhaustive search is needed when estimating the fractional phase.To improve the estimation accuracy,the weighted average is exploited and the weights are carefully designed.We also derive the analytical expression of the asymptotic mean squared error(MSE).Numerical results con fi rm thatthe proposed fractionalphase estimation algorithm exhibits almostthe same performance as the ML algorithm,butwith signi fi cantly reduced computationalburden.

    2.Fractionalphase in TBCE

    2.1 System model

    Let us consider an OFDM system.The input signal s(n):=[s0(n),s1(n),...,sN?1(n)]Ttakes N-point inverse fastFouriertransform(IFFT).Afteradding the cyclic pre fi x(CP),the resulting time domain signalis transmitted over the multipath channel.At the receiver,the signal on the k th subcarrier is given by

    There are many algorithms in the literature which can estimate the channel within a scalar ambiguity[12-14]. Here we assume that the channel H has been identi fi ed up to an unknown scalar c by one of these algorithms,i.e. ?H=H/c.Then(1)can be rewritten as

    where wk

    2.2 TBCE in OFDMsystems

    Here,the main ideas of TBCE from[11]are brie fl y introduced.To remove the scalar ambiguity,it is proposed to use multiple constellations in differentsubcarriers[11].At fi rst,the precise meaning of the constellation is given as follows.

    Definition 1[11]A constellation S is a fi nite set of complex numbers with two or more elements.

    Note that the trivial case that S contains only a single element is excluded in De fi nition 1.Next,the concept of the symmetric number is introduced.Denote cS:={cs: s∈S}.

    Definition 2[11]If a phaseα∈[0,2π)satis fi es

    then it is a symmetric phase of constellation S.All the symmetric phases constitute the symmetry set,denoted by AS.The cardinality of ASis called the symmetric number, denoted by QS.

    For PAM,PSK and QAM constellations,the symmetry set and the symmetric number are[11]:PAM,AS=M;square QAM,AS={0,π/2,π,3π/2},QS=4. For these constellations,ASand QSsatisfy the following relationship

    In fact,itcan be proved that(4)holds foran arbitrary constellation[11].

    The main idea of TBCE relies on the exploitation of multiple constellations.More speci fi cally,to remove the scalar ambiguity,differentconstellations are used in differentsubcarriers.These constellations are carefully selected so that the scalar c can be uniquely determined.The following theorem gives the criterion for the constellation selection.

    Theorem 1[11]Assume that each subcarrier sk(n) uses constellation Sk(k=0,1,...,N-1),respectively. If the input sequence{s(n)}nis suf fi ciently long in the time index n such that sk(n)contains all the possible values of Sk,then the unknown scalar c can be blindly and uniquely identi fi ed if and only if

    where Qkis the symmetric number of Sk,and gcd(·) stands for the greatcommon divisor.

    For example,we can use 16-QAMin a few subcarriers, and 3-PSK in other subcarriers,then gcd(4,3)=1,and the scalar c can be uniquely determined.In Theorem 1,the constellations used in different subcarriers S0,...,SN?1are notnecessarily distinct.

    Remark 1The adaptive modulation(AM)technique also exploits multiple constellations[15,16],where the relative positions of the constellations are determined by the channelcondition.For example,16-QAM should be used in subcarriers with a large channelgain,while 3-PSK can tolerate subcarriers with the poorer channelcondition.On the other hand,for TBCE,the constellations are selected according to condition(5),and their relative positions are irrelevant because gcd(x,y)=gcd(y,x).Therefore,we can use AM and TBCE together.Note that the signal-tonoise ratio(SNR)ofeach subcarrieris determined by|Hk|, which is independentof the phase ambiguity.Besides,the amplitude of the scalar c can be easily solved with SOS. Thus the channelstate information needed by AM can be readily obtained by conventionalblind channelestimation algorithms.Then this information is fed back to the transmitter and the constellations are selected according to thecriteria of TBCE and AM.For example,we can use 16-QAM in subcarriers with the good channelcondition,and 3-PSK with the smaller channelgain.

    2.3 Fractionalphase

    To estimate the scalar c,its phase is decomposed into a fractionalphase and an integer phase.For the sake of clarity,letus focus on a single subcarrier fi rst.

    Definition 3[11]By(4),the phase of the scalar c can be decomposed as

    whereθ∈[0,2π/QS)is called the fractional phase,and K∈{0,1,...,QS-1}is called the integer phase.

    The integer phase does not change the shape of a constellation,i.e.ej2π/QSS=S.Thus it cannot be identifi ed.On the other hand,if a constellation is rotated by a fractional phase,it no longer looks the same.Thus the fractional phase can be uniquely determined.Let us take 16-QAM as an example.Assume that arg(c)=3π/4= π/4+π/2,thenθ=π/4,K=1.First,the fractional phaseπ/4 can be identi fi ed,because the shape of the constellation is changed when it is rotated byπ/4.However, 16-QAMis invariantunder a rotation of phaseπ/2,so the integer phase K may be estimated as 0,1,2 or 3.Thus the value of K cannot be uniquely determined based on the received signalonly.

    If multiple constellations are used and they satisfy condition(5),then the integer phase can be uniquely determined.For example,16-QAMis invariantundera rotation of phases{0,π/2,π,3π/2},and 3-PSK is invariantunder phases{0,2π/3,4π/3}.Hence,if both 16-QAM and 3-PSK are used,then the integer phase mustbe“0”.The interested reader can refer to[11]for more discussions.

