• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analysis of detaching and wrinkling of mechanically lined pipe during its spooling-on stage to the reel

    2015-12-22 09:23:09TianfengZhaoZhihuiHu

    Tianfeng Zhao?,Zhihui Hu

    aCollege of Mechanical and Transportation Engineering,China University of Petroleum,Beijing 102249,China

    bEngineering Design Institute,CNPC Offshore Engineering Company Limited,Beijing 100028,China

    Numerical analysis of detaching and wrinkling of mechanically lined pipe during its spooling-on stage to the reel

    Tianfeng Zhaoa,?,Zhihui Hub

    aCollege of Mechanical and Transportation Engineering,China University of Petroleum,Beijing 102249,China

    bEngineering Design Institute,CNPC Offshore Engineering Company Limited,Beijing 100028,China

    H I G H L I G H T S

    ?Quasi 2D models simulating the gripping stresses preserved in the mechanically lined pipe(MLP).

    ?Critical spooling-on curvatures prediction for MLP liner-detaching.

    ?A comparative analysis for the liner wrinkling behaviors of MLPs with different wall thicknesses of outer layers.

    A R T I C L E I N F O

    Article history:

    Accepted 31 August 2015

    Available online 30 September 2015

    Mechanically lined pipe

    Detaching

    Wrinkling

    Spooling-on

    Critical curvature

    The structural behavior of mechanically lined pipes(MLPs)during the spooling-on phase is investigated in this paper,motivated by their promising offshore applications relying on reel installation.By applying quasi 2D models,we first investigated the gripping stresses preserved in the MLP after the hydraulic expansion manufacturing process and the detachment of the liner under spooling-on curvatures. Furthermore,a comparative 3D finite element(FE)analysis for the liner wrinkling behaviors of MLP with different wall thicknesses of outer layers was performed and indicated that when the wall thickness of outer layer increases from 14.3 mm to 17.9 mm,MLP’s critical spooling-on curvature increased more than 47%,reaching 0.1432 rad/m.

    ?2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/ by-nc-nd/4.0/).

    1.Introduction

    When compared against added-corrosion inhibitors for transportation,or laying submarine pipelines made of corrosion resistant alloys,mechanically lined pipes(MLPs)have obvious economic benefits for offshore exploitations in the strong corrosive environments found in oil and gas fields.MLP is a double-walled pipe,consisting of a load-bearing,high-strength,low-alloy carbon steel outer layer,lined with a thin-walled sleeve made from a corrosion-resistant material[1–3].However,due to high welding difficulty and low welding efficiency,a traditional s-lay approach requires a longer offshore operation time for the installation of MLP,which restricts the application ofthis type oftubularproduct. The industry believes that for MLP,the most efficient installation method is reel-laying,which requires welding and reeling on land, and then unwinding and installing on site at sea.

    However,during the spooling-on phase,when MLPs are exposed to bending,the thin liner may start to detach and wrinkle, as indicated by full-scale tests[4,5],as well as finite element(FE) analyses performed by Hilberink et al.[6,7],Mair[8],Hilberink[9, 10],Yuan and Kyriakides[11]and some of the approximate analytical solutions in the works of Vedeld et al.[12]and Vasilikis and Karamanos[13].Vasilikis and Karamanos[13]used the FE model to study the elastic detachment of the liner in an MLP and gained considerable insight on wrinkling.

    Subsea 7 and BUTTING had launched a joint research project on the feasibility and significant advantages of installing MLP using the reel-laying method[14].In MLP bending experiments implemented by Focke[5](Fig.1(a))and Hilberink [9](Fig.1(b)),a total of nine test strings is used to demonstrate that by applying internal pressure,a high quality lined pipe could be installed on the seabed fully fit-for-purpose with no formation of any wrinkles.

    All studies mentioned above have indicated that to employ reel installation of MLP,the key is to solve the possible detaching, wrinkling,and collapsing of the liner layer during the spoolingon phase.Furthermore,the specific behavior of MLP during thereel-laying installation needs careful examination and testing to understand the influence of the global plastic deformation caused by bending on the mechanical contact between the liner and the outer layer,as well as the capacity on the liner to survive the reeling process without local buckling.Motivated by this challenge,significant efforts have been undertaken by industrial and academic researchers to establish the extent to which lined pipe can be safely bent,to identify the main factors that influence liner detaching or wrinkling,and also to find ways to prevent any deformation or detachment within the pipe.

    This paper begins with modeling the gripping force of the MLPs, focusing on determining the critical curve,which causes liner detachment and wrinkling during the spooling-on phase.The postbuckling responses ofliner wrinkling are also investigated by 3DFE models in this paper,and we include a comparative analysis on the wall thickness influence of MLP’s outer layer.

