• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on the aerodynamics of a simplified high-speed train under crosswinds

    2015-12-22 09:23:05YueqingZhuangXiyunLu

    Yueqing Zhuang?,Xiyun Lu

    Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

    Numerical investigation on the aerodynamics of a simplified high-speed train under crosswinds

    Yueqing Zhuang?,Xiyun Lu

    Department of Modern Mechanics,University of Science and Technology of China,Hefei 230026,China

    H I G H L I G H T S

    ?Large eddy simulation(LES)results of two typical yaw angles of side flow around a high speed train model are provided.

    ?Mean and root-mean-square(RMS)values of the lift and side forces increase as the yaw angle increases.

    ?The dominating frequency range increases as the yaw angle increases.

    ?Three-dimensional vortical structures are distinct for the two cases.

    ?The side force is mainly determined by the lee-side wake vortices,and the lift force is related with the roof-side flow separation.

    A R T I C L E I N F O

    Article history:

    13 May 2015

    Accepted 29 June 2015

    Available online 17 July 2015

    High speed train

    Yaw effect

    Leading edge vortex

    Cross wind

    Large eddy simulation

    The yaw effect of the side flow around a high-speed train is studied by means of large eddy simulation at two typical yaw angles of ? = 30° and 60°, respectively. Both the mean and fluctuating values of lift force and side force coefficients increase obviously as the yaw angle increases. The spectral analysis indicates that the time-dependent aerodynamic forces are dominated by several energetic frequencies and the frequency range is broadened to a higher extent for the large yaw angle. To have a better understanding of the train aerodynamic behaviors, the dedicate three-dimensional vortical structures are analyzed for the flow at the two yaw angles. Moreover, the time-averaged flow patterns, turbulent statistics, and the surface forces are also studied on sectional planes along the train.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    When the high-speed train cruises under a strong crosswind, there is high risk of overturning or derailment due to large side force and lift force exerted on the train.With a high incidence of various crosswind related to high-speed train accidents,the crosswind instability is recognized to be a critical safety issue, which has attracted more interests of researchers[1].Nowadays the realistic high-speed train cruises at a speed of several hundred kilometers per hour and the flow around the vehicle is highly turbulent.The aerodynamic behaviors of turbulent cross flow around a high-speed train is an attractive research topic worthy of extensive study.

    Diedrichs[2]explored the applicability of Reynolds average Navier–Stokes(RANS)to resolve the overturning loads under low turbulence conditions for various high-speed train models.Taking accountinto the costofcomputation,itis assumed thatRANS modeling willcontinue to be an important technology to assess the flow fields and crucial vehicle load distributions.However,numerical and experimental studies of the flow around a high speed train show that such flows are highly unsteady and with a wide range of separation[1].The technique of large eddy simulation(LES)has provided the capability of accurate prediction of the mean and instantaneous flow around the train[3,4].Moreover,LES is also superior to the unsteady RANS in providing delicate flow structures, which is crucial in the understanding of the flow around the vehicle[5–7].

    The experimental[8]and numerical[9]studies indicate that train aerodynamic forces show strong dependence on the yaw angle,both the lift force and side force increase significantly as the yaw angle increases and exhibit asymptotic behaviors when the yaw angle exceeds?=50°.In the present study,two typical cases of?=30°and?=60°,corresponding to less and larger than the asymptotic angle,are studied by using LES method.The purpose of this study to achieve improved understanding of the yaw effect on the aerodynamic performances of the high-speed train,including the delicate flow structures,aerodynamic forces,turbulence statistics and surface force distributions.

    Fig.1.(Color online)Schematic view of the simplified train model and its computational domain.

    As shown in Fig.1,the cross flow around a simplified 1/25 scale CRH3 high-speed train model without bogies and plow is investigated.Here,the height of train model is 0.1556 m,and the freestream velocity U∞is 20 m/s.The yaw angle?is defined as the angle between the effective crosswind direction and the train cruising direction.In our computation,the Reynolds number based on the height of the train and freestream velocity is 2×105,and it is within the range of the critical Reynolds number,for which the flow separation and reattachment occur over the roof-side face of the train[10].

    In the present study,a LES solver[11,12]which solves the compressible Favre-filtered Navier–Stokes equations is used.The freestream Mach number is set to be 0.06.As we know that the flow with Mach number less than 0.3 is regarded as incompressible flow,and its calculation using a compressible flow solver is easy to diverge due to large stiffness of the governing equations. However,the present calculation can still obtain a converged solution without any modification.In the LES method,the largescale flow structures are resolved and the effect of small eddies is taken into account by using a wall-adapting local viscosity subgrid scale model.As employed in our previous work[13],the convective terms by a second-order centered scheme with an artificial viscosity,the viscous terms are discretized by a fourthorder centered scheme,and the time-derivative term is discretized by the second-order implicit scheme.