    Now let us consider the estimation of the scalar c.The amplitude can be directly obtained via the SOS[10].The integerphase K can also be solved in the closed-form,provided thatthe fractionalphases ofallsubcarriers have been estimated[11].Thus the computationalcomplexities ofthe amplitude and the integerphase are very low.However,the estimation ofthe fractionalphaseθis much harder.On the k th subcarrier,letthe phase of c be written in the form of (6)with respectto Sk,then(2)can be rewritten as

    where sk(n)∈Sk,and Qkis the symmetric number of Sk.In[10,11],the ordinary ML estimation method is adopted.The estimate ofθis obtained by maximizing the log-likelihood function of rk(n).Unfortunately,the fractional phaseθcannot be solved in closed-form due to the highly nonlinearrelationship between rk(n)andθ,and exhaustive search is needed to determineθ[10,11].

    3.Low-complexity fractionalphase estimation

    The conventional ML method suffers from the high computationalcomplexity since the estimate ofθcannotbe obtained in the closed-form.To overcome this problem,we propose a novel low-complexity fractional phase estimation algorithm.By exploiting the structures of widely used constellations such as PSK,PAM,APSK and QAM,no exhaustive search is required when estimatingθ,and the computational complexity is greatly reduced.Besides,to improve the estimation accuracy,weighted average is exploited and the weights are carefully designed.

    3.1 PSK constellations

    For M-PSK constellations,the transmitted information is conveyed by the phase of the inputsignal sk(n),where the constellation points are uniformly spaced on the unitcircle,Noting that the symmetric number Qk=M,(7)can be rewritten as

    The fractionalphaseθis estimated as

    or equivalently,

    where≡denotes congruence[17],andis the greatest integer notexceeding x.

    3.2 PAMconstellations

    For M-PAM constellations,the transmitted information is conveyed by the amplitude of the input signals sk(n), where all the constellation points lie on the real line,and.Noting that the symmetric number Qk=2,(7)can be rewritten as

    Thenθis estimated as

    If multiple observations are available,we can take the average to reduce the noise effect.However,unlike PSK, the amplitude of PAMis no longer a constant,so the SNRs of different data symbols are not the same.To get better performance,the weighted average is preferred,and the weights should be carefully designed.According to(31)(see Section 4.2),for a given transmitted signal sk(n),the variance of estimator(12)satis fi es the following relationship,

    where Quan{}is the quantization operation to the PAM constellation,andβis a normalizing constant such that β?βn=1.

    3.3 APSK and QAMconstellations

    Now we turn to the more complicated APSK and QAM constellations,in which both the amplitude and the phase are modulated with information.The APSK constellation consists of several circles and is adopted in digital video broadcasting(DVB)systems[19].We take 32-APSK as an example to discuss the fractional phase estimation of APSK constellations.

    The 32-APSK constellation is constituted of three circles,which are 4-PSK with radius R1,12-PSKwith radius R2,and 16-PSK with radius R3,respectively(see Fig.1). Thus 32-APSKcan be treated as a combination of PSKand PAM constellations.Its symmetric number is Qk=4.To estimate the fractional phaseθ,let us consider each circle fi rst.

    Fig.1 Scatter diagram of the 32-APSK constellation

    If|rk(n)/c|<(R1+R2)/2,then sk(n)belongs to the inner circle which is equivalent to a 4-PSK constellation,so we can get an estimate?θinby(10).If|rk(n)/c|> (R2+R3)/2,then sk(n)belongs to the outer circle,

    Considering the phases ofboth sides,we have

    Note thatfor any integer n,

    Thus the value of m can be restricted to m∈{0,1,2,3}. Furthermore,m can be uniquely determined by lettingin(17).Otherwise,suppose thatthere are two solutionsboth satisfying(17),thenis an integer multiple ofπ/2,which is impossible becauseBy substituting the value of m back into(17),we getan estimateFor the middle circle,an estimatecan be obtained in a similar way.

    Next,letus combine the three estimates.However,they have different estimation accuracy since the radii of the three circles are not the same.Hence,the weighted average should be adopted.Similar to the PAM case,the best linear combiner[18]which minimizes the estimation variance is given by

    The QAM constellations can be estimated similar to APSK.Taking 16-QAMforexample,if only the inner and outer circles are exploited(see Fig.2),thenθcan be estimated as

    Fig.2 Fractionalphase estimation for 16-QAM

    4.Performance analysis

    In this section,in orderto assess the estimation accuracy of the proposed algorithm,analyticalexpressions of the MSE are derived.It is proved that for most constellations,the proposed algorithm achieves the same asymptotic MSE as the ML method.

    4.1 Constrained Cramer-Rao bound

    First,let us investigate the Cramer-Rao bound(CRB)for the fractional phase.In(7),there are three unknown parametersθ,K and sk(n).To obtain the CRB,we need to calculate the Fisher information matrix with respect to all the three unknown parameters[18].However,both K and sk(n)are not continuous,and their values are confi ned to discrete sets,i.e.there are constraints on the unknown parameters.Therefore,the constrained CRB,which was introduced in[20,21],should be used.Let L be the number of received OFDM blocks,and denoteγk:=the SNR of the k th subcarrier.

    Theorem 2The constrained CRB for fractionalphase estimation is

    ProofWe introduce the following result from[22].If an unknown parameter is restricted to a fi nite set in the complex plane,then the constrained CRB can be found by deleting the signalsamples from the corresponding Fisher information matrix,as if this parameter was known.

    From this result,since both K and sk(n)are con fi ned to fi nite sets,we treat them as known parameters in the derivation of CRB.Note that they are not needed by the algorithms developed in the previous section.

