• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Response of turbulent fluctuations to the periodic perturbations in a flow over a backward facing step

    2015-12-22 09:23:07ZhuoyueLiHongleiBiNnGo

    Zhuoyue Li?,Honglei Bi,Nn Go

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    Response of turbulent fluctuations to the periodic perturbations in a flow over a backward facing step

    Zhuoyue Lia,?,Honglei Baib,Nan Gaoa

    aSchool of Aeronautics and Astronautics,Dalian University of Technology,Dalian,China

    bDepartment of Mechanical Engineering,University of Melbourne,Melbourne,Australia

    A R T I C L E I N F O

    Article history:

    Accepted 21 August 2015

    Available online 8 September 2015

    Active flow control

    Synthetic jet

    Backward facing step

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    There is great amount of interest in the flow over a backward facing step where the separated flow re-attached to the wall forming a well-defined separation region.Efforts were made to alleviate the surface pressure fluctuations using active methods. Periodically perturbing the shear layer at the separation location using a zero-net-mass-flux(synthetic jet)actuator was found to be effective[1–5].Chun and Shun[1]studied the effect of the periodic perturbation at the separation location on the size of the re-circulation bubble(Xr)for flow with a Reynolds numbers(ReH)of 13000–33000 using a zero-net-mass-flux actuator. They found Xrdecreased when the non-dimensional actuation frequency StA=fAH/U varied between 0–0.7,the mosteffective forcing frequencies were close to the vortex shedding frequency of the unforce flow,StA=0.25?0.29.The static pressure inside of the re-circulation region also decreased significantly when Xrdecreased.Chun and Shun[2]also studied the evolution of the structuresovera backward facing step underperiodic forcing using flow visualization technique.The Reynolds number in their study was 1200.The visualization revealed that the flow structures in the shear layer locked in with the periodic actuation when StAwas 0.47.The structures grew in size while traveling in the shear layer, and Xrreduced as much as 60%.When a high actuation frequency, StA=0.82,was used,the growth of the structures were small comparing with the low-frequency forcing case and Xrwas similar to that for the un-forced flow.Yoshioka et al.[3,4]studied the flow over a backward facing step under periodic actuation using the particle image velocimetry(PIV).The Reynolds number(ReH) wasapproximately 3700.They found the mosteffective forcing frequency in reducing Xrwas StA=0.19.The Reynolds shear stresses in the shear layer near the re-attachment was the largest under forcing with this optimum frequency.They also found the propagation velocity of the structures over the re-attachment region was Uc≈0.3U.Dejoan and Leschziner[5]studied the flow over a backward facing step under periodic actuation at a frequency (StA)of 0.2 numerically using the large eddy simulation(LES).They found Xrreduced nearly 30%when ReHwas 3700.The propagation velocity of the structures over the re-attachment region was Uc≈0.4U.

    Previous investigations focusedon the changes in re-attachment length and the static pressure inside of the re-circulation region. The current investigation focuses on the distribution of the fluctuating wall pressure under periodic forcing with frequencies of StA=0.04–0.33,covering the‘‘flapping’’frequency and the‘‘shedding’’frequency for the separated shear layer[6].The magnitude in the pressure spectrum at the frequency of StAfor different forcing amplitudes(u′/U=0.1–0.4)were compared to study how the separated flow responded to the actuation.In this letter,the experimental methods are presented in the next section,followed by the results and the concluding remarks.

    The investigation was performed in a blown-down wind tunnel shown in Fig.1.The air flow supplied by a variable speed blowerwith a 2.2 kW motor went through a 2 m long diverging section, a large settling chamber(900 mm by 900 mm by 750 mm)and a contraction section with a 9:1 area ratio and a length of 750 mm. The exit of the contraction section is 300 mm by 300 mm.There was a perforated plate with opening ratio of 50%at the end of the diverging section to condition the flow before it entered the settling chamber.Plexiglas test section with a length of L= 720 mm and a width of W=300 mm was attached to the exit of the contraction section.The step was located at Ls=300 mm downstream of the inlet of the test section.The height of the test section was 300 mm initially,and 325 mm downstream ofthe step. The height of the step was H=25 mm,thus the aspect ratio of the step was 12,that was large enough to ensure a two dimensional flow in the central part of the test section near the mean reattachment point.There was no top plate in the test section.The free stream turbulence intensity was approximately 0.9%.A freestream velocity of U=5.7 m/s was used,the corresponding ReHis 9100.A single hot-wire probe was used to measure the profile of the in-coming velocity at x/H=?1.The boundary layer thickness was found to beδ0.99/H=0.12,as shown in Fig.2.