    Fig.1.MLP bending experiments.(a)Liner detachment[5]and(b)wrinkled liner[9].

    2.Initial stress states of MLPs

    Several manufacturing techniques exist to produce MLPs. However,the most common technique employed is the hydraulic expansion method.During this manufacturing process,hydraulic pressure is applied to initiate plastic deformation ofthe liner;then, the pressure causes elastic deformation of the outer layer to seal the gap between the two pipe layers,which creates a rebounding and squeezing of the outside carrier pipe as it contracts.

    During the hydraulic inflation process,the liner needs to be loaded and unloaded together with the outer layer;thus,elastic rebounding of the liner will always cause some loss of gripping force.In addition,because the outside carbon steel pipe cannot be deformed plastically in the manufacturing process,and the unloading of hydraulic inflation process is performed before the internal wall of carbon steel pipe begins to yield,a gripping force of MLPs exists.In this study,a typical MLP with geometric and material parameters similar to Focke’s studies are applied:(1)an outer layer made of X65 carbon steel(with outside diameter of 323.9 mm and wall thickness of 17.9 mm)and(2)a liner made of stainless steel Alloy 825(with outside diameter of 288.0 mm and wall thickness of 3 mm).

    The real stress–plastic strain curves for X65 carbon steel and stainless steel Alloy 825 obtained from uniaxial tensile tests(as shown in Fig.2)are used for the quasi 2D FE model.For X65 carbon steel,the elastic modulus is 210 000 MPa,Poisson’s ratio is 0.3,and yield stress is 448 MPa,and for stainless steel Alloy 825 used for the liner,the elastic modulus is 193000 MPa,Poisson’s ratio is 0.3, and yield stress is 296 MPa.

    FE methods are employed to simulate the gripping force induced in a hydraulic expansion-manufactured MLP.Four-node reduced-integration shell elements(S4R)are employed for the modeling of the thin-walled liner,whereas 8-node brick elements (C3D8R)are used to simulate the thick-walled outer layer.

    Fig.2.Real stress–plastic strain curves for the outer layer and liner materials.

    Assuming no variation of loading and deformation in the longitudinal direction of the pipe,a quasi 2D model with normal hard contact between two pipe layers is adequate to model the hydraulic inflation process and estimate the gripping force between the two layers.A 0.1 m MLP segment is modeled to simulate the initial stress of the MLP and its detaching during the bending.

    Through a loading–unloading analysis,the principal stresses of the outer layer and the liner induced by hydraulic expansion pressures(HEP)from 40 to 60 MPa can be acquired,as well as the final residual gripping stress(RGS)preserved in the layer interface of MLP,which are listed in Table 1.

    For the liner,different HEP values bring almost the same unloading von Mises stress because of the plastic deformation of stainless steel Alloy 825 in the manufacturing process.Moreover, the liners are rarely influenced by HEP values after unloading the final principal stresses.For the outer layer of MLP,a higher HEP value means a greater internal wall stress of outer layer and a greater contact stress between two layers in the hydraulic expansion loading process.After unloading of HEP,the internal wallstresses ofouter layer and RGSes are approximate for different HEP values.

    Therefore,increasing HEP is not an effective approach to enhance bonding strength of the MLP,which is highly dependent upon the mechanical properties of the liner itself.

    3.Detachment of the liner when spooling an MLP onto a reel

    Generally,the bending of the composite structure may lead to differential ovalization and eventual separation of part of the inner layer from the outer layer.The reeling process imposes high plasticstrains(due to bending)in the pipe,which may cause unacceptable liner detachment and wrinkling in MLP.

    Herein,we discuss the possible detaching between the liner and outer layer and approach the problemnumerically,using nonlinear FEs to simulate liner’s deformation and its interaction with the outer layer.Stresses and strains are monitored throughout the deformation stage,detecting possible detachment ofthe liner from the outer layer.

    C3D8R brick elements and S4R shell elements are employed to model the outer layer and the liner respectively.Bending moment was applied to a reference node coupling with one section of the outer layer when another section of the outer layer is constrained by a symmetry boundary condition.During the analysis the rotations of the reference node were recorded along with the bending moment applied.

    Figures 3 and 4 demonstrate the contact opening contour between two pipe layers and the cumulative plastic strain contour of the outer layer at the detaching increment in the bending analysis followed the hydraulic inflation process,in which 50 MPa HEP is assumed and the RGS between pipe layers is 6.74 MPa.

    Under elastoplastic conditions there is a nonlinear relationship between the reeling curvature of MLP and the bending moment loaded.As the reeling curvature increases the contact stress between the liner and the outer layer drops until the off-contact gap appears,which is shown in Fig.5.