    The structured multi-block hexahedron meshes are used to discretize the computational domain,which is shown in Fig.1. The O-type grid is used around the train,and the H-type grid is applied on the rest of the computational domain.The total number of the meshes is 4.8 million.Local mesh refinement is employed near the train surface and ground.The maximum value of the nondimensionaldistance y+between the firstnode and train surface in the direction normal to the wall is no more than 1.The maximum grid spacing△x+in the streamwise direction is less than 70 and the grid spacing△z+in the spanwise direction is less than 140. The non-dimensional time step based on the train height H and the freestream speed U∞is 0.0125.

    For the inflow boundary condition,a uniform inlet velocity is set on the left and upper surface of the computational domain, respectively.Moreover,some small stochastic disturbances with a maximum amplitude less than 5%is also superimposed to the inlet velocity to excite turbulence.Thus,the inflow boundary layer is developed on the ground.Based on the results of previous study[7],the flow on the roof-side train surface is separated except a small region near the nose under current flow condition. Since the position of the flow separation is substantially fixed,the influence of inflow boundary layer on the flow around the train should not be very significant.The static pressure is specified on the right and lower surface as the outflow boundary condition. No-slip boundary condition is applied on the wall of the train and ground,respectively.Symmetric boundary condition is used on the top surface of the computational domain.

    In order to validate the calculation,comparisons are made between the LES results and the experimental datum[4]of the timeaveraged surface pressure coefficient of a simplified high speed train for 90°yaw angle at Reynolds number of 3×105.The definition of pressure coefficient is given as

    where,p∞denotes the freestream pressure,ρis the density of the air.The LES results are consistent with the experiment except in a small region close to the train nose.As shown in Fig.2(a),LES overpredicts the low pressure peak on the roof-side face of train and a slight difference is also noticed between the LES results and experiment datum on the lee-and bottom-side faces at x/H=0.5. However,the LES results at other positions show good agreements with the experimental datum as shown in Fig.2(b)–(d).

    Figure 3(a)and(b)shows the time-histories of the lift force and side force coefficients at?=30°and 60°,respectively.The lift force and side force coefficients are defined as follows

    Fig.2.Comparisons of the LES results of the time-averaged surface pressure coefficients at positions along the train length with the experiment.

    Fig.3.Time-histories of the lift force and side force coefficients at(a)?=30°and(b)60°.

    Fig.4.Power spectra of the time-dependent lift force and side force coefficients at(a)?=30°and(b)60°.

    Table 1Time-averaged values of the lift force and side force coefficients.

    where, Fyand Fzare the lift and side force s , Ayand Azdenote the train projected area s in y- and z-direction, respectively. Figure 3 shows that the cross flow around the high speed train at the two yaw angles are highly unsteady. The time average statistics of the lift force and side force coefficients are listed in Table 1. It is found that the mean values of lift force and side force coefficients increase obviously as the yaw angle increases. The mean side force coefficient at ? = 60° is about 2.5 times the one at ? = 30°. Moreover, the fluctuating magnitude of the side flow is enhanced significantly as the yaw angle increases. The root-mean-square (RMS) values of the lift force and side force coefficients at ? = 60° are nearly doubled than those at ? = 30°.

    The spectral analysis is conducted to determine the dominating frequencies of the time-dependent aerodynamic forces.Figure 4 shows the power spectraldensity(PSD)profiles ofthe lift force and side force coefficients.Both the lift and side forces are dominated by several frequencies range from 0.01 to 1.0,which are consistent with the previous results in Refs.[4,5].For?=30°,several dominating peaks as marked in Fig.4(a)are found with frequencies in the range of St=0.01–0.1.A number of frequency peaks are also exhibited in the range of St=0.1–1.0,which are obviously less dominant than the low frequencies.For?=60°,a dominating frequency of St=0.025 is identified in the range of St=0.01–0.1. Many high frequency peaks are also found in Fig.4(b).In contrast to?=30°,the range of the energetic frequency at?=60°is apparently broadened to a higher extent and the high frequency peaks in the range of St=0.1?1.0 become more dominant.

    Figure 5 shows the three-dimensional vortical structures of the flow around the train educed by theλ2-criterion[14]at?=30° and 60°,respectively.For?=30°,as shown in Fig.5(a),a pair of asymmetric line vortices originated from the leading edge of the train nose extend downstream in the lee-side wake.Due to the proximity effect of the ground,the lower leading edge vortex is more inclined and unstable than the upperone,which isconsistent with the previous study[7].Due to the Kelvin–Helmholtz instability ofthe separated shearlayer,some elongated vortices are clearly identified on the roof-side face of the train.Vortex shedding from the roof-side face mainly occurs in the rear half of the train.The vortices shedding from the tails of the leading edges are emerged with the shear layer vortices in the lee-side wake.For?=60°,the leading-edge vortices break into small vortices in a small distance from the tip of the train nose.The vortex shedding in the lee-side wake mainly occurs in the first half of the train,since the flow is more unstable at the large yaw angle.In the rear half of the train, the wake flow is dominated by the shear layer vortices and nearly unaffected by the leading edge vortices.

