• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis

    2015-12-22 09:23:04SaomotoKatagiri

    H.Saomoto?,J.Katagiri

    aInstitute of Earthquake and Volcano Geology,National Institute of Advanced Industrial Science and Technology,Tsukuba,Ibaraki,305-8567,Japan

    bMethane Hydrate Research Center,National Institute of Advanced Industrial Science and Technology,Tsukuba,Ibaraki,305-8569,Japan

    Direct comparison of hydraulic tortuosity and electric tortuosity based on finite element analysis

    H.Saomotoa,?,J.Katagirib

    aInstitute of Earthquake and Volcano Geology,National Institute of Advanced Industrial Science and Technology,Tsukuba,Ibaraki,305-8567,Japan

    bMethane Hydrate Research Center,National Institute of Advanced Industrial Science and Technology,Tsukuba,Ibaraki,305-8569,Japan

    A R T I C L EI N F O

    Article history:

    2 June 2015

    Accepted 24 June 2015

    Available online 21 July 2015

    Hydraulic tortuosity

    Electric tortuosity

    Porous media

    Porosity

    Finite element method

    Tortuosity is one of the key parameters to characterize the transport properties of porous media.There are many models for tortuosity estimation based on some definitions:geometric,hydraulic,electric,and diffusive definitions.However,relationships among those tortuosities remain unclear due to the lack ofdirect comparison on the same porous media.Here we focus on hydraulic and electric tortuosities and have conducted a series of finite element simulations with the Navier–Stokes equation and the equation for electric current to directly compare tortuosities.The results revealed that:(1)on average,hydraulic tortuosity is 15%greater than that ofthe electric one;(2)the proposed modelbased on the van Genuchten-type function successfully approximates both hydraulic and electric tortuosities;(3)tortuosities obtained from the porous media packed with circular particles and square particles show quantitatively similar trends.

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/ licenses/by/4.0/).

    Tortuosity is one of the key parameters to represent complex microstructure in porous media and much affects the macroscopic transport properties characterized by parameters such as permeability,electric conductivity,and diffusion conductivity.For instance,permeability derived from the Kozeny–Carman equation[1]is expressed as a function of porosity,shape factor,and tortuosity.Also,Archie’s law[2],which is an experimental model for electric conductivity of porous media,incorporates the effect of tortuosity by a parameter referred to as tortuosity factor.

    There are many models for tortuosity estimation based on some definitions[3,4]:geometric models[5,6](Tg),hydraulic models [7,8](Th),electric models[9,10](Te),and diffusive models[11,12] (T]d).Those models are different in terms of their basic concepts: geometry,fluid mechanics,electrodynamics,and diffusion equation.However,it should be noted that most of those models for each tortuosity are a function of porosity despite of the difference between the background concepts.Besides,the magnitude relation among those tortuosities is considered to hold Tg<Td≈Te<Thfrom the viewpoint of dimensional analysis for the local hydraulic and electric conductivities at a point on a flow path[13–15].However,the relationships among those magnitude are quite qualitative and remain unclear due to the lack of direct comparison on the same porous media.One of the few investigations of the comparison for hydraulic and electric tortuosities is demonstrated by Ghanbarian et al.[4]using the Wheatstone bridge circuit,but it seems difficult to model complicated pore structure with a single Wheatstone bridge.

    Here we focus on the differences between hydraulic and electric tortuosities and have conducted a series of finite element simulations to directly compare hydraulic and electric tortuosities on the same finite element mesh.Using the simulation results, we have discussed the relation between hydraulic and electric tortuosities and have newly proposed an empirical model for both tortuosities.Note that it is difficult to experimentally measure the tortuosity inside the porous media.

    Figure 1 shows the porous models used in this study.Here, two series of porous media are prepared:one is composed of circular particles having the diameter of 2.0 mm(Fig.1(a)),the other is composed of square particles having the edge length of 1.772 mm(Fig.1(b)).Since it is known that tortuosity depends on the value of porosity,we produced several porosity levels ranging from 0.5 to 0.9 by means of the Monte Carlo computation without intersection of each particle.Next,we need to solve two types of partial differential equations defined on those porous models to obtain tortuosities;one is for porous flow and the other is for electric current.

    The governing equation of porous flow is the stationary Navier–Stokes equation described as follows:

    Fig.1.(a)Porous media composed of circular particles having diameter of 2.0 mm(porosity:0.70).(b)Porous media composed of square particles having edge length of 1.772 mm(porosity:0.70).