    When the reeling curvature of MLP reaches 0.117 rad/m at 6th increment,detaching appears followed by an increase of the reeling curvature and the off-contact gap of the detachment is enlarged.Figure 6 records the bending stress and cumulative plastic strain variation induced in the liner and outer layer during the reeling curvature increase process.

    Figure 6 also indicates that together with the curvature growth in a reeling process,the bending stress and cumulative plastic strain of outer layer can rapidly increase,but those in the liner rarely change,most likely because the strain hardening has already begun from the hydraulic expansion process.

    Generally,for a reeling-up process,the permitted cumulative plastic strain of the outer layer is 2.5%,which had already successfully serviced as a practical engineering standard in several Technip’s reel-laying projects;thus,the reel diameter is designed for such a requirement.FE analysis of this paper demonstrates that when the cumulative plastic strain of the outer layer of this test MLP reaches 2.5%,detachment already occurs,and liner wrinkling may also take place.

    Table 1Stress analysis results for manufacturing process of MLPs.

    Fig.3.The contact opening between two pipe layers at the incrementofdetaching.

    Fig.4.The cumulative plastic strain of the carrier pipe at the increment of the liner beginning detaching.

    Fig.5.Bending moment,contact stress and off-contact gap in MLP as the reeling curvature of MLP increases.

    Fig.6.Bending stress and cumulative plastic strain induced in the liner and outer layer as the reeling curvature of MLP increases.

    Fig.7.The contact stress distribution between two pipe layers of the test MLP when plastic strain upper limit of the outer layer reaches.

    4.Winkling behavior of the liner when spooling an MLP onto a reel

    A 3D FE model for the wrinkling behavior analysis was also developed utilizing C3D8R brick elements to model the outer layer and S4R shell elements to model the liner.Geometric and material parameters were same as those in the previous 3D model for detachment analysis,and a modified Riks algorithm was used to analyze the wrinkling response of MLP during the spooling-on stage of the MLP.

    Herein,we discuss the scenario when spooling the MLP onto a reelin allorsubstantialabsence ofinternalpressure above ambient pressure in the MLP.As Riks analysis reached the 52th increment, the cumulated equivalent plastic strain in the outer layer of MLP reached 2.5%,which is the upper limit of plastic strain permitted by recent reeling-lay criteria(API spec 5 LD,2009 and DNV-OSF101,2010).This results in a permitted maximum MLP spoolingon curvature,called criticalspooling-on curvature,of0.1867 rad/m for the test MLP.We found that the liner already wrinkled with a cumulated equivalent plastic strain 3.61%.Figure 7 shows the contact stress distribution between the two pipe layers,in which corrugated detachment appears.For a spooling-on process before reel-laying operation,above liner detaching and wrinkling are also not permitted and these special requirements drop the critical spooling-on curvature of the test MLP to 0.1432 rad/m if no inner pressure is employed in the spooling-on process.

    A comparative analysis is carried out when the wall thickness of the MLP outer layer changed to 14.3 mm and the outer diameter of 3 mm liner correspondingly increased,whereas other geometric and material parameters stayed the same.As Riks analysis reached the 19th increment,the cumulated equivalent plastic strain of the MLP out pipe already reached 2.6%,exceeding the upper limit of plastic strain.Thus,the analysis indicates that the spooling-on critical curvature of MLP with 14.3 mm wall thickness outer layer is less than 0.0974 rad/m.For this MLP,the critical spooling-on curvature decided by liner wrinkling is 0.1086 rad/m,so the final critical curvature can select 0.0974 rad/m.

    For a comparative of the two MLP examples,Fig.8 provides relationship curves of the spooling-on curvature and the spoolingon bending moment.Figure 9 displays the wrinkling deformations and the final von Mises stress distributions of the liners under the 0.1867 rad/m spooling-on curvature.

    5.Conclusions

    1.The quasi-2DFE models have proven to be effective in modeling the manufacturing RGS or predicting the bending detachment of the MLP if plastic properties of bi-materials are fully taken into account.However,quasi-2D models are not sufficient enough to analyze the liner wrinkling behavior of MLPs for the possible different buckling modes.Thus,a 3D FE model is necessary.

    2.Based on the hydraulic expansion manufacturing process, expansion pressure is not a sufficiently sensitive parameter in enhancing the final bonding force between the two layers of MLPs.The elastic rebound of the outer layer can only generate limited restriction on the liner,which needs to be assembled inside the outer layer before hydraulic expansion is performed. Thus,increasing RGS is not a feasible approach to make the MLPs reelable.In the bending process,the critical point of MLP rapidly loses RGS and begins detaching.