    Nowθis the only unknown parameter in(7).Let r= [rk(1),...,rk(L)]Tbe the received signalvector.Its loglikelihood function is

    4.2 Asymptotic MSE

    To gain more insight into the proposed algorithm,we derive the asymptotic MSE(AMSE)in the high SNR region.

    Theorem 3The AMSE of the proposed algorithm is

    ProofDenoteθthe true value ofθ,andσ2sthe transmitted signal power.Then,we will discuss the four kinds of constellations,respectively.

    PSK:Because the asymptotic property is investigated, the noise poweris assumed to be small.Therefore,

    and(24)follows immediately.

    PAM:If sk(n)=d,thenβn=|d|2because the noise power is small.Therefore,

    Similar to(29),it can be shown that for a given signal sk(n),we have

    Therefore,when sk(n)is drawn from the entire constellation,

    APSK:Denotethe estimate from the i th circle.Since the noise power is small,the estimate of m is correct. Hence,the variance o fis the same as PSK,i.e.

    where Riis the radius of the i th circle,andμiis the number of points belonging to the i th circle.Note that

    QAM:Equation(27)can be proved in a similar way to the APSK case.

    Theorem 3 shows that the proposed algorithm attains the CRB for PSK,PAMand APSK constellations ata high SNR.Thus the weights designed in the previous section are optimal.On the other hand,the ML estimator is known to achieve the CRB asymptotically[18].Therefore,for these constellations,the proposed algorithm and the ML method have the same AMSE performance,which implies thatthe computationalcomplexity involved in the estimation ofthe fractionalphase can be reduced by the proposed algorithm withoutperformance loss.

    Unfortunately,the AMSE for QAMconstellations loses this desired property because only a partof the data is exploited.If the betterperformance is required,then the proposed algorithm can provide a coarse estimate for the ML algorithm to reduce the search range ofθ.

    5.Simulation results

    In this section,computer simulations are carried out to evaluate the performance of the proposed fractionalphase estimation algorithm.All the simulation results are averaged over 3 000 Monte Carlo trials.

    5.1 MSE performance

    To validate the theoreticalanalysis in the previous section, here we investigate the MSE performance of the proposed algorithm with differentkinds of constellations.The number of received OFDM blocks is chosen as L=60.

    Fig.3 shows the performance for PSK constellations. At the low SNR,4-PSK performs better than 8-PSK,and BPSK has the bestperformance.When the SNR is higher than 20 dB,allof them achieve the AMSE as predicted by Theorem 3.Fig.4 shows the simulation results for PAM constellations.Unlike PSK,the performance of PAM only degrades slightly as the constellation size increases,and all the three constellations approach the AMSE closely in the whole range of SNR.

    Fig.3 MSE of PSK constellations

    Fig.4 MSE of PAMconstellations

    Fig.5 depicts the MSE for APSK constellations. In accordance with DVB systems[19],for 16-APSK,R2/R1=2.57;for 32-APSK,R2/R1=2.53, R3/R1=4.3.We observe that 16-APSK has better performance than 32-APSK when the noise power is strong. In the high SNR region,both constellations achieve the AMSE.Fig.6 shows the performance of 16-QAM.Similar as before,the proposed algorithm approaches the AMSE as the SNR grows.

    Fig.5 MSE of APSK constellations

    Fig.6 MSE of QAMconstellations

    5.2 Overallsystem performance

    Now we compare the performance of the proposed algorithm with thatof the ML method.Since the ultimate goal ofdigitalcommunicationsis to recoverthe transmitted signals,the biterror rate(BER)is chosen as the performance measure.The OFDMsystem undertesthas N=64 subcarriers,where four subcarriers are virtual subcarriers which are distributed evenly atthe spectrum edges.The other 60 subcarriers are used for data transmission.The channelorder is set to 16.The number of received OFDM blocks is L=300.To totally blindly estimate the channel,the subspace method in[24]is used fi rst to estimate the multipath channel up to a scalar.Then the amplitude and the integer phase of the unknown scalar are estimated by the algorithms in[11],while the fractionalphase is estimated by the proposed algorithm and the ML algorithm.

    In the simulations,for odd order PSK constellations, e.g.3-PSK,a point“0”is added to the constellation(see Fig.7),so thateach symbolrepresents an integermultiples ofbits,and the symmetric numberremains unchanged.The modi fi ed constellation is called generalized PSK(GPSK) hereafter.The algorithm and performance analysis developed for PSK constellations in previous sections can be extended to GPSK constellations straightforwardly.

    Fig.7 Scatter diagram of the 3-GPSK constellation

    Fig.8 shows the BER performance when 16-APSK and 3-GPSK constellations are used,whose symmetric numbers are four and three,respectively.Note that gcd(4,3)= 1,so condition(5)for TBCE is satis fi ed.The 16-APSK constellation is used over54 subcarriers in the centerofthespectrum,while 3-GPSK is used over six subcarriers located at the edges.It can be seen that the proposed algorithm has the same BER performance as the ML method. The reason is thatfor APSK and GPSK constellations,the AMSE of the two algorithms are the same.

    Fig.8 BER performance of 16-APSK and 3-GPSK

    Fig.9 shows the BER performance when 16-QAMand 7-GPSK constellations are used,whose symmetric numbers are fourand seven,respectively.Note thatgcd(4,7)= 1,so condition(5)is also satis fi ed.From the fi gure,we fi nd that the proposed algorithm closely approaches the ML method when the SNR is higher than 25 dB.At the lower SNR,slight performance degradation is observed. This is because for the 16-QAM constellation,only parts of the constellation points are exploited by the proposed algorithm.