    The actuator used in this investigation was a 220 mm-diameter 8-ohms loud-speaker mounted under the step forming a 0.22 m× 0.28 m×0.02 m cavity.Periodic jet flow was produced through a two-dimensional slot with a width of s=1 mm on top of the cavity.The jet was issued at the edge of the step(x/H=0,y/H= 1.0)and oriented 45°to the free stream velocity.The speaker was driven by harmonic signals with different frequencies and amplitudes generated using a Texas Instruments TMS320C6713 digital signal processor(DSP)board and amplified using a 150 W digital amplifier.A single hot-wire probe with a Hanghua CTA-02A constant temperature anemometry system was positioned at the jet exit to measure the rms values of out-flow half of the oscillating jetvelocity,u′to characterize the actuator.The sensor in the singlewire probe had a diameter of 5μm and length of 1.25 mm.The hot wire probes were calibrated at the exit of wind tunnel.The natural frequency of the actuator was approximately 40 Hz,at which the oscillating jet velocity,u′,was the largest when sinusoidal signals of various frequencies and a fixed amplitude were applied to the actuator.Four actuation frequencies fA=10 Hz,40 Hz,60 Hz, and 80 Hz were examined here,corresponding to non-dimensional frequencies of StA=0.042,0.167,0.250,and 0.333,respectively. Three actuation amplitudes u′/U=0.1,0.2,and 0.4 were studied for each actuation frequency.

    The time-averaged re-attachment locations for actuation frequencies and amplitudes are shown in Fig.3.The results reported in Refs.[1,3]were also shown for comparisons.When the actuation amplitude was u′/U=0.1,Xrdecreased when the actuation frequency increased from StA=0.04 and reaching a minimum at StA≈0.25–0.3.The trends agree with the results reported in Refs.[1,3]though the forcing amplitudes used by Refs.[1,3]might be different.Xrthen decreased when u′/U was increased.The timeaveraged size of the re-circulation bubble was shortened for as much as 40%when u′/U=0.4 and StA=0.25.The time-averaged static pressure at x/Hj=1 for different actuation frequencies and amplitudes are shown in Fig.3(b).The changes in the static pressure at x/Hj=1 were closely related to the changes in the timeaveraged re-attachment point.The static pressure near the base

    Nomenclature

    CPStatic wall pressure coefficient,P/(0.5ρU2)

    Cp′Root-mean-square value of the wall pressure coefficient,p′/(0.5ρU2)

    fAForcing frequency,Hz

    FppPower spectrum of wall pressure,Pa2/Hz

    H Height of the step,m

    ReHReynolds number based on the step height,UH/ν

    StAStrouhal number for the forcing frequency,

    u′Root-mean-square value of the exit velocity for the synthetic jet,m/s

    U Free-stream velocity,m/s

    x,y,z Spatial coordinates,m

    Fig.1.Schematics of the test rig.

    Fig.2.Distributions of the time-averaged(○)and fluctuating stream-wise(■) velocities measured using a single hot-wire probe at x/H=?1.

    XrTime-averaged re-attachment length,mof the step became more negative when Xrbecame small.This is expected as the curvature in the time-averaged streamline of the attaching flow became large when the size of the re-circulation bubble decreased.