    3.For a common pipeline to reel-laying,the critical spooling-on curvature means that the cumulated equivalent plastic strain reaches the upper limit(2.5%for most offshore criteria),but for an MLP,the criticalspooling-on curvature is the minimumvalue that may reach the upper-limit of plastic strain for the outer layer,liner detaching,or liner wrinkling.Taking the two 3D FE analyses as examples,MLP with outer layer of 17.9 mm wall thickness has a critical spooling-on curvature of 0.1432 rad/m, which depends on liner detaching and wrinkling.However,the same MLP with outer layer of 14.3 mm wall thickness has a critical spooling-on curvature of 0.0974 rad/m,which depends on the cumulated equivalent plastic strain of the outer layer.

    Fig.8.Relationship curves of MLP spooling-on curvature and spooling-on bending moment for test MLPs.

    Acknowledgments

    This study was supported by the Science Foundation of China University of Petroleum,Beijing(2462015YQ0415)and theSpecialized Research Fund for the Doctoral Program of Higher Education of China(20120007120002).

    Fig.9.Different wrinkling deformations and von Mises stress distributions of the liners of two test MLPs under 0.1867 rad/m spooling-on curvature.(a)Test MLP with 14.3 mm outer layer.(b)Test MLP with 17.9 mm outer layer.

    References

    [1]I.Rommerskirchen,T.Schuller,K.Blachinger,et al.,New liner materials used in BuBi-pipes,in:Proc.Stainless Steel World,KCI Publishing B.V., ISBN:9073168201,2003,pp.49–53.

    [2]A.C.De Koning,H.Nakasugi,P.Li,TFP and TFT back in town(Tight fit CRA lined pipe and tubing),in:Stainless Steel World,2003,pp.53–61.Jan./Feb.

    [3]X.Wang,P.Li,R.Wang,Study on hydro-forming technology of manufacturing bimetallic CRA-lined pipe,Int.J.Mach.Tools&Manuf.45(2005)373–378.

    [4]E.S.Focke,A.M.Gresnigt,J.Meek,et al.,The Influence of Heating of the Liner Pipe During the Manufacturing Process of Tight Fit Pipe,ISOPE,California, 2006.

    [5]E.Focke,Reeling of tight fit pipe(Ph.D.thesis),University of Delft,2007.

    [6]A.Hilberink,A.M.Gresnigt,L.J.Sluys,Liner wrinkling of lined pipe under compression:a numerical and experimental investigation,in:Proc.29th Int’l Conf.Ocean,Offshore&Arctic Eng.,OMAE2010-20285,Shanghai,June,2010. [7]A.Hilberink,A.M.Gresnigt,L.J.Sluys,Mechanical behaviour of lined pipe during bending:numerical and experimental results compared,in:Proc.30th Int’l Conf. Ocean, Offshore & Arctic Eng., OMAE2011-49434, Rotterdam,2011.

    [8] J. Mair, Mechanical lined pipe—installationUnderwater Technology Conference, B e r g e n , June 2011.

    [9]A.Hilberink,Mechanical behaviour of lined pipe(Ph.D.thesis),Delft Technical University, ISBN: 978-94-6186-012-5, 2011.

    [10] A. Hilberink, Liner wrinkling in a lined pipe-a finite element approach, Explor. Prod. Oil Gas Rev. 8 (2012) 1 2 6 – 1 2 8 .

    [11] L. Yuan, S. Kyriakides, Liner wrinkling and collapse of bi-material pipe under bending,Int.J.Solids Struct.51(2014)599–611.

    [12]K.Vedeld,H.Osnes,O.Fyrileiv,Analytical expressions for stress distributions in lined pipes:axial stress and contact pressure interaction,Mar.Struct.26 (2012) 1 – 2 6 .

    [13] D. Vasilikis, S.A. Karamanos, Mechanical behavior and wrinkling of lined pipes, Int.J.Solids Struct.49(2012)3432–3446.

    [14]G.A.Toguyeni,J.Banse,Mechanically lined pipe:Installation by reel-lay,OTC 23096,in:Offshore Technology Conference held in,Houston,Texas,USA, 30 April-3 May, 2012.

    23 August 2015

    ?.