    Table 1Physical properties of pore fluid.

    where u,ρ,p,andμare velocity of the pore fluid,density of the pore fluid,pore pressure,and the viscosity of the pore fluid,respectively.Physical parameters of the pore fluid,which is assumed to be water,are listed in Table 1.The no-slip boundary condition(u=0)is adopted at the solid boundaries in the porous media.The constant normal fluid velocity(5.0×10?4m/s)is set at the inlet,which satisfies a condition concerning the Reynolds number(Re)expressed by Re=1.The pressure free boundary is set at the outlet(p=0).The other governing equation for stationary electric current is given as follows:

    where V,E,J,andσare electric voltage,electric field,current density,and the electric conductivity of the pore fluid,respectively. The insulated boundary conditions(n·J=0)are applied on the edges ofthe solid region exceptthe boundaries where electric voltage is defined.Electric voltages at the boundaries are set to 1.0 V for the inlet and to 0 V for the outlet,respectively.

    Fig.2.Streamlines of hydraulic flow(porosity:0.70).

    Fig.3.Streamlines of electric flow(porosity:0.70).

    Figures 2 and 3 respectively show hydraulic and electric streamlines for the porous media having porosity of 0.7 withcircular particles.As can be seen in Fig.2,some localized flow paths are clearly produced,in which relatively higher fluid velocities are observed.In contrast to the result of the hydraulic streamlines, electric streamlines(Fig.3)seem to be quite homogeneous. It is emphasized that these tendencies were always observed irrespective of the particle shapes and porosity.To understand those phenomena,the dimensional analyses for hydraulic and electric conductivities are useful.Friedman and Seaton[13] derived proportional relations for those conductivities via the dimensional analyses such that gh∝r4and ge∝r2,where ghand gedenote hydraulic and electric conductivities,respectively. Also,r indicates the radius of a cylinder regarded as a part of fluid path.Since various sizes of r will be found in the porous media, the heterogeneity of those conductivities will arise.We can thus easily comprehend that the higher exponent of r leads to strong heterogeneity,which results in highly tortuous streamlines.

    Figure 4 shows the relationship between tortuosities and the porosity for the circle packed porous model,in which five different cases were simulated at each porosity level.Note that the variance of tortuosities among five cases is simply caused by the five different pore structures.We can find some features.(1)In a large sense,both hydraulic and electric tortuosities have linearity with respect to porosity.(2)The ratio Th/Tereaches almost 1.2 when porosity equals 0.5.(3)The variance among five cases at a porosity for hydraulic tortuosity is higher than that of the electric one. Yazdchi et al.[16]simulated almost the same problem of porous flow with circular particle packed porous model and they also indicated the linear relationship for the hydraulic tortuosity,which is nearly identical to our results.Nevertheless,the linear relation seems difficult to hold the fundamental boundary condition: Th(or Te)→∞atφ=0,Th(or Te)→1 atφ=1,whereφ represents porosity.

    Now we discuss the relationship between our numerical results and the models for both hydraulic and electric tortuosities considered as a function of porosity.One of the most used models for the estimation of both hydraulic and electric tortuosities(T)is the logarithmic function of porosity[7,11,17–20],which is given by

    where P is a parameter to be determined by experiments or simulations.Evidently,the logarithmic function satisfies T→∞at φ=0 and T→1.0 atφ=1.According to Comiti and Renaud[7],the value of P for hydraulic tortuosity ranges from 0.86 to 3.2 for plate-packed porous media with different particle aspect ratio.For two dimensional porous flow problem,Matyka et al.[19] derived P=0.77 for the hydraulic tortuosity from the lattice Boltzmann simulation for a porous modelcomposed offreely overlapping squares.We also fitted our results by Eq.(5)and found good agreements with P=0.50 for the hydraulic tortuosity and with P=0.20 for the electric tortuosity(Fig.4).Presence of overlapping particles in the porous media is thought to be the major cause of the difference between our fitted result and the result reported by Matyka et al.[19].In other words,the aggregated particles are easily apt to generate long flow channels due to their large diameter,resulting in a larger value of P.Itshould be noted that the logarithmic function cannot precisely trace the higher porosity region(φ≥0.7)of the hydraulic tortuosity due to the tangent trend being convex upward.In fact,this convexed tendency of the hydraulic tortuosity is commonly observed in most of simulation results[16,19,21].On the other hand,the electric tortuosity is clearly approximated by the logarithmic function.

    To improve the accuracy of the fitting with the boundary conditions and the convexed region mentioned above,we newly propose a function to evaluate the tortuosity based on the van Genuchten-type function[22].That is,

    Fig.4.Relationship between tortuosities and porosity for circular particle packed porous media.