    The flow is projected in the streamwise direction onto the four typical sectional planes of x/H=1.4,3.0,6.2,and 10.7 to study the flow structures in the lee-side wake.The choices of the crossplanes are not unique,but the principle is to elaborate on the streamwise flow structures as much as possible.In the present study,as shown in Fig.5,x/H=1.4 ischosen very close to the train nose to demonstrate the origination of the leading edge vortices. As vortex shedding in the lee-side wake mainly occurs in the first half of the train at?=60°,x/H=3.0 is selected.It is reasonable to select the x/H=6.2,because it is the central plane of the train along the length direction.Since vortex shedding occurs in the sidewake near the tail of the train at ? = 30°, x/H = 10.7 is thus selected. The following statistics of the sectional flow start from t = 150 to t = 300, with a sampling interval of Δt = 0.3.

    Fig.5.(Color online)Three-dimensional vortical structures educed by theλ2-criterion:(a)?=30°,λ2=?5;(b)?=60°,λ2=?10.

    Fig.6.(Color online)Time-averaged streamlines on the sectional planes at(a)?=30°and(b)60°.The color of the streamlines represents the magnitude of the timeaveraged streamwise vorticity.As marked in the figure,RC denotes the recirculation zone and SB denotes the separation bubble.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Figure 6 shows the time-averaged streamlines on the sectional planes.Two asymmetric recirculation zones are exhibited on the lee-side wake of the train in x/H=1.4–6.2 at?=30°and x/H=1.4–3.0 at?=60°.As seen in the figure,the size of the circulation zone is increased along the length of the train,since the upper and lower shear layers roll up at a increasing distance from the train surface.The flow separation on the ground is caused by the secondary vortex induced by the lower leading edge vortex near the wall.For?=30°,the flow becomes fully separated on the roof-side face of the train and a big separation bubble is formed on the ground adjacent to the recirculation zone in x/H=10.7. While for the flow pattern in x/H=6.2 at?=60°,two distinct recirculation zones are exhibited and the separation bubble on the ground is less robust than the former one.The flow pattern in the rear half of the vehicle at?=60°are also different from that of ?=30°.As shown in x/H=10.7 in Fig.6(b),the shearing effect of the flow is significantly enhanced and the shear layer vortices are shed further downstream in the lee-side wake.

    Figure 7 shows the contour lines of the turbulent kinetic energy (TKE)on the sectional planes.The TKE distributions are related with the unsteadiness of the turbulent flow.For?=30°,two high TKE zones are focused on small region around the cores of the leading edge vortices in x/H=1.4 and 3.0.When the lower leading edge vortex breaks down,the area of the high TKE region is increased in x/H=6.2.As the flow is fully separated in x/H= 10.7,the TKE in the wake flow is significantly increased,and the peak of TKE occurs in central part of the upper shear layer.For ?=60°,the high TKE zones in the side wake in the front half of the train are wider than that in?=30°,which is mainly caused by the flow instability of the leading edge vortices at the large yaw angle.In the rear half of the train,the high TKE zone is enlarged downstreamand its peak is shifted away fromthe train surface due to the enhanced shearing effectofthe upper and lower shear layers.

    Figure 8 shows the distributions of time-averaged surface pressure coefficient at positions along the train length.The azimuth angleθaround the cross section of the vehicle is defined as in Fig.1.It is observed that the lateral pressure difference is mainly exerted on the front part ofthe train for the two yaw angles, both the high stagnation pressure on the windward face and the low pressure on the leeward face are significantly attenuated at the positions further downstream.As shown in Fig.8(a),two low pressure peaks are formed at the windward edge of the roof and bottom edge around the corner.The low pressure zone is gradually extended downstream from the windward to leeward edge along the train due to the expansion of the separation bubble on the roof-side face.However,the low pressure in the separation zone is gradually elevated at the downstream positions as shown in Fig.8(b)–(d).The pressure distribution on the leeward of the train remains nearly constant in x/H=10.7 at?=60°as demonstrated in Fig.8(d).

    Figure 9 shows the aerodynamic force coefficients obtained by integrating surface pressure on the sectional planes.Since the lateral pressure differences are mainly exerted on the train surface near the nose as seen in Fig.8,the peaks of the side force occur in x/H=1.4 for?=30°and 60°,respectively.The near wall vortices in the lee-side wake are considered to be responsible for the side force,as the side force coefficient remains constant inx/H = 3.0–10.7 at ? = 30° with the existence of the side vortices and decrease in x/H = 10.7 at ? = 60° as the vortical structures nearly disappear in the near wake. The lift force on the train is generated due to the proximity effect of the ground. For the current flow condition, the flow separation on the roof-side face of the train under the present flow condition are also responsible for the generation of a high lift force. For ? = 30°, the lift force coefficient is negative in x/H = 1.4. As the flow separation on the roof-side face extends from the windward edge to the leeward edge, the lift force increases from x/H = 1.4 to x/H = 6.2 along the train. For ? = 60°, the flow separation on the roof-side face develops more quickly, and the maximum lift force coefficient is obtained in x/H = 3.0. The lift force begins to decrease, when the flow is fully separated from the roof-side face. The lift force approaches zero in x/H = 10.7 at ? = 60°. It is also noticed that the flow structures in the wake after the train tail are distinct at the two yaw angles as seen in Fig. 5. However, the influence of the wake structures after the vehicle tail on the aerodynamic behaviors is still a n issue and needs to be studied further.