    E-mail address:zhao_tianfeng@sohu.com(T.Zhao).

    http://dx.doi.org/10.1016/j.taml.2015.08.004

    2095-0349/?2015 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Solid Mechanics

    国产精品国产三级专区第一集| 亚洲av日韩精品久久久久久密 | 久久国产亚洲av麻豆专区| 一区在线观看完整版| 狠狠婷婷综合久久久久久88av| 欧美xxⅹ黑人| 亚洲精品久久久久久婷婷小说| 一边亲一边摸免费视频| 王馨瑶露胸无遮挡在线观看| 国产在视频线精品| 午夜91福利影院| 精品高清国产在线一区| 久久影院123| 国产成人精品在线电影| 精品人妻在线不人妻| 午夜视频精品福利| 欧美+亚洲+日韩+国产| 日韩 亚洲 欧美在线| 丝袜脚勾引网站| 欧美成人午夜精品| 97精品久久久久久久久久精品| 亚洲国产精品国产精品| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| 国产精品免费大片| 国产精品免费视频内射| h视频一区二区三区| 欧美xxⅹ黑人| 亚洲精品国产色婷婷电影| 国产黄色视频一区二区在线观看| 国产精品久久久av美女十八| 日韩一本色道免费dvd| 成人三级做爰电影| 狂野欧美激情性bbbbbb| 亚洲国产欧美日韩在线播放| 精品少妇一区二区三区视频日本电影| 久久女婷五月综合色啪小说| 欧美日韩亚洲综合一区二区三区_| 在线天堂中文资源库| 考比视频在线观看| 日本黄色日本黄色录像| 国产真人三级小视频在线观看| 欧美成人午夜精品| 丰满少妇做爰视频| 好男人视频免费观看在线| 一二三四在线观看免费中文在| 久久久久久久久免费视频了| 少妇粗大呻吟视频| 亚洲av日韩精品久久久久久密 | 国产免费视频播放在线视频| 欧美 日韩 精品 国产| 欧美黄色片欧美黄色片| 亚洲人成电影免费在线| 中文字幕高清在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦人伦偷精品视频| 最新在线观看一区二区三区 | 亚洲精品美女久久久久99蜜臀 | 亚洲av在线观看美女高潮| 性高湖久久久久久久久免费观看| 亚洲av男天堂| 老司机亚洲免费影院| 午夜影院在线不卡| 大话2 男鬼变身卡| 多毛熟女@视频| 亚洲午夜精品一区,二区,三区| 天天影视国产精品| 国产成人精品无人区| 91麻豆av在线| 久久人人爽人人片av| 亚洲精品一二三| 十八禁人妻一区二区| 国产片内射在线| 97精品久久久久久久久久精品| 国产一区有黄有色的免费视频| 亚洲男人天堂网一区| 亚洲精品美女久久久久99蜜臀 | 黄色怎么调成土黄色| 亚洲,一卡二卡三卡| 国语对白做爰xxxⅹ性视频网站| 老司机深夜福利视频在线观看 | 国产爽快片一区二区三区| 下体分泌物呈黄色| 黄色视频在线播放观看不卡| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 亚洲精品一区蜜桃| 国产精品久久久人人做人人爽| 岛国毛片在线播放| 国产成人精品无人区| 久久久国产一区二区| 丁香六月欧美| 99国产精品99久久久久| 亚洲人成电影免费在线| 精品一区在线观看国产| 亚洲色图综合在线观看| 在现免费观看毛片| 国产精品一区二区精品视频观看| 亚洲少妇的诱惑av| 亚洲成色77777| 嫁个100分男人电影在线观看 | 久久久久久久大尺度免费视频| 宅男免费午夜| 亚洲欧美精品自产自拍| av网站免费在线观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久蜜臀av无| 两个人看的免费小视频| 一本久久精品| 免费看av在线观看网站| 久久国产精品男人的天堂亚洲| 成年动漫av网址| 午夜免费男女啪啪视频观看| 考比视频在线观看| 国产熟女欧美一区二区| 最黄视频免费看| 视频区图区小说| 一本一本久久a久久精品综合妖精| 高清视频免费观看一区二区| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人啪精品午夜网站| av国产精品久久久久影院| 中文乱码字字幕精品一区二区三区| 纯流量卡能插随身wifi吗| 日韩欧美一区视频在线观看| 色网站视频免费| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 亚洲成人免费电影在线观看 | 久久99精品国语久久久| 肉色欧美久久久久久久蜜桃| 久久女婷五月综合色啪小说| 国产一区二区三区综合在线观看| 母亲3免费完整高清在线观看| 中文精品一卡2卡3卡4更新| 丰满迷人的少妇在线观看| 一区二区av电影网| 美女脱内裤让男人舔精品视频| 亚洲黑人精品在线| 欧美日韩福利视频一区二区| 欧美中文综合在线视频| 