    Fig.5.Relationship between tortuosities and porosity for square particle packed porous media.

    whereα(positive value)and m(0≤m≤1)are fitting parameters. As the van Genuchten function is originally designed for moisture characteristic curve of soils having the changing tangent,it is suitable for locally convexed trend as indicated in the hydraulic tortuosity.Although there are two parameters,geometric meanings of those are quite clear;parameterαregulates the location of the inflection pointon the curve and parameter m controls the increasing trend of the curve.Also,the proposed model may be simple to use because the parameter m is a normalized parameter.The upper and lower bounds for the parameters are important when we determine the parameters via the non-linear least square fitting. Usingα=0.217 and m=0.572,the proposed function well approximates the plot of hydraulic tortuosity distributed within 0.5≤φ≤0.9(Fig.4).In addition to hydraulic tortuosity,the proposed function can also fit the plot of the electric tortuosity with a high degree of accuracy.

    Figure 5 shows the relationship between tortuosity and porosity for the square particle packed porous media.Similarly, the proposed model can also fit both tortuosities precisely.By comparing Fig.4 with Fig.5,we can discuss the effect of particle shape to tortuosities.According to the regression equationproposed by Comiti and Renaud[7],they argued that a higher aspect ratio leads to a higher value of P.Since the difference in the aspect ratio between a circle and a square is small,similar tortuosity trends are formed in each model.

    The knowledge obtained from this study is summarized as follows. (1) In two-dimensional problem, the ratio composed of hydraulic and electric tortuosities (Th/Te) is less than 1.2 with φ≥ 0.5. (2) The logarithmic function fails to fit hydraulic tortuosity in the higher porosity region (φ ≥ 0.7) due to the tangent trend be-ing convex upward. (3) We proposed an empirical model to es-timate both hydraulic and electric tortuosities based on the van Genuchten-type function. The model successfully approximates tortuosities distributed within 0.5 ≤ φ ≤ 0.9. (4) Both the logarithmic function and our model clearly approximate the electric tortuosity. (5) Tortuosities obtained from the porous media packed with circular particles and square particles show similar trends, suggesting that the particles with high aspect ratio will be required to discuss the shape effect to tortuosity.

    Future work on our tortuosity model is to estimate the applicability of the proposed model based on the van Genuchtentype function to the three-dimensional porous model composed of realistic irregular-shaped particles such as sand grains.

    References

    [1]P.C.Carman,Fluid flow through granular beds,Trans.Inst.Chem.Eng.15 (1937)150–166.

    [2]G.E.Archie,The electrical resistivity log as an aid in determining some reservoir characteristics,Pet.Trans.AIME 146(1942)54–62.

    [3]M.B.Clennell,Tortuosity:a guide through the maze,Geol.Soc.Lond.Spec.Publ. 122(1997)299–344.http://dx.doi.org/10.1144/GSL.SP.1997.122.01.18.

    [4]B.Ghanbarian,A.G.Hunt,R.P.Ewing,et al.,Tortuosity in porous media:a critical review,Soil Sci.Soc.Am.J.77(2013)1461–1477. http://dx.doi.org/10.2136/sssaj2012.0435.

    [5]B.-M.Yu,J.-H.Li,A geometry model for tortuosity of flow path in porous media,Chin.Phys.Lett.21(2004)1569–1571.http://dx.doi.org/10.1088/0256-307X/21/8/044.

    [6]P.-Y.Lanfrey,Z.V.Kuzeljevic,M.P.Dudukovic,Tortuosity model for fixed beds randomly packed with identical particles,Chem.Eng.Sci.65(2010) 1891–1896.http://dx.doi.org/10.1016/j.ces.2009.11.011.

    [7]J.Comiti,M.Renaud,A new modelfordetermining mean structure parameters of fixed beds from pressure drop measurements:application to beds packed with parallelepipedal particles,Chem.Eng.Sci.44(1989)1539–1545. http://dx.doi.org/10.1016/0009-2509(89)80031-4.

    [8]M.Mota,J.A.Teixeira,W.R.Bowen,et al.,Binary spherical particle mixed beds:porosity and permeability relationship measurement,Trans.Filtr.Soc. 44(2001)101–106.

    [9]J.C.Maxwell,A Treatise on Electricity and Magnetism,vol.1,Clarendon Press, London,1873.

    [10]S.W.Coleman,J.C.Vassilicos,Transport properties of saturated and unsaturated porous fractal materials,Phys.Rev.Lett.100(2008)035504. http://dx.doi.org/10.1103/PhysRevLett.100.035504.