    In summary, LES of the cross flow around a high-speed train is studied for two typical yaw angle of ? = 30° and 60°, respectively. Both the mean and RMS values of the lift force and side force coefficients increase as the yaw angle increases. The mean side force coefficient at ? = 60° is 2.5 times o f the one at ? = 30°. There are several dominating frequencies of the time-dependent aerodynamic forces in the range of St=0.01?1.0 for the flow at the two yaw angles.The dominating frequency at?=60° is apparently broadened to a higher extent and the frequencies in the range of St=0.1?1.0 become more dominant.The three-dimensional vortical structures for the flow round the train are analyzed.For?=30°,the leading edge vortices remain stable in the lee-side wake in the front half of the train,and the complex vortex shedding occurs in the rear half,i.e.the vorticesare shed from the tails of the leading edges vortices and then emerged from the shear layer vortices from the roof-and bottomside faces.For?=60°,vortex shedding mainly occurs in the front half of the vehicle,while the wake flow in the rear half is dominated by the shear layer vortices and nearly unaffected by the leading edge vortices.The flow patterns,distributions of the TKE and surface forces on streamwise sectional planes are also analyzed.The associations between the side force and the lee-side wake vortices,and between the lift force and the flow separation on the roof-side face of the train are discussed.

    Fig.7.(Color online)Contour lines of turbulent kinematic energy on the sectional planes at(a)?=30°and(b)60°.

    Fig.8.(Color online)Surface pressure coefficients at(a)x/H=1.4,(b)3.0,(c)6.2,and(d)10.7.The black solid line denotes?=30°corresponding to the left vertical coordinate and the red dash dot line denotes?=60°corresponding to the right vertical coordinate.

    Fig.9.Streamwise distributions of the integrated lift force and side force coefficients at the two yaw angles.

    Acknowledgments

    This work was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences,the National Natural Science Foundation of China(11402261)and the Fundamental Research Funds for the Central Universities(2013).

    References

    [1]C.Baker,The flow around high speed trains,J.Wind Eng.Ind.Aerodyn.98 (2010)277–298.

    [2]B.Diedrichs,Aerodynamic calculations of crosswind stability of a highspeed train using control volumes of arbitrary polyhedral shape,in:BBAA VI International Colloquium on:Bluff Bodies Aerodynamics&Applications. Milano,July 20–24,2008.

    [3]S.Krajnovic,P.Ringqvist,K.Nakade,et al.,Large eddy simulation of the flow around a simplified train moving through a crosswind flow,J.Wind Eng.Ind. Aerodyn.110(2012)86–99.

    [4]H.Hemida,S.Krajnovic,L.Davidson,Large-eddy simulation ofthe flow around a simplified high speed train under the influence of a cross-wind,in:The 17th AIAA Computational Fluid Dynamics Conference,AIAA 2005-5354.Toronto, June 6–9,2005.

    [5]S.B.Yao,Z.X.Sun,D.L.Guo,et al.,Numerical study on wake characteristics of high-speed trains,Acta Mech.Sin.29(2013)811–822.

    [6]H.Hemida,C.Baker,The calculation of train slipstreams using large-eddy simulation techniques,in:The 9th World Congress on Railway Research, Challenge B:An Environmentely Friendly Railway,Lille,May 22–26,2011.

    [7]H.Hemida,S.Krajnovic,LES study of the influence of the nose shape and yaw angles on flow structures around trains,J.Wind Eng.Ind.Aerodyn.98(2010) 34–46.

    [8]A.Orellano,M.Schober,Aerodynamic performance of a typical high-speed train,in:Proceedings of the 4th WSEAS International Conference on Fluid Mechanics and Aerodynamics,Elounda,August 21–23,2006.

    [9]A.M.Biadgo,A.Simonovic,J.Svorcan,et al.,Aerodynamic characteristics of high speed train under turbulent cross winds:a numerical investigation using unsteady-RANS method,FME Trans.42(2014)10–18.

    [10]H.N.Hemida,Large-eddy simulation of the flow around simplified high-speed trains under side wind(Licentiate Engineering Thesis),Chalmers University of Technology,Goteborg,2006.

    [11]C.Y.Xu,L.W.Chen,X.Y.Lu,Large-eddy simulation of the compressible flow past a wavy cylinder,J.Fluid Mech.665(2010)238–273.

    [12]L.W.Chen,G.L.Wang,X.Y.Lu,Numerical investigation of a jet from a blunt body opposing a supersonic flow,J.Fluid Mech.684(2011)85–110.