久久久国产一区二区| 丰满迷人的少妇在线观看| 中文字幕精品免费在线观看视频| 日本五十路高清| 国产成人精品久久久久久| 亚洲欧洲精品一区二区精品久久久| 国产无遮挡羞羞视频在线观看| 90打野战视频偷拍视频| 中文精品一卡2卡3卡4更新| 亚洲中文字幕日韩| 美女脱内裤让男人舔精品视频| 美女扒开内裤让男人捅视频| 少妇粗大呻吟视频| 人成视频在线观看免费观看| 精品第一国产精品| 久久人人97超碰香蕉20202| 欧美激情高清一区二区三区| 久久久久精品国产欧美久久久 | 999精品在线视频| 黄色一级大片看看| 亚洲精品久久午夜乱码| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 丰满少妇做爰视频| 久久人人97超碰香蕉20202| 国产成人一区二区在线| 亚洲av日韩在线播放| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 大香蕉久久网| svipshipincom国产片| 老汉色∧v一级毛片| 国产免费现黄频在线看| 69精品国产乱码久久久| 日韩中文字幕视频在线看片| av网站在线播放免费| 美国免费a级毛片| 超碰97精品在线观看| 日韩,欧美,国产一区二区三区| 成人黄色视频免费在线看| 亚洲精品国产av成人精品| 热99久久久久精品小说推荐| 18禁黄网站禁片午夜丰满| 成年人午夜在线观看视频| 人妻一区二区av| 老司机午夜十八禁免费视频| 建设人人有责人人尽责人人享有的| 性高湖久久久久久久久免费观看| 欧美大码av| 韩国精品一区二区三区| 亚洲精品日韩在线中文字幕| 一本久久精品| 国产欧美日韩精品亚洲av| 欧美黄色淫秽网站| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 1024香蕉在线观看| 国产免费福利视频在线观看| 国产99久久九九免费精品| 搡老岳熟女国产| 肉色欧美久久久久久久蜜桃| 操美女的视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲专区国产一区二区| 乱人伦中国视频| 香蕉丝袜av| bbb黄色大片| 国产成人免费观看mmmm| 国产成人精品久久二区二区免费| av视频免费观看在线观看| 欧美人与性动交α欧美精品济南到| 中文字幕av电影在线播放| 亚洲欧美清纯卡通| 老汉色∧v一级毛片| 考比视频在线观看| 亚洲成国产人片在线观看| 久久久久国产精品人妻一区二区| 丁香六月天网| 久久精品人人爽人人爽视色| 久久久久视频综合| 好男人电影高清在线观看| 亚洲黑人精品在线| 高清欧美精品videossex| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 日韩 亚洲 欧美在线| 亚洲av在线观看美女高潮| 黄片小视频在线播放| 国产精品成人在线| 亚洲欧美日韩高清在线视频 | 日韩熟女老妇一区二区性免费视频| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| 久久国产精品大桥未久av| 国产成人欧美在线观看 | 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 天天操日日干夜夜撸| √禁漫天堂资源中文www| 亚洲三区欧美一区| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 亚洲av电影在线观看一区二区三区| 久久久精品区二区三区| 亚洲人成网站在线观看播放| 国产女主播在线喷水免费视频网站| 国产国语露脸激情在线看| 亚洲自偷自拍图片 自拍| 久久鲁丝午夜福利片| 亚洲精品国产一区二区精华液| 成人国产一区最新在线观看 | 成年av动漫网址| 亚洲精品日韩在线中文字幕| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 啦啦啦中文免费视频观看日本| 国产av一区二区精品久久| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 亚洲五月婷婷丁香| 超碰成人久久| 成人亚洲欧美一区二区av| 精品第一国产精品| 美女午夜性视频免费| 又大又黄又爽视频免费| 亚洲精品一卡2卡三卡4卡5卡 | 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 成人18禁高潮啪啪吃奶动态图| 中文字幕亚洲精品专区| 黑丝袜美女国产一区| 观看av在线不卡| 丁香六月欧美| 美女中出高潮动态图| 欧美xxⅹ黑人| 日韩av免费高清视频| 国产视频一区二区在线看| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 在线观看www视频免费| 美女大奶头黄色视频| 亚洲欧美清纯卡通| 久久中文字幕一级| 王馨瑶露胸无遮挡在线观看| 久久精品人人爽人人爽视色| 