    [11]H.L.Weissberg,Effective diffusion coefficient in porous media,J.Appl.Phys. 34(1963)2636–2639.

    [12]J.W.Beeckman,Mathematical description of heterogeneous materials, Chem.Eng.Sci.45(1990)2603–2610.http://dx.doi.org/10.1016/0009-2509(90)80148-8.

    [13]S.P.Friedman,N.A.Seaton,Critical path analysis of the relationship between permeability and electrical conductivity of three-dimensional pore networks, Water Resour.Res.45(1998)1703–1710. http://dx.doi.org/10.1029/98WR00939.

    [14]A.G.Hunt,Applications ofpercolation theory to porous media with distributed local conductances,Adv.Water Resour.24(2001)279–307. http://dx.doi.org/10.1016/S0309-1708(00)00058-0.

    [15]R.P.Ewing,A.G.Hunt,Dependence of the electrical concuctivity on saturation in real porous media,Vadose Zone J.5(2006)731–741. http://dx.doi.org/10.2136/vzj2005.0107.

    [16]K.Yazdchi,S.Srivastava,S.Luding,On the validity of the Carman–Kozeny equation in random fibrous media,in:Internatinal Conference on Particlebased Methods II,PARTICLES 2011,October 26–28,Barcelona,Spain,2011.

    [17]D.S.Tsai,W.Strieder,Effective conductivities ofrandom fiber beds,Chem.Eng. Commun.40(1986)207–218. http://dx.doi.org/10.1080/00986448608911698.

    [18]E.Mauret,M.Renaud,Transport phenomena in multi-particle systems—I. Limits of applicability of capillary model in high voidage beds-application to fixed beds of fibers and fluidized beds of spheres,Chem.Eng.Sci.52(1997) 1807–1817.http://dx.doi.org/10.1016/S0009-2509(96)00499-X.

    [19]M.Matyka,A.Khalili,Z.Koza,Tortuosity-porosity relation in porous media flow,Phys.Rev.E 78(2008)026306. http://dx.doi.org/10.1103/PhysRevE.78.026306.

    [20]M.Barrande,R.Bouchet,R.Denoyel,Tortuosity ofporous particles,Anal.Chem. 79(2007)9115–9121.http://dx.doi.org/10.1021/ac071377r.

    [21]A.Duda,Z.Koza,M.Matyka,Hydraulic tortuosity in arbitrary porous media flow,Phys.Rev.E 84(2011)036319. http://dx.doi.org/10.1103/PhysRevE.84.036319.

    [22]M.Th.van Genuchten,A closed-form equation for predicting the hydraulic conductivity of unsaturated soils,Soil Sci.Soc.Am.J.44(1980)892–898. http://dx.doi.org/10.2136/sssaj1980.03615995004400050002x.

    1 September 2014

    in revised form

    ?.

    E-mail address:h-saomoto@aist.go.jp(H.Saomoto).

    http://dx.doi.org/10.1016/j.taml.2015.07.001

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY license(http://creativecommons.org/licenses/by/4.0/).