    [13]H.Ren,X.Y.Lu,Large eddy simulation of a vortex ring impinging on a threedimensional circular cylinder,Theor.Appl.Mech.Lett.3(2013)032007.

    [14]J.Jeong,F.Hussain,On the identification of a vortex,J.Fluid Mech.285(1995) 69–94.

    5 March 2015

    in revised form

    ?.

    E-mail addresses:zhuangyq@ustc.edu.cn(Y.Zhuang),xlu@ustc.edu.cn(X.Lu).

    http://dx.doi.org/10.1016/j.taml.2015.06.001

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Fluid Mechanics

    亚洲精品久久国产高清桃花| 久久婷婷成人综合色麻豆| 18禁观看日本| 国产免费av片在线观看野外av| 中文字幕熟女人妻在线| 免费在线观看黄色视频的| 中文字幕最新亚洲高清| 在线观看www视频免费| 国产精品久久久av美女十八| 叶爱在线成人免费视频播放| 女人被狂操c到高潮| 国产成人精品久久二区二区免费| 国产三级中文精品| 嫩草影院精品99| 久99久视频精品免费| 两个人看的免费小视频| 国产99白浆流出| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全免费视频| 最新在线观看一区二区三区| 特大巨黑吊av在线直播| 国产精品久久电影中文字幕| 国产久久久一区二区三区| 精品久久久久久成人av| 欧美高清成人免费视频www| 黄色 视频免费看| 亚洲,欧美精品.| 又大又爽又粗| 亚洲国产中文字幕在线视频| 国产乱人伦免费视频| 在线观看一区二区三区| 久久精品91无色码中文字幕| 国产在线精品亚洲第一网站| 三级国产精品欧美在线观看 | 亚洲aⅴ乱码一区二区在线播放 | 国产精品九九99| 后天国语完整版免费观看| 欧美大码av| 久久香蕉精品热| 黄色女人牲交| 亚洲成av人片免费观看| 精品久久久久久久人妻蜜臀av| 每晚都被弄得嗷嗷叫到高潮| 国产午夜精品久久久久久| 1024手机看黄色片| 精品久久久久久久人妻蜜臀av| 一级黄色大片毛片| 天天躁夜夜躁狠狠躁躁| 亚洲成人中文字幕在线播放| 99国产极品粉嫩在线观看| 国产野战对白在线观看| 18禁黄网站禁片免费观看直播| 欧美午夜高清在线| 91成年电影在线观看| 亚洲av熟女| 精品国产亚洲在线| 国内少妇人妻偷人精品xxx网站 | 亚洲成人中文字幕在线播放| 久久久久久九九精品二区国产 | 91大片在线观看| 久久国产精品影院| 波多野结衣高清作品| 国产亚洲av嫩草精品影院| 欧美中文综合在线视频| 亚洲中文字幕一区二区三区有码在线看 | 身体一侧抽搐| av有码第一页| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 亚洲国产精品sss在线观看| av在线天堂中文字幕| 亚洲免费av在线视频| 香蕉久久夜色| 在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 91大片在线观看| 国产99白浆流出| 哪里可以看免费的av片| 欧美色欧美亚洲另类二区| 欧美日本视频| 成人三级黄色视频| 日日干狠狠操夜夜爽| 亚洲男人的天堂狠狠| 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 欧美zozozo另类| 日韩欧美在线二视频| 国产精品98久久久久久宅男小说| 男女床上黄色一级片免费看| 最近在线观看免费完整版| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 久久精品成人免费网站| 18美女黄网站色大片免费观看| 国内毛片毛片毛片毛片毛片| 青草久久国产| 性欧美人与动物交配| 日韩大尺度精品在线看网址| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美 国产精品| 国产一区在线观看成人免费| 视频区欧美日本亚洲| 免费看十八禁软件| 国产成人欧美在线观看| 丁香六月欧美| 亚洲成人免费电影在线观看| 在线视频色国产色| 国产精品一区二区三区四区久久| 亚洲国产欧美一区二区综合| 欧美3d第一页| 亚洲成av人片在线播放无| 又粗又爽又猛毛片免费看| 极品教师在线免费播放| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 淫秽高清视频在线观看| 日本撒尿小便嘘嘘汇集6| 丁香六月欧美| 巨乳人妻的诱惑在线观看| 久久亚洲真实| 日日摸夜夜添夜夜添小说| 午夜福利在线在线| 久久精品91无色码中文字幕| 午夜日韩欧美国产| 国产精品av视频在线免费观看| 