    Fig.9 BER performance of 16-QAMand 7-GPSK

    Finally,the computationalcomplexities of the proposed algorithm and the ML method are compared.Table 1 shows the runtime consumed in the experiment.The simulation is carried outin a personalcomputer(PC)with an Intel Core 2 Duo E8400 processor at3 GHz.The program is written in C++,and the IT++library[25]is invoked.From the table,it can be seen that the proposed algorithm requiresmuch less computationaleffortthan the ML method. For example,if 16-QAM and 7-GPSK are used,the time consumed by the proposed algorithm is only 1/20 of that consumed by the ML method;for 8-PSK and 3-GPSK,the ratio is only 1/30.

    Table 1 Computationaltime min

    6.Conclusions

    There is a scalar ambiguity in conventional blind channel estimation algorithms.Recently,TBCE is proposed to solve this ambiguity problem by using multiple constellations.The main disadvantage of TBCE is the high computational complexity involved in the estimation of the unknown scalar,which willlimitits implementation in practice.For example,itcannotbe employed in low-cost,lowpower scenarios.Besides,due to the long processing time, itis notsuitable for delay-sensitive applications.

    For OFDMsystems,the computationalburden of TBCE is dominated by the estimation of the fractionalphase.In this paper,by exploiting the structures of widely used constellations such as PSK,PAM,APSK and QAM,we propose a low-complexity algorithm which does not need exhaustive search.To improve the estimation accuracy,the weighted average is exploited and the weights are carefully designed.We also derive the constrained CRB and AMSE.Simulation results indicate thatthe proposed fractionalphase estimation algorithm exhibits almostthe same performance as the ML algorithm butwith signi fi cantly reduced computational burden.Thus,with the help of the proposed algorithm,TBCE can be used in a much wider range of applications.

    [1]J.P.Delmas,Y.Meurisse,P.Comon.Performance limits of alphabetdiversities for FIR SISO channelidenti fi cation.IEEE Trans.on SignalProcessing,2009,57(1):73-82.

    [2]F.Wan,W.P.Zhu,M.N.S.Swamy.Semi-blind mostsigni ficanttap detection for sparse channelestimation of OFDMsystems.IEEE Trans.on Circuits System I:Regular Papers,2010, 57(3):703-713.

    [3]S.A.Banani,R.G.Vaughan.OFDMwith iterative blind channel estimation.IEEE Trans.on Vehicular Technology,2010, 59(9):4298-4308.

    [4]F.J.Simois,J.J.Murillo-Fuentes,R.B.Tortosa,et al.Near the Cram′er-Rao bound precoding algorithms for OFDMblind channel estimation.IEEE Trans.on Vehicular Technology, 2012,61(2):651-661.

    [5]T.Y.Al-Naffouri,A.A.Dahman,M.S.Sohail,et al.Lowcomplexity blind equalization for OFDM systems with generalconstellations.IEEE Trans.on Signal Processing,2012, 60(12):6395-6407.

    [6]Y.C.Pan,S.M.Phoong.An improved subspace-based algorithm for blind channel identi fi cation using few received blocks.IEEE Trans.on Communications,2013,61(9):3710-3720.

    [7]L.Tong,R.Liu,V.C.Soon,etal.Indeterminacy and identi fiability of blind identi fi cation.IEEE Trans.on Circuits System, 1991,38(5):499-509.

    [8]J.K.Zhang,W.K.Ma.Full diversity blind Alamoutispacetime block codes for unique identi fi cation of fl at-fading channels.IEEE Trans.on Signal Processing,2009,57(2):635-644.

    [9]D.Xia,J.K.Zhang,S.Dumitrescu,et al.Full diversity noncoherent Alamouti-based Toeplitz space-time block codes.IEEE Trans.on SignalProcessing,2012,60(10):5241-5253.

    [10]X.Wang,F.He,T.Yang,etal.Fully blind channelestimation method and system forOFDMarbitrary constellation diagram. Chinese Patent CN102185806A,2011.

    [11]X.Wang,R.Liu,F.He,et al.On scalar ambiguity in blind channel estimation for OFDM systems.Proc.of the IEEE International Conference on Acoustics,Speech,and Signal Processing,2012:3725-3728.

    [12]C.Li,S.Roy.Subspace-based blind channel estimation for OFDM by exploiting virtualcarriers.IEEE Trans.on Wireless Communications,2003,2(1):141-150.

    [13]S.H.Fang,J.Y.Chen,M.D.Shieh,etal.A generalized blind channel estimation algorithm for OFDM systems with cyclic pre fi x.Proc.ofthe IEEE International Symposium on Circuits and Systems,2009:2469-2472.

    [14]W.C.Huang,C.H.Pan,C.P.Li,etal.Subspace-based semiblind channel estimation in uplink OFDMA systems.IEEE Trans.on Broadcasting,2010,56(1):58-65.

    [15]Y.Li,W.E.Ryan.Mutual-information-based adaptive bitloading algorithms for LDPC-coded OFDM.IEEE Trans.on Wireless Communications,2007,6(5):1670-1680.

    [16]A.Goldsmith.Wireless communications.Cambridge:Cambridge University Press,2005.

    [17]K.Rosen.Elementary number theory and its applications.5th ed.New York:Addison-Wesley,2005.

    [18]S.M.Kay.Fundamentals of statistical signal processing:estimation theory.Englewood Cliffs:Prentice-Hall,1993.

    [19]ETSIEN 302 307.Digitalvideo broadcasting(DVB);second generation framing structure,channel coding and modulation systems for broadcasting,interactive services,news gathering and other broadband satellite applications(DVB-S2).Geneva, Switzerland:European Broadcasting Union,2009.