    The fluctuating wall pressure coefficient for un-actuated flow and flows forced using a forcing amplitude of u′/U of 0.2 and different forcing frequencies are shown in Fig.4.The results for un-actuated flow agree with those measured by Heenan and Morrison[6]and Driver et al.[8].There was a peak in the fluctuating wallpressure at x/H=5–6,thatwas slightly upstreamofthe timeaveraged re-attachmentlocation.C′pincreased significantly and the location of the peak in C′pmoved upstream to x/H=3?4 when the flow was forced,particularly at a frequency StAof 0.125,where the size of the peak was approximately four times of that for the un-forced flow.The location of the peak shifted further upstream and the size of the peak decreased when the forcing frequency further increased.

    Fig. 3. Time-averaged (a) re-attachment locations for u′/U = 0.1 (?), 0.2 (□), and 0.4 (△) and (b) static wall pressure coefficients at x/H = 1 for u′/U = 0.1( ? ) , 0.15 ( □ ) and 0.2 ( △ ) . Results by Chun and Shun [1] (?) and Yoshioka et al. [3] (◇) were also shown for comparisons. The re-attachment location for the unforced flow in the current study was Xro≈ 4.2H.

    Fig. 4. Distributions of the fluctuating wall pressure coefficients for un-actuated flow (?) and flow actuated with a frequency of StA= 0.042(?), 0.125(□), 0.167(△), 0.250(?), 0.333(◇) and a forcing amplitude of u′/U = 0.2. The results for un-actuated flow by Refs. [6] (+) and [8] (?) were also shown for comparisons.

    The magnitude of the peaks in the pressure spectra for the frequency of St=StAat x/H=1,3,and 5 are shown in Fig.6. The size of the peaks varied with the forcing amplitude,the changes are different for different forcing frequencies and streamwise locations.At the location near the separated point x/H=1, the size of the peak at StAincreased with the forcing amplitude for all the forcing frequencies examined here.The increase rate was initially small for the‘‘flapping’’frequency of the shear layer, StA=0.042.The increase rate became large when the forcing frequency approached the‘‘shedding’’frequency and reached to a maximum at StA=0.167.The increase rate decreased when the forcing frequency increased beyond the‘‘shedding’’frequency.The increase rate for StA=0.333 approached to that for StA= 0.042.At x/H=3(x/Xr≈1.0),the size of the peak increased quickly with the forcing amplitude when the flow was forced at frequencies near the‘shedding’frequency(0.125≤StA≤0.167). The peak soon saturated for forcing amplitude u′/U≥0.3 for these frequencies,i.e.the sizes of the peaks do not increased with the forcing amplitude when u′/U became larger.The frequencies where the saturation occurred decreased at a further downstream location x/H=5,the size of the peak reached to a maximum at a much smaller forcing amplitude and the size of the peak decreased when the forcing amplitude further increased.

    The flow structures in a separated shear layer actuated using a synthetic jet actuator were studied using experimental methods. When forced at a frequency much lower than the natural shedding frequency(fH/U=0.042 or fXr/U=0.24),the vertical flapping motion of the shear layer downstream of the separation point became very prominent.The peak of the pressure spectra at the forcing frequency measured near the separation point(x/H=1) increased linearly with the forcing amplitude(u′)suggesting a linear response of the pressure fluctuations to the forcing by the synthetic jet.The linear response did not hold for the pressure fluctuations away from the jet exit as the magnitude of the peak for St=StAmeasured at x/H=3 soon saturated when the forcing amplitude(u′/U)became larger than 0.3.

    Fig.5.Non-dimensional power spectra of fluctuating wall pressure measured at x/H of(a)1,(b)3,and(c)5 for a forcing amplitude of u′/U=0.2.The peak at the forcing frequency(St=StA)was marked using a circle for visual aids.

    Fig.6.Magnitude of spectra at the forcing frequencyat x/H of(a)1,(b)3,and(c)5.

    Acknowledgments

    This work was supported by 973 Program (2014CB744100) Dalian University of Technology(DUT14LK07).

    References

    [1]K.B.Chun,H.J.Sung,Controlofturbulentseparated flowovera backward-facing step by local forcing,Exp.Fluids 21(1996)417–426.