中国美女看黄片| 久久久精品大字幕| 男人舔女人的私密视频| 精品国产乱码久久久久久男人| 色综合欧美亚洲国产小说| 国语自产精品视频在线第100页| 免费av毛片视频| 午夜精品在线福利| 中文字幕最新亚洲高清| 欧美激情久久久久久爽电影| 久久欧美精品欧美久久欧美| 免费电影在线观看免费观看| 久久久久久久精品吃奶| 欧美成人免费av一区二区三区| 国产黄片美女视频| 99热只有精品国产| 亚洲一区高清亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | av在线播放免费不卡| 国产高清视频在线观看网站| av超薄肉色丝袜交足视频| 蜜桃久久精品国产亚洲av| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 色尼玛亚洲综合影院| 亚洲精品中文字幕在线视频| av在线天堂中文字幕| 日韩欧美在线二视频| 妹子高潮喷水视频| 18禁美女被吸乳视频| 国产精品永久免费网站| 神马国产精品三级电影在线观看 | 国产精品久久久久久久电影 | 日韩欧美三级三区| 最新在线观看一区二区三区| 欧美日韩黄片免| 中文字幕熟女人妻在线| 国产在线精品亚洲第一网站| 18禁黄网站禁片免费观看直播| 桃红色精品国产亚洲av| 亚洲成av人片在线播放无| 国产主播在线观看一区二区| 久久久国产成人免费| 国产亚洲精品一区二区www| 国内揄拍国产精品人妻在线| 黄色片一级片一级黄色片| 亚洲最大成人中文| 床上黄色一级片| 中出人妻视频一区二区| 久久久久久九九精品二区国产 | 全区人妻精品视频| 亚洲中文av在线| 婷婷丁香在线五月| 又粗又爽又猛毛片免费看| 51午夜福利影视在线观看| 级片在线观看| 无遮挡黄片免费观看| 18美女黄网站色大片免费观看| 免费一级毛片在线播放高清视频| av欧美777| 禁无遮挡网站| 亚洲午夜精品一区,二区,三区| 一二三四社区在线视频社区8| 在线看三级毛片| 777久久人妻少妇嫩草av网站| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 在线观看www视频免费| 国内毛片毛片毛片毛片毛片| 欧美最黄视频在线播放免费| avwww免费| 亚洲色图 男人天堂 中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲精品国产精品久久久不卡| 99久久综合精品五月天人人| 男人舔女人的私密视频| 日本一二三区视频观看| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 午夜精品一区二区三区免费看| 欧美av亚洲av综合av国产av| av福利片在线| 女同久久另类99精品国产91| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区av网在线观看| 亚洲精品久久成人aⅴ小说| 成人av在线播放网站| 亚洲va日本ⅴa欧美va伊人久久| 国产高清视频在线观看网站| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 中亚洲国语对白在线视频| 国产1区2区3区精品| 亚洲国产看品久久| 99久久国产精品久久久| 熟女电影av网| 69av精品久久久久久| 日日爽夜夜爽网站| 久久中文看片网| 国产区一区二久久| 身体一侧抽搐| 国产成人影院久久av| 91在线观看av| 变态另类丝袜制服| 亚洲天堂国产精品一区在线| avwww免费| 一进一出抽搐动态| 日韩中文字幕欧美一区二区| 母亲3免费完整高清在线观看| 啦啦啦韩国在线观看视频| 一区福利在线观看| 国产精品美女特级片免费视频播放器 | 国产精品亚洲一级av第二区| 岛国在线免费视频观看| 真人做人爱边吃奶动态| 亚洲精品色激情综合| www国产在线视频色| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 中文字幕高清在线视频| 亚洲国产欧洲综合997久久,| 国产高清videossex| 精品人妻1区二区| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 精品国产乱码久久久久久男人| 91老司机精品| 少妇被粗大的猛进出69影院| 成人国语在线视频| 日本五十路高清| 午夜福利视频1000在线观看| 精品少妇一区二区三区视频日本电影| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 黄片小视频在线播放| 亚洲欧美精品综合久久99| 999久久久国产精品视频| 丝袜人妻中文字幕| 成年版毛片免费区| 亚洲av熟女| 亚洲成av人片在线播放无| 中文字幕人妻丝袜一区二区| 久久久精品国产亚洲av高清涩受| 波多野结衣巨乳人妻| 免费看a级黄色片| 国产一区二区三区在线臀色熟女| 亚洲成人久久爱视频| 男男h啪啪无遮挡| 国产成人系列免费观看| 久久久精品国产亚洲av高清涩受| 成人av一区二区三区在线看| 午夜精品在线福利| 亚洲电影在线观看av| 