    [20]J.D.Gorman,A.O.Hero.Lower bounds for parametric estimation with constraints.IEEE Trans.on Information Theory, 1990,26(6):1285-1301.

    [21]P.Stoica,B.C.Ng.On the Cramer-Rao bound under parametric constraints.IEEE SignalProcessing Letters,1998,5(7): 177-179.

    [22]B.M.Sadler,R.J.Kozick,T.Moore.Bounds on bearing and symbolestimation with side information.IEEE Trans.on SignalProcessing,2001,49(4):822-834.

    [23]R.G.Gallager.Circularly-symmetric Gaussian random vectors.http://www.rle.mit.edu/rgallager/documents/CircSym-Gauss.pdf.

    [24]B.Muquet,M.de Courville,P.Duhamel.Subspace-based blind and semi-blind channel estimation for OFDM systems. IEEE Trans.on SignalProcessing,2002,50(7):1699-1712.

    [25]T.Ottosson,A.Piatyszek.IT++Version 4.2.http://itpp. sourceforge.net/.

    Biographies

    Xu Wang was born in 1986.He is currently a Ph.D.candidate at Fudan University,Shanghai, China.He is a studentmember of the IEEE Communications Society and Signal Processing Society.His research interests include blind channelestimation and synchronization in OFDMsystems.

    E-mail:xwang.fdu@gmail.com

    Tao Yang was born in 1972.He received his B.S.degree from Shaanxi Institute of Technology in 1994 and M.S.degree from Shandong University in 2000,both in automation.He received his Ph.D.degree in control theory and application from Shanghai Jiaotong University in 2004. In 2007,He joined Fudan University,where he is currently an associate professor.His research interests include signal processing for wireless communications,intelligent signalprocessing,network information sensing and fusion.

    E-mail:taoyang@fudan.edu.cn

    Bo Hu was born in 1968.He received his B.Sc.and Ph.D.degrees in electronic engineering from Fudan University,Shanghai,China in 1990 and 1996,respectively.He is currently a professor with the Department of Electronic Engineering,Fudan University and serves as the vice dean of Information Science and Technology School.He is a memberofthe IEEE Communications Society and Signal Processing Society.His research interests include blind signalprocessing,digital image processing,wireless communications,and digital system design.

    E-mail:bohu@fudan.edu.cn

    10.1109/JSEE.2015.00028

    Manuscriptreceived January 22,2014.

    *Corresponding author.

    This work was supported by the National Science and Technology Major Project of China(2013ZX03003006-003).