    *This article belongs to the Fluid Mechanics

    人人妻人人澡人人爽人人夜夜| 尾随美女入室| 亚洲欧美日韩另类电影网站| 七月丁香在线播放| 色网站视频免费| 赤兔流量卡办理| 乱系列少妇在线播放| 9色porny在线观看| 免费高清在线观看视频在线观看| 免费看光身美女| 中文字幕亚洲精品专区| 久久ye,这里只有精品| 成人午夜精彩视频在线观看| 欧美 日韩 精品 国产| 成人特级av手机在线观看| 一区二区三区精品91| 午夜福利,免费看| 中文字幕免费在线视频6| 99九九在线精品视频 | 久久久久人妻精品一区果冻| 中文天堂在线官网| 亚洲精品一二三| 狂野欧美白嫩少妇大欣赏| 伦理电影免费视频| 免费人妻精品一区二区三区视频| 麻豆成人av视频| 久久精品国产鲁丝片午夜精品| 美女cb高潮喷水在线观看| 我要看日韩黄色一级片| 久久精品国产自在天天线| 人妻夜夜爽99麻豆av| 午夜视频国产福利| 久久精品国产鲁丝片午夜精品| 久久久久久久国产电影| 五月天丁香电影| 一级a做视频免费观看| 蜜臀久久99精品久久宅男| 夫妻性生交免费视频一级片| 亚洲人成网站在线观看播放| 亚洲国产精品国产精品| 国产乱来视频区| 99久国产av精品国产电影| 天美传媒精品一区二区| 高清av免费在线| 少妇丰满av| 自拍偷自拍亚洲精品老妇| 国产男女超爽视频在线观看| 十八禁高潮呻吟视频 | 国产熟女欧美一区二区| a级片在线免费高清观看视频| 国产一级毛片在线| 在现免费观看毛片| av在线播放精品| 午夜久久久在线观看| 亚洲av成人精品一二三区| 亚洲真实伦在线观看| 夜夜看夜夜爽夜夜摸| 免费看光身美女| 亚洲久久久国产精品| 国产91av在线免费观看| 建设人人有责人人尽责人人享有的| 中文字幕av电影在线播放| 亚洲精品国产色婷婷电影| 成人国产av品久久久| 女性生殖器流出的白浆| 成人美女网站在线观看视频| 亚洲精品国产av蜜桃| 狂野欧美白嫩少妇大欣赏| 久久99一区二区三区| 十八禁网站网址无遮挡 | 中国三级夫妇交换| 男人舔奶头视频| 九九在线视频观看精品| 欧美激情国产日韩精品一区| a级一级毛片免费在线观看| 高清毛片免费看| 亚洲成人一二三区av| 啦啦啦啦在线视频资源| 中文字幕av电影在线播放| 一级a做视频免费观看| 精品国产乱码久久久久久小说| 日韩欧美 国产精品| 成人亚洲欧美一区二区av| 人人妻人人爽人人添夜夜欢视频 | 99视频精品全部免费 在线| 国产成人freesex在线| 亚洲国产精品999| 国产淫语在线视频| 99热这里只有是精品50| 亚洲av成人精品一区久久| 国产精品麻豆人妻色哟哟久久| 香蕉精品网在线| 久久精品国产亚洲网站| 少妇 在线观看| 国产极品粉嫩免费观看在线 | 亚洲欧美成人精品一区二区| 十八禁高潮呻吟视频 | 亚洲精品日韩av片在线观看| 国产黄频视频在线观看| 人人妻人人澡人人爽人人夜夜| 一级爰片在线观看| 三上悠亚av全集在线观看 | 黄色日韩在线| 少妇高潮的动态图| 少妇被粗大的猛进出69影院 | 欧美+日韩+精品| 精品一品国产午夜福利视频| 另类精品久久| 黑人猛操日本美女一级片| 欧美精品一区二区大全| av黄色大香蕉| 在线亚洲精品国产二区图片欧美 | 一区二区三区免费毛片| 青春草亚洲视频在线观看| 丰满人妻一区二区三区视频av| 久久精品国产自在天天线| 国产精品福利在线免费观看| 国产精品一区二区性色av| 久久国产精品大桥未久av | 一级毛片电影观看| 成人国产麻豆网| 2022亚洲国产成人精品| 午夜福利网站1000一区二区三区| 伊人亚洲综合成人网| 高清视频免费观看一区二区| 久久久久久久亚洲中文字幕| 蜜桃久久精品国产亚洲av| 免费看日本二区| 免费看av在线观看网站| 国产老妇伦熟女老妇高清| 国产免费一区二区三区四区乱码| 久久ye,这里只有精品| 一级毛片 在线播放| 免费人妻精品一区二区三区视频| 日本-黄色视频高清免费观看| 黄色一级大片看看| 日日摸夜夜添夜夜添av毛片| a级片在线免费高清观看视频| 久久国产精品男人的天堂亚洲 | 中文天堂在线官网| 免费观看在线日韩| 免费av不卡在线播放| 精品少妇黑人巨大在线播放| 亚洲国产精品国产精品| 特大巨黑吊av在线直播| 女的被弄到高潮叫床怎么办| 美女视频免费永久观看网站| 精品人妻熟女av久视频| 大香蕉97超碰在线| 亚洲国产最新在线播放| 精品久久久精品久久久| 在线观看国产h片| 一边亲一边摸免费视频| 成人国产av品久久久| 亚洲国产精品一区二区三区在线| 国产黄片美女视频| 