    [2]K.B.Chun,H.J.Sung,Visualisation of a locally-forced separated flow over a backward-facing step,Exp.Fluids 25(1998)133–142.

    [3]S.Yoshioka,S.Obi,S.Masuda,Turbulence statistics of periodically perturbed separated flow over a backward-facing step,Int.J.Heat Fluid Flow 22(2001) 393–401.

    [4]S.Yoshioka,S.Obi,S.Masuda,Organized vortex motion in periodically perturbed turbulent separated flow over a backward-facing step,Int.J.Heat Fluid Flow 22(2001)301–307.

    [5]A.Dejoan,M.A.Leschziner,Large eddy simulation of periodically perturbed separated flow over a backward-facing step,Int.J.Heat Fluid Flow 25(2004) 581–592.

    [6]A.Heenan,J.Morrison,Passive control of pressure fluctuations generated by separated flow,AIAA J.36(1998)1014–1022.

    [7]L.Hudy,A.Naguib,W.Humphreys,Stochastic estimation of a separated-flow field using wall-pressure-array measurements,Phys.Fluids 19(2007)024103.

    [8]D.Driver,H.Seegmiller,J.Marvin,Time-dependent behavior of a reattaching shear layer,AIAA J.25(1987)914–919.

    12 August 2015

    ?.Tel.:+86 152 4260 6752.

    E-mail address:sanjkfhk@163.com(Z.Li).