    国产精品国产三级国产专区5o| 国产成人一区二区在线| 精品国产露脸久久av麻豆| 少妇人妻一区二区三区视频| 天美传媒精品一区二区| 少妇人妻精品综合一区二区| 成年女人在线观看亚洲视频 | 美女内射精品一级片tv| 欧美成人午夜免费资源| 亚洲在久久综合| 国产免费一级a男人的天堂| 3wmmmm亚洲av在线观看| 亚洲,一卡二卡三卡| 久久精品夜色国产| 精品久久久久久久人妻蜜臀av| 人体艺术视频欧美日本| 免费不卡的大黄色大毛片视频在线观看| 一级毛片久久久久久久久女| av一本久久久久| 22中文网久久字幕| 美女脱内裤让男人舔精品视频| 精品酒店卫生间| 搞女人的毛片| 色综合色国产| 美女脱内裤让男人舔精品视频| 国产永久视频网站| 日韩精品有码人妻一区| 一级毛片 在线播放| 国产男女内射视频| 青青草视频在线视频观看| av卡一久久| 亚洲国产色片| 又爽又黄无遮挡网站| 男女那种视频在线观看| 久久久久久久久久成人| av福利片在线观看| 亚洲熟女精品中文字幕| 亚洲国产精品成人综合色| 嘟嘟电影网在线观看| 久久久a久久爽久久v久久| 欧美日韩亚洲高清精品| 久久久午夜欧美精品| 久久久久久久久久久免费av| av天堂中文字幕网| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美,日韩| 国产毛片a区久久久久| 欧美日韩亚洲高清精品| 六月丁香七月| 精品一区在线观看国产| 99九九线精品视频在线观看视频| 王馨瑶露胸无遮挡在线观看| 免费黄色在线免费观看| 午夜精品国产一区二区电影 | 亚洲av中文字字幕乱码综合| 天天一区二区日本电影三级| 国产老妇女一区| 中文天堂在线官网| 精品国产三级普通话版| 五月伊人婷婷丁香| av福利片在线观看| 久久精品国产亚洲av涩爱| 久久久久久久久久成人| av女优亚洲男人天堂| 在线观看免费高清a一片| 春色校园在线视频观看| 韩国高清视频一区二区三区| videos熟女内射| 免费av观看视频| 国产午夜福利久久久久久| 少妇人妻久久综合中文| 视频中文字幕在线观看| 水蜜桃什么品种好| 久久精品夜色国产| 久热久热在线精品观看| 91久久精品电影网| 色网站视频免费| 制服丝袜香蕉在线| 欧美三级亚洲精品| 91久久精品电影网| 欧美日韩一区二区视频在线观看视频在线 | 男人狂女人下面高潮的视频| 久久精品国产a三级三级三级| 国产欧美日韩精品一区二区| 岛国毛片在线播放| 亚洲av中文av极速乱| 久久久成人免费电影| 亚洲av电影在线观看一区二区三区 | 又爽又黄无遮挡网站| 18+在线观看网站| 亚洲真实伦在线观看| 国产精品女同一区二区软件| 国产欧美日韩一区二区三区在线 | 性色avwww在线观看| 涩涩av久久男人的天堂| 在线观看av片永久免费下载| 国产高清国产精品国产三级 | 国产一区二区三区综合在线观看 | av国产久精品久网站免费入址| 丝袜喷水一区| 大话2 男鬼变身卡| 久久久久久久久久久免费av| 国产精品av视频在线免费观看| 亚洲精品视频女| 国产精品成人在线| 三级国产精品欧美在线观看| 亚洲真实伦在线观看| 久久99热这里只有精品18| 久久精品综合一区二区三区| 97热精品久久久久久| 国产老妇伦熟女老妇高清| 成人亚洲精品av一区二区| 成人午夜精彩视频在线观看| 欧美区成人在线视频| 亚洲成人精品中文字幕电影| 18禁在线播放成人免费| 99热网站在线观看| 亚洲熟女精品中文字幕| av播播在线观看一区| 久久精品国产亚洲av天美| 99热这里只有是精品50| 成人午夜精彩视频在线观看| 国产一区二区三区综合在线观看 | 丝袜美腿在线中文| 亚洲精品国产av成人精品| 国产男人的电影天堂91| 少妇丰满av| 国产欧美另类精品又又久久亚洲欧美| 丰满乱子伦码专区| 亚洲欧美清纯卡通| 晚上一个人看的免费电影| 赤兔流量卡办理| 在线看a的网站| 亚洲欧洲国产日韩| av一本久久久久| 成年人午夜在线观看视频| 亚洲天堂国产精品一区在线| 久久鲁丝午夜福利片| 亚洲av中文av极速乱| 在线观看三级黄色| 性色avwww在线观看| 欧美潮喷喷水| 2022亚洲国产成人精品| 性色avwww在线观看| 秋霞伦理黄片| 视频区图区小说| 最近手机中文字幕大全| 国产毛片在线视频| 久久久成人免费电影| 中文乱码字字幕精品一区二区三区| 国产又色又爽无遮挡免| 亚洲精品乱码久久久久久按摩| 亚洲精品视频女| 最近2019中文字幕mv第一页| 美女视频免费永久观看网站| 国产久久久一区二区三区| 日韩一区二区视频免费看| 国产伦理片在线播放av一区| 亚洲欧美成人精品一区二区| 在线a可以看的网站| 一个人看的www免费观看视频| 亚洲天堂av无毛| 97在线视频观看| 最后的刺客免费高清国语| 国产爽快片一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 国产精品精品国产色婷婷| 国产精品久久久久久精品电影小说 | 男插女下体视频免费在线播放| 久久久久久久国产电影| 国产探花极品一区二区| 免费高清在线观看视频在线观看| 欧美另类一区| 简卡轻食公司| 日韩一区二区视频免费看| 国产女主播在线喷水免费视频网站| 国产精品无大码| 亚洲av二区三区四区| 寂寞人妻少妇视频99o| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 97热精品久久久久久| 插阴视频在线观看视频| 成年免费大片在线观看| 亚洲av成人精品一区久久| 在线天堂最新版资源| 尤物成人国产欧美一区二区三区| 毛片一级片免费看久久久久| 综合色丁香网| 美女内射精品一级片tv| 亚洲av免费高清在线观看| 成年免费大片在线观看| 18+在线观看网站| 久久热精品热| 亚洲国产欧美人成| 午夜爱爱视频在线播放| 国产免费又黄又爽又色| 在线天堂最新版资源| 久久久久久久久大av| 大片免费播放器 马上看| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱| 亚洲真实伦在线观看| 国产亚洲午夜精品一区二区久久 | 国产精品福利在线免费观看| 色婷婷久久久亚洲欧美| 国产男女超爽视频在线观看| 