国产成人一区二区在线| 97超碰精品成人国产| 国产成人freesex在线| 亚洲图色成人| 国产精品久久久久久精品古装| 成年人午夜在线观看视频| 亚洲综合精品二区| 欧美日韩av久久| 国产老妇伦熟女老妇高清| 天堂俺去俺来也www色官网| 亚洲精品第二区| 少妇 在线观看| 国产无遮挡羞羞视频在线观看| 丝袜在线中文字幕| 欧美日韩亚洲高清精品| 三级国产精品片| a级毛色黄片| 免费看日本二区| 在线亚洲精品国产二区图片欧美 | 亚洲不卡免费看| 国产午夜精品一二区理论片| 在线播放无遮挡| 色5月婷婷丁香| av有码第一页| 久久久久久久久久成人| 国产白丝娇喘喷水9色精品| 老司机影院毛片| 亚洲第一区二区三区不卡| 22中文网久久字幕| 日本与韩国留学比较| 99热国产这里只有精品6| 欧美日韩在线观看h| 亚洲精品日韩av片在线观看| 成人黄色视频免费在线看| 亚洲精品乱码久久久久久按摩| 亚洲av成人精品一二三区| 久久午夜福利片| 久久精品国产亚洲网站| videos熟女内射| 99久久精品一区二区三区| 午夜福利,免费看| 国产黄片美女视频| 国产永久视频网站| 免费人妻精品一区二区三区视频| 最黄视频免费看| 国产极品粉嫩免费观看在线 | 国产成人精品福利久久| 久久久国产欧美日韩av| 日韩电影二区| 久久狼人影院| 成年av动漫网址| 欧美一级a爱片免费观看看| 人妻 亚洲 视频| 久久这里有精品视频免费| 欧美人与善性xxx| 色网站视频免费| 国产成人精品久久久久久| 亚洲激情五月婷婷啪啪| 亚洲欧美精品专区久久| 色婷婷av一区二区三区视频| 免费久久久久久久精品成人欧美视频 | 你懂的网址亚洲精品在线观看| 中文资源天堂在线| 国产高清不卡午夜福利| 成人毛片60女人毛片免费| av福利片在线| 七月丁香在线播放| 校园人妻丝袜中文字幕| 老司机亚洲免费影院| 免费看日本二区| h视频一区二区三区| 成人免费观看视频高清| 边亲边吃奶的免费视频| 日韩伦理黄色片| 又粗又硬又长又爽又黄的视频| 免费观看性生交大片5| 中文乱码字字幕精品一区二区三区| 三级国产精品片| 久久国产精品男人的天堂亚洲 | 18禁在线无遮挡免费观看视频| 如何舔出高潮| 久久亚洲国产成人精品v| 中文天堂在线官网| 色婷婷av一区二区三区视频| 久久久精品94久久精品| 在线观看免费高清a一片| 51国产日韩欧美| 97在线人人人人妻| 国产色爽女视频免费观看| 国产在线免费精品| 欧美三级亚洲精品| 国产精品成人在线| 亚洲av.av天堂| 午夜福利视频精品| 丰满少妇做爰视频| 超碰97精品在线观看| av视频免费观看在线观看| 五月开心婷婷网| 婷婷色麻豆天堂久久| 哪个播放器可以免费观看大片| 18禁裸乳无遮挡动漫免费视频| 成人特级av手机在线观看| a级毛片免费高清观看在线播放| 日韩亚洲欧美综合| 99热这里只有精品一区| av在线老鸭窝| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 免费高清在线观看视频在线观看| 色哟哟·www| 91久久精品国产一区二区成人| 18禁在线无遮挡免费观看视频| 曰老女人黄片| 99热这里只有是精品在线观看| 丁香六月天网| 亚洲国产毛片av蜜桃av| 成人综合一区亚洲| 日本黄色日本黄色录像| 国产高清不卡午夜福利| 日韩制服骚丝袜av| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| av在线播放精品| 韩国av在线不卡| 亚洲成人手机| 国产 精品1| 观看免费一级毛片| 国产有黄有色有爽视频| 亚洲怡红院男人天堂| 久久午夜福利片| 中文字幕制服av| 成年人免费黄色播放视频 | 国产精品久久久久久久电影| 美女国产视频在线观看| 六月丁香七月| 亚洲av不卡在线观看| 91成人精品电影| 内射极品少妇av片p| 这个男人来自地球电影免费观看 | 国产精品秋霞免费鲁丝片| 在线观看av片永久免费下载| 亚洲av男天堂| 亚洲精品国产色婷婷电影| 日韩中文字幕视频在线看片| 日韩不卡一区二区三区视频在线| 亚洲一级一片aⅴ在线观看| 精品久久久久久久久av| 视频区图区小说| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩东京热| 在线观看av片永久免费下载| av免费观看日本| 97超视频在线观看视频| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久久久按摩| 国产精品一区二区在线不卡| 久久久久网色| 国产亚洲av片在线观看秒播厂| 