欧美zozozo另类| 黑人操中国人逼视频| 99精品欧美一区二区三区四区| 午夜福利成人在线免费观看| 亚洲欧美日韩无卡精品| 两人在一起打扑克的视频| 麻豆久久精品国产亚洲av| a级毛片在线看网站| 国产亚洲精品一区二区www| 国产午夜精品久久久久久| 观看免费一级毛片| 亚洲激情在线av| 成人三级做爰电影| 2021天堂中文幕一二区在线观| 麻豆国产av国片精品| 女同久久另类99精品国产91| 麻豆av在线久日| 欧美 亚洲 国产 日韩一| 国产午夜精品久久久久久| 观看免费一级毛片| 久久亚洲精品不卡| 成人三级做爰电影| 日韩 欧美 亚洲 中文字幕| 亚洲欧美激情综合另类| 欧美+亚洲+日韩+国产| 午夜精品在线福利| 不卡一级毛片| 亚洲五月婷婷丁香| 国产精品久久久久久久电影 | 制服丝袜大香蕉在线| 国产探花在线观看一区二区| 国产欧美日韩精品亚洲av| www.精华液| 夜夜看夜夜爽夜夜摸| 免费看美女性在线毛片视频| 免费一级毛片在线播放高清视频| 亚洲精品久久成人aⅴ小说| 国产精品美女特级片免费视频播放器 | 男人舔奶头视频| 久久香蕉激情| 黄色 视频免费看| 亚洲五月婷婷丁香| 999久久久精品免费观看国产| 免费看十八禁软件| 亚洲人成网站在线播放欧美日韩| 久久天躁狠狠躁夜夜2o2o| www日本在线高清视频| 日韩欧美免费精品| 欧美性长视频在线观看| 久久精品国产亚洲av高清一级| 中文资源天堂在线| 日韩欧美免费精品| 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 特级一级黄色大片| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 久久亚洲真实| 国产乱人伦免费视频| 人成视频在线观看免费观看| 欧美激情久久久久久爽电影| 夜夜爽天天搞| av福利片在线观看| 高清毛片免费观看视频网站| 全区人妻精品视频| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 操出白浆在线播放| 日韩欧美国产一区二区入口| 中文字幕最新亚洲高清| 国产私拍福利视频在线观看| 国产精品一区二区免费欧美| 亚洲男人天堂网一区| 级片在线观看| 亚洲精品色激情综合| 两个人看的免费小视频| 久久久久久久久久黄片| 最新美女视频免费是黄的| 又粗又爽又猛毛片免费看| 69av精品久久久久久| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 久久精品国产亚洲av高清一级| 国产亚洲精品一区二区www| 亚洲av电影在线进入| 精品高清国产在线一区| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 国产精品,欧美在线| 制服人妻中文乱码| 在线免费观看的www视频| 中文字幕最新亚洲高清| 亚洲成人国产一区在线观看| 怎么达到女性高潮| 亚洲中文av在线| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| 91九色精品人成在线观看| 亚洲九九香蕉| 亚洲国产精品合色在线| 午夜福利在线观看吧| 三级男女做爰猛烈吃奶摸视频| 麻豆av在线久日| 国产视频一区二区在线看| 又大又爽又粗| 悠悠久久av| 欧美日韩一级在线毛片| 日韩免费av在线播放| 日本一区二区免费在线视频| 午夜福利在线在线| 99久久综合精品五月天人人| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 中文字幕人妻丝袜一区二区| 天堂av国产一区二区熟女人妻 | 黑人欧美特级aaaaaa片| 免费高清视频大片| 亚洲av成人一区二区三| 国产伦人伦偷精品视频| 一级毛片高清免费大全| 免费电影在线观看免费观看| 成人国语在线视频| 999精品在线视频| cao死你这个sao货| 一级毛片女人18水好多| 午夜福利欧美成人| 亚洲色图 男人天堂 中文字幕| netflix在线观看网站| 岛国视频午夜一区免费看| 精品欧美一区二区三区在线| 精品电影一区二区在线| av超薄肉色丝袜交足视频| 99久久99久久久精品蜜桃| 五月玫瑰六月丁香| √禁漫天堂资源中文www| 亚洲乱码一区二区免费版| 99精品久久久久人妻精品| 国产亚洲av高清不卡| 亚洲av第一区精品v没综合| 一区二区三区国产精品乱码| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 国产三级在线视频| 精品熟女少妇八av免费久了| 欧美成人午夜精品| 两个人视频免费观看高清| 91九色精品人成在线观看| 国产三级黄色录像| 91老司机精品| 午夜免费观看网址| 色尼玛亚洲综合影院| 丰满人妻一区二区三区视频av | 一级作爱视频免费观看| av天堂在线播放| 女人被狂操c到高潮| 国产不卡一卡二| 亚洲欧洲精品一区二区精品久久久| 在线免费观看的www视频| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 欧美 亚洲 国产 日韩一| 亚洲五月天丁香| 999久久久精品免费观看国产| 黄色片一级片一级黄色片| 精品久久久久久,| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 黄色毛片三级朝国网站| 一夜夜www| 小说图片视频综合网站| 最近在线观看免费完整版| 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 久久香蕉精品热| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 蜜桃久久精品国产亚洲av| 亚洲,欧美精品.