    http://dx.doi.org/10.1016/j.taml.2015.08.002

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    日韩熟女老妇一区二区性免费视频| 亚洲少妇的诱惑av| 免费在线观看视频国产中文字幕亚洲 | 丝袜喷水一区| tube8黄色片| 蜜桃在线观看..| 女人久久www免费人成看片| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人爽人人夜夜| 国产精品.久久久| 大香蕉久久网| 熟女av电影| 国产午夜精品一二区理论片| 亚洲视频免费观看视频| 免费看不卡的av| 国产色婷婷99| 精品人妻一区二区三区麻豆| 亚洲精品久久成人aⅴ小说| 在线精品无人区一区二区三| 亚洲第一青青草原| 波野结衣二区三区在线| 久久久亚洲精品成人影院| 亚洲人成77777在线视频| 男女下面插进去视频免费观看| 99精国产麻豆久久婷婷| 亚洲av电影在线进入| 国产伦理片在线播放av一区| 成年动漫av网址| 一级爰片在线观看| 男女无遮挡免费网站观看| 久久狼人影院| 亚洲第一av免费看| 国产成人精品一,二区| 亚洲人成网站在线观看播放| 交换朋友夫妻互换小说| 免费观看a级毛片全部| 电影成人av| 国产精品国产三级专区第一集| 母亲3免费完整高清在线观看 | 搡女人真爽免费视频火全软件| 美女国产视频在线观看| 亚洲综合色网址| 18禁裸乳无遮挡动漫免费视频| 97在线视频观看| 国产av国产精品国产| 美女国产高潮福利片在线看| 丝袜在线中文字幕| 人妻少妇偷人精品九色| 婷婷成人精品国产| 免费观看av网站的网址| 亚洲在久久综合| 国产高清不卡午夜福利| 日本免费在线观看一区| 亚洲av国产av综合av卡| 永久网站在线| 丝袜人妻中文字幕| 欧美人与性动交α欧美精品济南到 | 亚洲国产精品一区二区三区在线| 黄色一级大片看看| 永久网站在线| 69精品国产乱码久久久| 亚洲av中文av极速乱| 人人妻人人澡人人看| 人人妻人人澡人人看| 两性夫妻黄色片| 亚洲av男天堂| 久久久久久伊人网av| 中文精品一卡2卡3卡4更新| 免费在线观看视频国产中文字幕亚洲 | 美女大奶头黄色视频| 高清av免费在线| 老司机影院成人| 国产精品香港三级国产av潘金莲 | 精品国产一区二区三区久久久樱花| 日韩一卡2卡3卡4卡2021年| 欧美日韩国产mv在线观看视频| 女人高潮潮喷娇喘18禁视频| 你懂的网址亚洲精品在线观看| 99久久中文字幕三级久久日本| 亚洲欧美清纯卡通| av视频免费观看在线观看| 91午夜精品亚洲一区二区三区| 伦理电影免费视频| 中文字幕制服av| 成人免费观看视频高清| 人人妻人人澡人人看| 久久精品国产综合久久久| 国产日韩欧美亚洲二区| 老鸭窝网址在线观看| 免费av中文字幕在线| 免费日韩欧美在线观看| 啦啦啦啦在线视频资源| 国产成人精品在线电影| 制服诱惑二区| 久久久久久久精品精品| 日本91视频免费播放| 日本-黄色视频高清免费观看| 亚洲综合色网址| 国产黄色视频一区二区在线观看| 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 夜夜骑夜夜射夜夜干| 国产xxxxx性猛交| 电影成人av| 亚洲国产精品一区三区| 黑人巨大精品欧美一区二区蜜桃| 午夜福利网站1000一区二区三区| 久久人人爽av亚洲精品天堂| 十八禁高潮呻吟视频| 日本-黄色视频高清免费观看| 大片电影免费在线观看免费| 国产亚洲一区二区精品| 老司机影院毛片| 色婷婷av一区二区三区视频| 最近手机中文字幕大全| 少妇的逼水好多| freevideosex欧美| 久久韩国三级中文字幕| 国产成人精品一,二区| 欧美精品一区二区大全| 一级毛片电影观看| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀 | 岛国毛片在线播放| 亚洲av成人精品一二三区| 99久久综合免费| 97在线人人人人妻| 久久免费观看电影| 黄色毛片三级朝国网站| 日本欧美视频一区| 91aial.com中文字幕在线观看| 一区二区三区四区激情视频| 在线观看人妻少妇| 丝袜人妻中文字幕| 亚洲成人手机| 久久婷婷青草| 欧美bdsm另类| 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀 | 丝袜人妻中文字幕| 亚洲,一卡二卡三卡| 新久久久久国产一级毛片| 高清黄色对白视频在线免费看| 欧美精品av麻豆av| 丁香六月天网| 一级片免费观看大全| 久久热在线av| tube8黄色片| 国产黄色免费在线视频| 午夜福利视频精品| 