性高湖久久久久久久久免费观看| 免费观看a级毛片全部| 成人影院久久| 国产视频内射| 国产欧美日韩精品一区二区| 美女大奶头黄色视频| 亚洲欧洲日产国产| 国产精品熟女久久久久浪| 精品一区二区三卡| 永久网站在线| 午夜久久久在线观看| 国产成人aa在线观看| 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 日本欧美国产在线视频| 国产精品人妻久久久久久| 26uuu在线亚洲综合色| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 久久免费观看电影| 我要看日韩黄色一级片| 欧美成人精品欧美一级黄| av福利片在线观看| 国产精品国产三级国产av玫瑰| 一本一本综合久久| 欧美一级a爱片免费观看看| 欧美精品一区二区大全| 成人特级av手机在线观看| 婷婷色av中文字幕| 国产av精品麻豆| 亚洲综合色惰| 麻豆成人午夜福利视频| 蜜桃在线观看..| 中文天堂在线官网| 狂野欧美激情性xxxx在线观看| 建设人人有责人人尽责人人享有的| 久久久欧美国产精品| 国产真实伦视频高清在线观看| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| 尾随美女入室| 亚洲欧美成人综合另类久久久| 精品卡一卡二卡四卡免费| 亚洲精品乱码久久久v下载方式| 国产高清不卡午夜福利| 国产男人的电影天堂91| 麻豆成人午夜福利视频| 人人妻人人爽人人添夜夜欢视频 | 丰满人妻一区二区三区视频av| 嫩草影院入口| 国产精品久久久久久精品古装| 精品亚洲乱码少妇综合久久| 亚洲精华国产精华液的使用体验| 国产熟女欧美一区二区| 亚洲欧洲国产日韩| 偷拍熟女少妇极品色| 中文字幕制服av| 午夜视频国产福利| 男人舔奶头视频| 国产精品女同一区二区软件| 一级av片app| 夜夜看夜夜爽夜夜摸| 综合色丁香网| 中文在线观看免费www的网站| 久久人妻熟女aⅴ| 桃花免费在线播放| 亚洲第一av免费看| 国产精品人妻久久久久久| 婷婷色综合大香蕉| 性色avwww在线观看| 亚洲精品一二三| 69精品国产乱码久久久| 18禁在线无遮挡免费观看视频| 精品少妇黑人巨大在线播放| 国产精品免费大片| 亚洲国产精品国产精品| 国产黄色免费在线视频| 美女内射精品一级片tv| 80岁老熟妇乱子伦牲交| 制服丝袜香蕉在线| av一本久久久久| 啦啦啦中文免费视频观看日本| 亚洲欧洲国产日韩| 久久 成人 亚洲| 在线观看美女被高潮喷水网站| 国产精品久久久久成人av| 免费黄频网站在线观看国产| 亚洲国产精品一区二区三区在线| 人妻一区二区av| 成人亚洲精品一区在线观看| 免费不卡的大黄色大毛片视频在线观看| 曰老女人黄片| 国产欧美亚洲国产| 97在线视频观看| 成人二区视频| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 少妇 在线观看| 麻豆成人av视频| 日韩av在线免费看完整版不卡| av在线播放精品| 成人午夜精彩视频在线观看| 亚洲欧美精品专区久久| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 如日韩欧美国产精品一区二区三区 | 五月天丁香电影| 人妻一区二区av| 69精品国产乱码久久久| 多毛熟女@视频| 国产爽快片一区二区三区| 国产极品天堂在线| 国产亚洲精品久久久com| 成年女人在线观看亚洲视频| 免费观看a级毛片全部| 久久人人爽人人片av| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 久久精品国产亚洲网站| 亚洲久久久国产精品| 欧美三级亚洲精品| 18禁裸乳无遮挡动漫免费视频| 亚洲精品日本国产第一区| 亚洲丝袜综合中文字幕| 亚洲熟女精品中文字幕| 18禁在线无遮挡免费观看视频| 免费人成在线观看视频色| 欧美bdsm另类| 韩国av在线不卡| 欧美区成人在线视频| 美女xxoo啪啪120秒动态图| 亚洲第一av免费看| 伊人亚洲综合成人网| av在线播放精品| 少妇的逼水好多| 精品久久国产蜜桃| 在线观看一区二区三区激情| 亚洲真实伦在线观看| 久久午夜综合久久蜜桃| 老女人水多毛片| 日韩中字成人| 99热全是精品| 亚洲av日韩在线播放| 美女福利国产在线| 两个人免费观看高清视频 | 国产成人a∨麻豆精品| 一级毛片aaaaaa免费看小| 国产精品无大码| 中文字幕精品免费在线观看视频 | 久久人人爽av亚洲精品天堂| 国产在线一区二区三区精| 