| 真人做人爱边吃奶动态| 成人午夜高清在线视频| 在线观看www视频免费| 中文字幕精品亚洲无线码一区| 午夜福利18| 亚洲国产中文字幕在线视频| 久久精品影院6| 国产亚洲精品一区二区www| 久久亚洲真实| 午夜视频精品福利| 夜夜夜夜夜久久久久| 日韩精品免费视频一区二区三区| 日本一本二区三区精品| 听说在线观看完整版免费高清| 亚洲最大成人中文| 禁无遮挡网站| 国产三级在线视频| 亚洲欧洲精品一区二区精品久久久| 九色成人免费人妻av| 国产免费男女视频| 桃红色精品国产亚洲av| 国产av在哪里看| 日韩欧美在线二视频| 国产av不卡久久| 好看av亚洲va欧美ⅴa在| 亚洲五月天丁香| av福利片在线观看| 欧美zozozo另类| 亚洲最大成人中文| 国产三级黄色录像| 久久久久久久久免费视频了| 午夜a级毛片| 两个人看的免费小视频| av在线天堂中文字幕| 亚洲专区国产一区二区| 亚洲人与动物交配视频| 色噜噜av男人的天堂激情| 男女那种视频在线观看| 丝袜美腿诱惑在线| 亚洲成人免费电影在线观看| 国产视频内射| 亚洲成人国产一区在线观看| 亚洲成av人片在线播放无| 国产精品 国内视频| 久久久久久九九精品二区国产 | 久久天堂一区二区三区四区| 国产1区2区3区精品| 日日干狠狠操夜夜爽| 黑人巨大精品欧美一区二区mp4| 操出白浆在线播放| 久久精品夜夜夜夜夜久久蜜豆 | 久久天堂一区二区三区四区| 亚洲av片天天在线观看| 久久精品91无色码中文字幕| 亚洲av成人不卡在线观看播放网| 校园春色视频在线观看| 亚洲精品美女久久久久99蜜臀| 又黄又粗又硬又大视频| 成年人黄色毛片网站| 精品久久久久久,| 欧美久久黑人一区二区| 俄罗斯特黄特色一大片| 日韩中文字幕欧美一区二区| 国产97色在线日韩免费| 国产91精品成人一区二区三区| 99久久99久久久精品蜜桃| 麻豆av在线久日| 神马国产精品三级电影在线观看 | 两人在一起打扑克的视频| 日韩精品免费视频一区二区三区| 日日夜夜操网爽| 69av精品久久久久久| 国产精品综合久久久久久久免费| 老司机福利观看| 亚洲精品色激情综合| 亚洲一区二区三区不卡视频| 18美女黄网站色大片免费观看| 久久欧美精品欧美久久欧美| www.熟女人妻精品国产| 91成年电影在线观看| 在线观看66精品国产| 三级毛片av免费| 色综合亚洲欧美另类图片| 一区二区三区国产精品乱码| 18美女黄网站色大片免费观看| 欧美又色又爽又黄视频| 精品久久久久久久久久久久久| 亚洲人成77777在线视频| 国产精品亚洲一级av第二区| 日本一区二区免费在线视频| 日本 av在线| 中文字幕高清在线视频| 免费看十八禁软件| 午夜影院日韩av| 两个人看的免费小视频| 18禁美女被吸乳视频| 悠悠久久av| 国产成人啪精品午夜网站| 久久久国产精品麻豆| 精品少妇一区二区三区视频日本电影| 国产区一区二久久| 亚洲熟妇中文字幕五十中出| 激情在线观看视频在线高清| 狂野欧美白嫩少妇大欣赏| 两个人免费观看高清视频| 日日爽夜夜爽网站| 国产精品久久视频播放| 亚洲精品一区av在线观看| 国产av一区在线观看免费| 俄罗斯特黄特色一大片| 国产一区二区三区视频了| 99久久综合精品五月天人人| av有码第一页| 日本熟妇午夜| 女警被强在线播放| 亚洲激情在线av| 国产免费男女视频| 欧美日韩一级在线毛片| 国产蜜桃级精品一区二区三区| 在线观看舔阴道视频| 禁无遮挡网站| 午夜福利欧美成人| 国产成人精品久久二区二区免费| 中国美女看黄片| 久久精品人妻少妇| 亚洲天堂国产精品一区在线| 男女之事视频高清在线观看| 日韩欧美 国产精品| 丰满人妻熟妇乱又伦精品不卡| 亚洲九九香蕉| 亚洲成人久久性| 色尼玛亚洲综合影院| 国内毛片毛片毛片毛片毛片| 两个人的视频大全免费| 欧美国产日韩亚洲一区| videosex国产| 麻豆成人av在线观看| 久久精品国产99精品国产亚洲性色| 床上黄色一级片| 国产精品亚洲一级av第二区| 久久草成人影院| 麻豆国产97在线/欧美 | cao死你这个sao货| 午夜免费成人在线视频| 欧美久久黑人一区二区| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 国产高清videossex| 亚洲av第一区精品v没综合| 伊人久久大香线蕉亚洲五| 欧美久久黑人一区二区| 亚洲黑人精品在线| 2021天堂中文幕一二区在线观| 欧美最黄视频在线播放免费| 又大又爽又粗| 国产不卡一卡二|