久久精品国产鲁丝片午夜精品| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 国产深夜福利视频在线观看| 视频在线观看一区二区三区| 性色avwww在线观看| 在线观看免费视频网站a站| 街头女战士在线观看网站| 丝袜美足系列| 亚洲视频免费观看视频| 色婷婷av一区二区三区视频| 一区二区三区激情视频| 日本-黄色视频高清免费观看| 国产片内射在线| 女的被弄到高潮叫床怎么办| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| 亚洲三级黄色毛片| 日本av免费视频播放| 亚洲国产欧美网| 午夜免费观看性视频| 国产 一区精品| 日韩欧美精品免费久久| 欧美人与善性xxx| 99热网站在线观看| 超碰97精品在线观看| 丝袜美腿诱惑在线| 国产成人午夜福利电影在线观看| 国产极品粉嫩免费观看在线| 亚洲欧美日韩另类电影网站| 精品国产露脸久久av麻豆| 97在线视频观看| 三上悠亚av全集在线观看| 亚洲国产精品一区二区三区在线| 国产av国产精品国产| 国产xxxxx性猛交| 午夜av观看不卡| av电影中文网址| 午夜免费男女啪啪视频观看| 亚洲成国产人片在线观看| 99热全是精品| 精品国产一区二区三区久久久樱花| 久久久精品94久久精品| 亚洲美女搞黄在线观看| 一级片免费观看大全| 一二三四中文在线观看免费高清| 80岁老熟妇乱子伦牲交| av免费在线看不卡| 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| 两个人看的免费小视频| 日韩视频在线欧美| 观看av在线不卡| 色婷婷久久久亚洲欧美| 大香蕉久久网| 精品第一国产精品| 精品视频人人做人人爽| 亚洲伊人久久精品综合| 妹子高潮喷水视频| 天天躁夜夜躁狠狠久久av| 日日摸夜夜添夜夜爱| 久久狼人影院| 色婷婷av一区二区三区视频| 如何舔出高潮| 亚洲精品日韩在线中文字幕| 国产免费一区二区三区四区乱码| 国产又色又爽无遮挡免| 啦啦啦在线观看免费高清www| 亚洲国产欧美日韩在线播放| 日韩av在线免费看完整版不卡| 王馨瑶露胸无遮挡在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲国产av新网站| 亚洲精品在线美女| 1024视频免费在线观看| 日本欧美国产在线视频| 国产免费现黄频在线看| 欧美日韩视频高清一区二区三区二| 欧美精品高潮呻吟av久久| 国产 一区精品| 国产片特级美女逼逼视频| 久久久久国产网址| 成人18禁高潮啪啪吃奶动态图| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| av国产精品久久久久影院| 美女中出高潮动态图| 日韩伦理黄色片| 国产黄色视频一区二区在线观看| 男女免费视频国产| 一区二区三区乱码不卡18| 免费在线观看完整版高清| 日韩三级伦理在线观看| 免费黄频网站在线观看国产| 成人毛片60女人毛片免费| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 欧美精品一区二区免费开放| 久久久久国产精品人妻一区二区| 寂寞人妻少妇视频99o| av在线播放精品| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美视频二区| 久久免费观看电影| 亚洲国产色片| 成年美女黄网站色视频大全免费| 久久精品国产综合久久久| 亚洲成av片中文字幕在线观看 | 日日啪夜夜爽| 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 赤兔流量卡办理| 成人国语在线视频| 亚洲国产精品国产精品| 日韩伦理黄色片| 国产日韩欧美视频二区| 日韩av在线免费看完整版不卡| 午夜福利影视在线免费观看| 午夜福利在线免费观看网站| 免费观看无遮挡的男女| 老汉色av国产亚洲站长工具| 人人澡人人妻人| 久久狼人影院| 亚洲综合色网址| 国产乱人偷精品视频| 亚洲天堂av无毛| 免费黄色在线免费观看| 国产女主播在线喷水免费视频网站| 亚洲国产欧美网| 在线精品无人区一区二区三| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 久久影院123| 成年动漫av网址| 十分钟在线观看高清视频www| 欧美 日韩 精品 国产| 最新的欧美精品一区二区| 伦精品一区二区三区| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线| 久久99蜜桃精品久久| 丝袜脚勾引网站| 熟女电影av网| 王馨瑶露胸无遮挡在线观看| 亚洲av电影在线进入| 校园人妻丝袜中文字幕| 99国产精品免费福利视频| 