国产免费视频播放在线视频| 美女高潮到喷水免费观看| 国产精品一区二区免费欧美 | 欧美xxⅹ黑人| 免费av中文字幕在线| 亚洲精品中文字幕在线视频| 亚洲精品一二三| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 女人高潮潮喷娇喘18禁视频| 中文字幕人妻丝袜制服| 操美女的视频在线观看| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 婷婷色av中文字幕| 国产精品成人在线| 性色av一级| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| 精品国产一区二区三区久久久樱花| 免费一级毛片在线播放高清视频 | 丝瓜视频免费看黄片| 午夜av观看不卡| 精品少妇一区二区三区视频日本电影| 久久精品成人免费网站| 久久综合国产亚洲精品| 午夜精品国产一区二区电影| 日本a在线网址| 9色porny在线观看| 国产欧美日韩一区二区三 | 欧美久久黑人一区二区| 亚洲av美国av| 色视频在线一区二区三区| 久久亚洲国产成人精品v| 一级毛片电影观看| 1024香蕉在线观看| 国产精品一区二区免费欧美 | 国产精品成人在线| 99热全是精品| 嫁个100分男人电影在线观看 | 人人妻人人澡人人看| 欧美日韩黄片免| 国产黄频视频在线观看| 亚洲精品国产区一区二| 99香蕉大伊视频| 国产亚洲一区二区精品| 亚洲色图 男人天堂 中文字幕| 欧美成人午夜精品| 国产色视频综合| 国产精品国产三级国产专区5o| 中国美女看黄片| a级毛片在线看网站| 手机成人av网站| 亚洲欧美精品自产自拍| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 美国免费a级毛片| 黑丝袜美女国产一区| 亚洲国产欧美网| 国产亚洲欧美在线一区二区| 丝袜美足系列| 夫妻性生交免费视频一级片| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 国语对白做爰xxxⅹ性视频网站| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 午夜福利免费观看在线| 99久久99久久久精品蜜桃| 波野结衣二区三区在线| 欧美日韩国产mv在线观看视频| 老司机影院毛片| 大片免费播放器 马上看| 国产三级黄色录像| 热re99久久国产66热| 国产一区二区激情短视频 | 人人妻,人人澡人人爽秒播 | 亚洲专区中文字幕在线| 国产成人av教育| 国产爽快片一区二区三区| 人人妻人人澡人人看| www.自偷自拍.com| 少妇人妻久久综合中文| 午夜福利视频在线观看免费| 亚洲综合色网址| avwww免费| 国产精品 欧美亚洲| 一区二区日韩欧美中文字幕| 亚洲av电影在线观看一区二区三区| 宅男免费午夜| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 天天躁日日躁夜夜躁夜夜| 人体艺术视频欧美日本| 老司机亚洲免费影院| 亚洲一码二码三码区别大吗| 97人妻天天添夜夜摸| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 18在线观看网站| 亚洲三区欧美一区| 欧美日韩一级在线毛片| 日本五十路高清| 一本色道久久久久久精品综合| 国产精品久久久av美女十八| 黑人猛操日本美女一级片| 蜜桃在线观看..| 久久热在线av| 国产精品.久久久| av国产久精品久网站免费入址| 国产男女超爽视频在线观看| 在现免费观看毛片| 婷婷色麻豆天堂久久| 一区二区三区激情视频| 国产欧美日韩综合在线一区二区| 亚洲伊人色综图| 一本—道久久a久久精品蜜桃钙片| 午夜影院在线不卡| 伦理电影免费视频| 国产一区二区三区综合在线观看| 午夜日韩欧美国产| 黄频高清免费视频| 国产精品久久久久久精品电影小说| 亚洲激情五月婷婷啪啪| 国产成人欧美| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| 国产亚洲午夜精品一区二区久久| 人人妻人人爽人人添夜夜欢视频| 精品高清国产在线一区| 大话2 男鬼变身卡| 国产精品国产三级国产专区5o| 成人黄色视频免费在线看| 91字幕亚洲| 菩萨蛮人人尽说江南好唐韦庄| 欧美av亚洲av综合av国产av| 精品一区在线观看国产| 国产在线视频一区二区| 精品少妇内射三级| 成年美女黄网站色视频大全免费| 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 中文字幕人妻丝袜一区二区| 亚洲 欧美一区二区三区| 亚洲中文av在线| 一本久久精品| 亚洲激情五月婷婷啪啪| 少妇粗大呻吟视频| 十分钟在线观看高清视频www| 国产精品麻豆人妻色哟哟久久| www.