免费大片18禁| 国产伦精品一区二区三区四那| 久久久久精品久久久久真实原创| 青春草国产在线视频| 熟女电影av网| 一个人观看的视频www高清免费观看| 欧美潮喷喷水| 搡女人真爽免费视频火全软件| 欧美xxxx性猛交bbbb| 伦理电影大哥的女人| 国产黄a三级三级三级人| 午夜精品国产一区二区电影 | 性色avwww在线观看| 中国美白少妇内射xxxbb| 国产成人免费观看mmmm| 久久久久久久大尺度免费视频| 国产免费一级a男人的天堂| 日本av手机在线免费观看| 午夜精品一区二区三区免费看| 精华霜和精华液先用哪个| 日韩亚洲欧美综合| 国产男女超爽视频在线观看| 久久精品久久精品一区二区三区| 中国美白少妇内射xxxbb| 各种免费的搞黄视频| 天堂俺去俺来也www色官网| 免费观看在线日韩| 好男人视频免费观看在线| 18禁在线无遮挡免费观看视频| 亚洲丝袜综合中文字幕| 爱豆传媒免费全集在线观看| 国产久久久一区二区三区| 日日啪夜夜撸| 下体分泌物呈黄色| 肉色欧美久久久久久久蜜桃 | 天堂中文最新版在线下载 | 国产午夜精品一二区理论片| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产鲁丝片午夜精品| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 国产黄片美女视频| 国产黄片视频在线免费观看| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 久久精品久久久久久久性| 在线看a的网站| 性插视频无遮挡在线免费观看| 国产又色又爽无遮挡免| 麻豆国产97在线/欧美| 嘟嘟电影网在线观看| 久久热精品热| 国产精品熟女久久久久浪| 白带黄色成豆腐渣| av国产精品久久久久影院| 久久精品熟女亚洲av麻豆精品| 又大又黄又爽视频免费| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| 赤兔流量卡办理| 亚洲精品色激情综合| 在线亚洲精品国产二区图片欧美 | 亚洲精品乱码久久久v下载方式| 日产精品乱码卡一卡2卡三| 美女cb高潮喷水在线观看| 亚洲国产日韩一区二区| 免费大片18禁| 午夜免费男女啪啪视频观看| 九色成人免费人妻av| 伊人久久国产一区二区| 日本wwww免费看| 热re99久久精品国产66热6| 交换朋友夫妻互换小说| 亚洲精品日本国产第一区| 夫妻性生交免费视频一级片| 男男h啪啪无遮挡| 日日摸夜夜添夜夜添av毛片| 久久久国产一区二区| 高清在线视频一区二区三区| 日本wwww免费看| 91精品国产九色| 汤姆久久久久久久影院中文字幕| 久久国内精品自在自线图片| 国产av码专区亚洲av| 国产免费视频播放在线视频| 人妻制服诱惑在线中文字幕| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 国产视频首页在线观看| 成人欧美大片| 精品午夜福利在线看| 免费黄网站久久成人精品| 国产精品福利在线免费观看| 色视频www国产| av网站免费在线观看视频| 午夜福利视频1000在线观看| 最近中文字幕2019免费版| 亚洲色图综合在线观看| 免费大片黄手机在线观看| 在线观看国产h片| 秋霞伦理黄片| 欧美国产精品一级二级三级 | 国产91av在线免费观看| 在线观看一区二区三区| 免费黄网站久久成人精品| 精品人妻视频免费看| 免费黄色在线免费观看| 久久久午夜欧美精品| 午夜爱爱视频在线播放| 午夜福利高清视频| 午夜爱爱视频在线播放| 在线观看av片永久免费下载| 亚洲欧美一区二区三区国产| 亚洲激情五月婷婷啪啪| 少妇熟女欧美另类| 免费看a级黄色片| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 水蜜桃什么品种好| 亚洲精品自拍成人| 少妇 在线观看| 国产爱豆传媒在线观看| 欧美xxxx性猛交bbbb| 国产高潮美女av| 亚洲最大成人手机在线| 肉色欧美久久久久久久蜜桃 | 午夜日本视频在线| 亚洲欧美日韩另类电影网站 | 26uuu在线亚洲综合色| 久久久色成人| 九草在线视频观看| 亚洲一级一片aⅴ在线观看| 激情五月婷婷亚洲| 春色校园在线视频观看| 亚洲精华国产精华液的使用体验| 又大又黄又爽视频免费| 日本一二三区视频观看| av线在线观看网站| 全区人妻精品视频| 九色成人免费人妻av| 欧美3d第一页| 久久久久久久久久人人人人人人| 一级毛片电影观看| 久久精品国产亚洲av天美| 日韩人妻高清精品专区| 久久6这里有精品| av在线老鸭窝| 少妇人妻一区二区三区视频| 亚洲四区av| 日本熟妇午夜| 午夜激情久久久久久久| 久热久热在线精品观看| 人妻夜夜爽99麻豆av| 久久97久久精品| 男人添女人高潮全过程视频| 又大又黄又爽视频免费| 国产69精品久久久久777片| freevideosex欧美| 女人被狂操c到高潮| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 亚洲精品久久久久久婷婷小说| 久久人人爽人人片av| 亚洲精品久久久久久婷婷小说| 99热全是精品| 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 欧美日韩在线观看h| 婷婷色av中文字幕| 少妇丰满av| 熟妇人妻不卡中文字幕| 亚洲综合色惰| 国产成人精品一,二区| 777米奇影视久久| 国产探花在线观看一区二区| 久久精品综合一区二区三区| 亚洲国产精品999| 一级二级三级毛片免费看| 国产成人一区二区在线| 女人十人毛片免费观看3o分钟| 国产成人精品福利久久| 一区二区三区免费毛片| 亚洲电影在线观看av| 禁无遮挡网站| 久久久久久九九精品二区国产| 亚洲欧美一区二区三区国产| 婷婷色麻豆天堂久久| 99热6这里只有精品| 免费看a级黄色片| 一级av片app| 少妇人妻一区二区三区视频| 高清毛片免费看| 99久久精品热视频| 国产精品麻豆人妻色哟哟久久| 大码成人一级视频| 小蜜桃在线观看免费完整版高清| 少妇裸体淫交视频免费看高清| 伊人久久精品亚洲午夜| 