国产亚洲最大av| 亚洲国产看品久久| 爱豆传媒免费全集在线观看| 久久久国产欧美日韩av| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线| 黄片无遮挡物在线观看| 少妇熟女欧美另类| 亚洲精品日韩在线中文字幕| 一级黄片播放器| 国产成人精品久久二区二区91 | 欧美成人午夜精品| 丝袜人妻中文字幕| 国产日韩欧美视频二区| 久久99精品国语久久久| 性色av一级| 麻豆av在线久日| 老司机影院成人| 熟女电影av网| 99久久精品国产国产毛片| 成人亚洲精品一区在线观看| 一区二区三区四区激情视频| 国产在线免费精品| 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 国产日韩一区二区三区精品不卡| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 欧美+日韩+精品| av天堂久久9| 欧美变态另类bdsm刘玥| 97在线视频观看| 男女无遮挡免费网站观看| 天天操日日干夜夜撸| av电影中文网址| 大陆偷拍与自拍| 国产免费视频播放在线视频| 人人妻人人澡人人爽人人夜夜| 高清不卡的av网站| 久久久国产精品麻豆| 亚洲,一卡二卡三卡| 精品人妻熟女毛片av久久网站| av天堂久久9| 少妇的逼水好多| 国产精品欧美亚洲77777| 美女午夜性视频免费| 少妇的丰满在线观看| 91成人精品电影| 看非洲黑人一级黄片| 女人被躁到高潮嗷嗷叫费观| 欧美日韩精品成人综合77777| 免费看av在线观看网站| 日本色播在线视频| 中文字幕亚洲精品专区| 一区二区av电影网| 精品亚洲乱码少妇综合久久| 色吧在线观看| 免费少妇av软件| 日韩中文字幕视频在线看片| 精品国产一区二区三区四区第35| 国产精品免费大片| 国产又色又爽无遮挡免| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀 | 精品一区在线观看国产| 1024香蕉在线观看| 色视频在线一区二区三区| 亚洲成av片中文字幕在线观看 | 久久毛片免费看一区二区三区| 有码 亚洲区| 亚洲精品久久成人aⅴ小说| 色哟哟·www| 在线观看免费视频网站a站| 日本猛色少妇xxxxx猛交久久| 青春草视频在线免费观看| 一边亲一边摸免费视频| 少妇被粗大的猛进出69影院| 久久久久人妻精品一区果冻| 亚洲,欧美,日韩| 午夜免费鲁丝| 亚洲中文av在线| 美女福利国产在线| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| 韩国精品一区二区三区| 最近最新中文字幕免费大全7| 少妇精品久久久久久久| 高清av免费在线| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 国产毛片在线视频| 日日爽夜夜爽网站| 欧美日韩综合久久久久久| 亚洲欧美清纯卡通| av网站免费在线观看视频| 久久久久国产精品人妻一区二区| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 精品一区二区免费观看| 国产色婷婷99| 国产高清国产精品国产三级| 国产探花极品一区二区| 久久97久久精品| 亚洲中文av在线| 中文字幕av电影在线播放| 国产精品.久久久| 丰满少妇做爰视频| 午夜福利网站1000一区二区三区| 韩国av在线不卡| 青草久久国产| 飞空精品影院首页| 极品人妻少妇av视频| 波多野结衣av一区二区av| 免费不卡的大黄色大毛片视频在线观看| 老女人水多毛片| 中文字幕色久视频| 考比视频在线观看| 最近中文字幕高清免费大全6| 国产精品.久久久| 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 97精品久久久久久久久久精品| 国产黄频视频在线观看| 日韩制服丝袜自拍偷拍| 国产精品亚洲av一区麻豆 | 成人毛片60女人毛片免费| 欧美日韩精品网址| 欧美日韩成人在线一区二区| 国产爽快片一区二区三区| 免费播放大片免费观看视频在线观看| 免费黄频网站在线观看国产| 一级毛片电影观看| 老汉色av国产亚洲站长工具| 性色avwww在线观看| 大话2 男鬼变身卡| 麻豆乱淫一区二区| 成人国产麻豆网| 国产亚洲精品第一综合不卡| 国产精品三级大全| 国产在线视频一区二区| 欧美日韩国产mv在线观看视频| 在线看a的网站| 亚洲欧美精品综合一区二区三区 | 久久久久精品性色| 国产黄色免费在线视频| 飞空精品影院首页| 亚洲成国产人片在线观看| 寂寞人妻少妇视频99o| av国产精品久久久久影院| 蜜桃在线观看..