精华液| 亚洲国产精品999| 天堂8中文在线网| 九草在线视频观看| 美国免费a级毛片| 人成视频在线观看免费观看| 超碰97精品在线观看| 精品国产一区二区久久| 国产淫语在线视频| 久久热在线av| 久久国产精品大桥未久av| 老司机影院成人| 国产成人影院久久av| 少妇粗大呻吟视频| 一本色道久久久久久精品综合| 一区二区日韩欧美中文字幕| 国产99久久九九免费精品| 色网站视频免费| 手机成人av网站| 国产色视频综合| 亚洲av在线观看美女高潮| 色综合欧美亚洲国产小说| 欧美老熟妇乱子伦牲交| 丝袜美足系列| 老鸭窝网址在线观看| 丰满饥渴人妻一区二区三| 亚洲人成电影免费在线| 巨乳人妻的诱惑在线观看| 激情五月婷婷亚洲| 欧美日本中文国产一区发布| av电影中文网址| 久久天躁狠狠躁夜夜2o2o | 大码成人一级视频| 亚洲精品一二三| 真人做人爱边吃奶动态| 国产成人精品久久二区二区91| 亚洲五月色婷婷综合| 欧美日韩福利视频一区二区| 欧美在线黄色| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 一级黄片播放器| 免费在线观看黄色视频的| 欧美精品高潮呻吟av久久| av天堂久久9| videosex国产| 手机成人av网站| 日本色播在线视频| 无遮挡黄片免费观看| www.熟女人妻精品国产| 视频区欧美日本亚洲| a级毛片黄视频| 亚洲色图 男人天堂 中文字幕| videos熟女内射| 亚洲精品国产色婷婷电影| 五月开心婷婷网| 成年人午夜在线观看视频| 国产一区二区三区av在线| 丁香六月天网| 成人18禁高潮啪啪吃奶动态图| 国产精品一区二区在线观看99| 国产精品久久久久久精品电影小说| 亚洲熟女精品中文字幕| 免费少妇av软件| 亚洲av电影在线观看一区二区三区| 国产成人精品在线电影| 97精品久久久久久久久久精品| 视频区图区小说| 成年动漫av网址| 亚洲,一卡二卡三卡| 满18在线观看网站| 亚洲国产成人一精品久久久| 啦啦啦在线观看免费高清www| 99re6热这里在线精品视频| 一本久久精品| 久久九九热精品免费| 91成人精品电影| 成人18禁高潮啪啪吃奶动态图| 成人亚洲欧美一区二区av| 亚洲精品第二区| 精品久久久久久电影网| 国产精品国产av在线观看| 亚洲av片天天在线观看| 国产精品 国内视频| 自线自在国产av| 欧美另类一区| 欧美日本中文国产一区发布| 亚洲一区中文字幕在线| 亚洲人成电影免费在线| 欧美黑人精品巨大| 久久 成人 亚洲| 精品久久久精品久久久| 只有这里有精品99| 一个人免费看片子| 亚洲欧美日韩高清在线视频 | 欧美日韩综合久久久久久| 秋霞在线观看毛片| 十分钟在线观看高清视频www| 亚洲av美国av| 国产精品熟女久久久久浪| 麻豆国产av国片精品| 男人添女人高潮全过程视频| 丁香六月欧美| 久久天躁狠狠躁夜夜2o2o | 欧美少妇被猛烈插入视频| 成人亚洲精品一区在线观看| 国产黄色视频一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产不卡av网站在线观看| 午夜日韩欧美国产| 嫁个100分男人电影在线观看 | 国产精品久久久久久人妻精品电影 | 自拍欧美九色日韩亚洲蝌蚪91| 捣出白浆h1v1| 男人爽女人下面视频在线观看| 欧美人与性动交α欧美精品济南到| 美女午夜性视频免费| 久久 成人 亚洲| 亚洲一区二区三区欧美精品| 涩涩av久久男人的天堂| 国产一区二区 视频在线| 性色av乱码一区二区三区2| 亚洲国产欧美日韩在线播放| 欧美中文综合在线视频| 国产男女超爽视频在线观看| 建设人人有责人人尽责人人享有的| 国产成人欧美在线观看 | 美女国产高潮福利片在线看| 亚洲欧洲国产日韩| 久久毛片免费看一区二区三区| 丰满少妇做爰视频| 后天国语完整版免费观看| 国产淫语在线视频| 王馨瑶露胸无遮挡在线观看| 久久九九热精品免费| 精品一区二区三卡| 国产成人精品久久二区二区免费| 久久99精品国语久久久| 免费少妇av软件| 在线观看免费高清a一片| 亚洲精品久久久久久婷婷小说| av在线老鸭窝| 丁香六月欧美| 最新的欧美精品一区二区| 国产亚洲精品第一综合不卡| 久久综合国产亚洲精品| cao死你这个sao货| 亚洲国产精品国产精品| 我的亚洲天堂| 伊人亚洲综合成人网| 成人国产一区最新在线观看 | 亚洲九九香蕉| 蜜桃国产av成人99| 国产精品 欧美亚洲| 欧美激情高清一区二区三区| 国产欧美日韩一区二区三区在线| 久久ye,这里只有精品| 精品国产乱码久久久久久男人| 国产高清视频在线播放一区 | 日韩一区二区三区影片| xxx大片免费视频| 国产一区二区激情短视频 | 老汉色av国产亚洲站长工具| 丝袜脚勾引网站| 十分钟在线观看高清视频www| 19禁男女啪啪无遮挡网站| 欧美成人午夜精品| 成人三级做爰电影| 黑丝袜美女国产一区| 欧美成人精品欧美一级黄| 国产精品 欧美亚洲| 免费女性裸体啪啪无遮挡网站| 好男人电影高清在线观看| 黄片播放在线免费|