久久免费观看电影| 在线观看免费高清a一片| 人妻 亚洲 视频| 日本wwww免费看| 精华霜和精华液先用哪个| 亚洲成色77777| 午夜久久久在线观看| 一级毛片久久久久久久久女| 熟妇人妻不卡中文字幕| 亚洲经典国产精华液单| 97超视频在线观看视频| 国产乱来视频区| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 在线亚洲精品国产二区图片欧美 | 欧美老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 99热这里只有是精品在线观看| 国产成人精品久久久久久| 久久午夜福利片| 亚洲国产日韩一区二区| av一本久久久久| 中文在线观看免费www的网站| 深夜a级毛片| 少妇熟女欧美另类| freevideosex欧美| 啦啦啦视频在线资源免费观看| 国产又色又爽无遮挡免| 日韩三级伦理在线观看| 高清毛片免费看| 在线观看免费日韩欧美大片 | 亚洲精品国产av成人精品| 黄色一级大片看看| 久久综合国产亚洲精品| av视频免费观看在线观看| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 制服丝袜香蕉在线| 黄色毛片三级朝国网站 | 亚洲欧洲精品一区二区精品久久久 | 免费看不卡的av| 亚洲欧美精品专区久久| 老司机影院成人| 久久鲁丝午夜福利片| 日韩强制内射视频| 国产免费又黄又爽又色| 亚洲美女视频黄频| 另类精品久久| 我的老师免费观看完整版| av免费观看日本| 免费观看的影片在线观看| 欧美激情极品国产一区二区三区 | 成人综合一区亚洲| www.色视频.com| 建设人人有责人人尽责人人享有的| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 国产美女午夜福利| 寂寞人妻少妇视频99o| 大片免费播放器 马上看| 久久婷婷青草| 欧美bdsm另类| 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕| 下体分泌物呈黄色| 亚洲成人av在线免费| 久久韩国三级中文字幕| 久久鲁丝午夜福利片| 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 最近中文字幕高清免费大全6| 亚洲,欧美,日韩| 天美传媒精品一区二区| 亚洲精品一二三| 夫妻午夜视频| 国产一区有黄有色的免费视频| 国产极品粉嫩免费观看在线 | 久久午夜综合久久蜜桃| 婷婷色av中文字幕| 日韩人妻高清精品专区| 一级毛片我不卡| 夫妻性生交免费视频一级片| 99久久综合免费| 久久亚洲国产成人精品v| 伦理电影免费视频| 精品视频人人做人人爽| 极品人妻少妇av视频| 国产无遮挡羞羞视频在线观看| 国产女主播在线喷水免费视频网站| 精品少妇内射三级| 国产在线视频一区二区| 狂野欧美激情性xxxx在线观看| 另类亚洲欧美激情| 国产一区亚洲一区在线观看| 免费黄频网站在线观看国产| 99久久精品热视频| 伊人久久国产一区二区| 五月伊人婷婷丁香| 香蕉精品网在线| 91aial.com中文字幕在线观看| 国产亚洲一区二区精品| 午夜av观看不卡| 国产日韩欧美视频二区| 亚洲av国产av综合av卡| 国产美女午夜福利| 亚洲一区二区三区欧美精品| 欧美xxxx性猛交bbbb| 午夜日本视频在线| 国产精品一二三区在线看| 中文欧美无线码| 丝袜在线中文字幕| 在线观看av片永久免费下载| 欧美 亚洲 国产 日韩一| 精品酒店卫生间| 国产高清有码在线观看视频| 亚洲性久久影院| 国产精品一区二区在线不卡| 国产成人午夜福利电影在线观看| 国产成人精品婷婷| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 国产视频内射| 最新的欧美精品一区二区| 下体分泌物呈黄色| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 黄色一级大片看看| 久久 成人 亚洲| 五月开心婷婷网| 久久6这里有精品| 波野结衣二区三区在线| 夜夜骑夜夜射夜夜干| 亚洲电影在线观看av| 国产精品嫩草影院av在线观看| 精品人妻偷拍中文字幕| 国产精品一二三区在线看| 久久精品国产自在天天线| 高清毛片免费看| xxx大片免费视频| 久久久久久久亚洲中文字幕| 国产国拍精品亚洲av在线观看| 国产精品国产av在线观看| 成人影院久久| 日日摸夜夜添夜夜添av毛片| av卡一久久| 在线看a的网站| 国产精品一区www在线观看|