| 成人影院久久| 午夜免费观看性视频| av又黄又爽大尺度在线免费看| 国产亚洲av片在线观看秒播厂| 制服诱惑二区| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 丰满少妇做爰视频| 国产成人精品福利久久| 久久久久久久精品精品| 亚洲精华国产精华液的使用体验| 男女高潮啪啪啪动态图| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕制服av| 国产精品一国产av| 最近的中文字幕免费完整| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 热99久久久久精品小说推荐| av网站在线播放免费| 国产成人精品一,二区| 色婷婷av一区二区三区视频| 久久精品国产a三级三级三级| 日本色播在线视频| 亚洲成人一二三区av| 亚洲精品自拍成人| 亚洲欧美精品综合一区二区三区 | 国产激情久久老熟女| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 亚洲图色成人| 国产一区二区在线观看av| 999久久久国产精品视频| 中文欧美无线码| 丰满饥渴人妻一区二区三| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 亚洲av欧美aⅴ国产| a 毛片基地| av网站免费在线观看视频| 最近的中文字幕免费完整| 欧美bdsm另类| 国产色婷婷99| 看免费av毛片| 永久网站在线| 999精品在线视频| 七月丁香在线播放| 蜜桃在线观看..| 亚洲婷婷狠狠爱综合网| 久久精品国产亚洲av高清一级| 国产精品国产三级国产专区5o| 26uuu在线亚洲综合色| 男人添女人高潮全过程视频| 天堂8中文在线网| 人体艺术视频欧美日本| 亚洲三区欧美一区| 美女国产视频在线观看| 久久久欧美国产精品| 免费观看无遮挡的男女| 伊人亚洲综合成人网| 18禁动态无遮挡网站| 成年女人毛片免费观看观看9 | 婷婷色综合大香蕉| 国产精品麻豆人妻色哟哟久久| 欧美中文综合在线视频| 久久久精品免费免费高清| 国产精品欧美亚洲77777| 久热这里只有精品99| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 99久国产av精品国产电影| 亚洲色图 男人天堂 中文字幕| 97在线人人人人妻| 成人漫画全彩无遮挡| 欧美日韩综合久久久久久| 欧美成人午夜精品| 日韩一卡2卡3卡4卡2021年| 免费看不卡的av| 丰满少妇做爰视频| 免费高清在线观看视频在线观看| 国产深夜福利视频在线观看| 欧美少妇被猛烈插入视频| 人人妻人人澡人人爽人人夜夜| 97人妻天天添夜夜摸| 亚洲av成人精品一二三区| 日韩欧美一区视频在线观看| 色播在线永久视频| 国产黄色免费在线视频| 丁香六月天网| 9色porny在线观看| 国产免费福利视频在线观看| 老汉色∧v一级毛片| 国产亚洲欧美精品永久| 老汉色av国产亚洲站长工具| 下体分泌物呈黄色| 又大又黄又爽视频免费| 午夜免费男女啪啪视频观看| 久久青草综合色| 久久99一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲内射少妇av| 女性生殖器流出的白浆| 狂野欧美激情性bbbbbb| 女人精品久久久久毛片| 欧美黄色片欧美黄色片| www日本在线高清视频| 日本色播在线视频| 亚洲精品久久成人aⅴ小说| 卡戴珊不雅视频在线播放| 亚洲精品视频女| 亚洲精品一区蜜桃| 美女xxoo啪啪120秒动态图| 中文字幕人妻丝袜制服| 天堂俺去俺来也www色官网| 18禁裸乳无遮挡动漫免费视频| 老汉色av国产亚洲站长工具| 水蜜桃什么品种好| 极品人妻少妇av视频| 亚洲男人天堂网一区| 春色校园在线视频观看| 一区在线观看完整版| 亚洲精品久久成人aⅴ小说| 毛片一级片免费看久久久久| av在线观看视频网站免费| 日本91视频免费播放| 青青草视频在线视频观看| 男女下面插进去视频免费观看| 九九爱精品视频在线观看| 一级毛片电影观看| 成人亚洲欧美一区二区av| 黄网站色视频无遮挡免费观看| 在线观看三级黄色| 五月开心婷婷网| 国产精品国产三级国产专区5o| 大码成人一级视频| 国产一区二区激情短视频 | 最新中文字幕久久久久| av视频免费观看在线观看| 丰满少妇做爰视频| 免费观看a级毛片全部| 午夜福利乱码中文字幕| 性色avwww在线观看| 观看av在线不卡| 考比视频在线观看| 久久国内精品自在自线图片| 欧美人与性动交α欧美精品济南到 | 国产成人精品久久二区二区91 | 一区福利在线观看| 久久午夜福利片| 一区在线观看完整版| 午夜免费男女啪啪视频观看| 亚洲欧美清纯卡通| av福利片在线| 欧美激情 高清一区二区三区| 亚洲一区中文字幕在线|