好男人视频免费观看在线| 国产有黄有色有爽视频| 高清欧美精品videossex| 97热精品久久久久久| 高清午夜精品一区二区三区| 简卡轻食公司| 中文天堂在线官网| 禁无遮挡网站| 可以在线观看毛片的网站| 99热全是精品| 小蜜桃在线观看免费完整版高清| 少妇人妻 视频| videossex国产| 亚洲无线观看免费| 有码 亚洲区| 国产综合懂色| 亚洲成人中文字幕在线播放| 一级黄片播放器| 日本黄大片高清| av国产久精品久网站免费入址| 日韩国内少妇激情av| 国产一区二区亚洲精品在线观看| 老女人水多毛片| 国产一区二区在线观看日韩| 国产视频内射| 成人毛片a级毛片在线播放| 欧美日韩国产mv在线观看视频 | kizo精华| 国产黄a三级三级三级人| 熟妇人妻不卡中文字幕| 各种免费的搞黄视频| 国产欧美日韩精品一区二区| 国产综合精华液| 99久久九九国产精品国产免费| 一级毛片我不卡| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 婷婷色综合大香蕉| av在线老鸭窝| 久久久精品欧美日韩精品| 久久鲁丝午夜福利片| 丰满少妇做爰视频| 日韩人妻高清精品专区| 国产v大片淫在线免费观看| 精品久久久久久电影网| 美女被艹到高潮喷水动态| av在线天堂中文字幕| 伦理电影大哥的女人| 高清欧美精品videossex| 亚洲精品日本国产第一区| 精品人妻偷拍中文字幕| 嘟嘟电影网在线观看| 免费av毛片视频| 亚洲三级黄色毛片| 综合色丁香网| 熟女电影av网| 免费在线观看成人毛片| 亚洲美女视频黄频| 欧美一级a爱片免费观看看| 一级毛片电影观看| 国产毛片a区久久久久| 婷婷色综合www| 亚洲精品亚洲一区二区| 狠狠精品人妻久久久久久综合| 丰满人妻一区二区三区视频av| 日韩欧美一区视频在线观看 | 噜噜噜噜噜久久久久久91| 国产探花极品一区二区| 午夜福利视频1000在线观看| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 精品一区二区免费观看| 日韩一区二区视频免费看| 黄色怎么调成土黄色| 国产高清不卡午夜福利| 丝袜脚勾引网站| 亚洲自拍偷在线| 久久久久久久久久久丰满| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 一本久久精品| 亚洲精品乱码久久久久久按摩| 亚洲av不卡在线观看| 国产成年人精品一区二区| 国产欧美日韩精品一区二区| 亚洲,一卡二卡三卡| 午夜福利在线观看免费完整高清在| 少妇 在线观看| 男女下面进入的视频免费午夜| 国产日韩欧美在线精品| 色视频在线一区二区三区| 国产av码专区亚洲av| 少妇人妻精品综合一区二区| 一区二区av电影网| 80岁老熟妇乱子伦牲交| 免费观看无遮挡的男女| 成人毛片a级毛片在线播放| 国产v大片淫在线免费观看| 一本色道久久久久久精品综合| 午夜免费观看性视频| 日本av手机在线免费观看| 亚洲电影在线观看av| 国产视频内射| 中国三级夫妇交换| 色5月婷婷丁香| 国产免费一区二区三区四区乱码| 成人毛片a级毛片在线播放| 18禁动态无遮挡网站| xxx大片免费视频| 久久久欧美国产精品| 在线观看免费高清a一片| 91久久精品电影网| 狠狠精品人妻久久久久久综合| 大片电影免费在线观看免费| 免费大片黄手机在线观看| 在线 av 中文字幕| 日韩中字成人| 可以在线观看毛片的网站| 欧美zozozo另类| 交换朋友夫妻互换小说| 成年av动漫网址| 国产av不卡久久| 九草在线视频观看| 黄色视频在线播放观看不卡| 最新中文字幕久久久久| 天堂网av新在线| 观看美女的网站| 日本-黄色视频高清免费观看| 女人被狂操c到高潮| 国产成年人精品一区二区| 亚洲在久久综合| 老司机影院成人| 免费观看a级毛片全部| 欧美97在线视频| 亚洲,一卡二卡三卡| 亚洲av欧美aⅴ国产| 成年av动漫网址| 丰满乱子伦码专区| 亚洲成人av在线免费| 免费在线观看成人毛片| 中国三级夫妇交换| 欧美激情国产日韩精品一区| 五月天丁香电影| 久久精品国产自在天天线| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 男人舔奶头视频| 97在线人人人人妻| 久久人人爽av亚洲精品天堂 | 日韩av免费高清视频| 岛国毛片在线播放| 最近的中文字幕免费完整| 国产精品久久久久久精品电影| 99久久精品一区二区三区| 18禁在线无遮挡免费观看视频| 国产精品国产三级专区第一集| 久久久a久久爽久久v久久| 色视频在线一区二区三区| 我的老师免费观看完整版| 99热这里只有精品一区| 狂野欧美激情性xxxx在线观看| 国产有黄有色有爽视频| 国产一级毛片在线| 五月玫瑰六月丁香| 国产毛片a区久久久久| 97精品久久久久久久久久精品| 国产成人免费观看mmmm| 十八禁网站网址无遮挡 | 春色校园在线视频观看| 亚洲成人中文字幕在线播放| 久热这里只有精品99| 日韩欧美精品免费久久| av播播在线观看一区| 夜夜爽夜夜爽视频| 国产精品久久久久久av不卡| 蜜臀久久99精品久久宅男| 国产成人精品一,二区| 国产成人免费无遮挡视频| 神马国产精品三级电影在线观看| 又黄又爽又刺激的免费视频.| av国产精品久久久久影院| 久久精品人妻少妇| 中文在线观看免费www的网站| 校园人妻丝袜中文字幕| 91久久精品电影网| 中文字幕免费在线视频6| 在线观看三级黄色| 欧美日本视频| 又大又黄又爽视频免费| 高清欧美精品videossex| av在线蜜桃| 国产人妻一区二区三区在| 日韩av不卡免费在线播放| 超碰97精品在线观看| 日韩制服骚丝袜av| 免费人成在线观看视频色| av在线天堂中文字幕| 精品国产一区二区三区久久久樱花 | 中国美白少妇内射xxxbb| 91久久精品国产一区二区成人| 99视频精品全部免费 在线| 在线 av 中文字幕| 只有这里有精品99| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 人人妻人人看人人澡| 91久久精品国产一区二区成人| 亚洲电影在线观看av| 久久精品国产亚洲网站|