• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation

    2015-12-22 09:23:08JiangWildeJiangDai

    M.Q.Jiang?,G.Wilde,F.Jiang,L.H.Dai?

    aState Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bInstitute of Materials Physics,Westf?lische Wilhelms-Universit?t Münster,Münster 48149,Germany

    cState Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation

    M.Q.Jianga,?,G.Wildeb,F.Jiangc,L.H.Daia,?

    aState Key Laboratory of Nonlinear Mechanics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China

    bInstitute of Materials Physics,Westf?lische Wilhelms-Universit?t Münster,Münster 48149,Germany

    cState Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China

    H I G H L I G H T S

    ?Cooperative shearing of shear transformation zones(STZs)is assisted by free volume.

    ?STZ dilatational strain is introduced to understand the ductile-to-brittle transition(DBT)of metallic glasses.

    ?The DBT of metallic glasses is underpinned by the transition of STZs to tension transformation zones(TTZs).

    A R T I C L E I N F O

    Article history:

    Accepted 5 September 2015

    Available online 28 September 2015

    Ductile-to-brittle transition

    Metallic glass

    Fracture

    Shear transformation zone

    Tension transformation zone

    A theoretical model that takes into account the free-volume aided cooperative shearing of shear transformation zones(STZs)is developed to quantitatively understand the ductile-to-brittle transition (DBT)of metallic glasses.The STZ dilatational strain is defined as the ratio of STZ-activated free volume to STZ volume itself.The model demonstrates that the STZ dilatational strain will increase drastically and exceed the characteristic shear strain of STZ as temperature decreases below a critical value.This critical temperature is in good agreement with the experimentally measured DBT temperature.Our results suggestthatthe DBT ofmetallic glasses is underpinned by the transition ofatomic-cluster motions from STZ-type rearrangements to dilatational processes(termed tension transformation zones(TTZs)).

    ?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    At temperatures well below the glass transition temperature, metallic glasses usually share an avenue to mechanical failure by shear-induced dilatation or free volume generation[1–5]resulting from a cascade of inelastic rearrangements of local atomic clusters, commonly called shear transformation zones(STZs)[6–8].Macroscopically,such a shear-softening process appears as a runaway of shear bands of about 10 nm in thickness into crack propagation through the Saffman–Taylor flow instability[9],leaving microscale vein-like fracture patterns.However,recent experiments [10–13]and simulations[14,15]have revealed that the dilatation itself,whether induced by shear or hydrostatic tension,can dominate brittle fracture of metallic glasses.In this case,the crack tip propagates via cavitating events that involve a series of nanovoids nucleation and coalescence with very limited plastic growth [11,14],which retains the tip atomically sharp during propagation[16,17].The dilatation-mediated brittle fracture is strongly supported by the resulting fracture morphologies[10–12,18–21]: very-fine dimples and nanoscale periodic corrugations.At the atomic scale,such a brittle cavitating event has been originally defined by Jiang et al.[11,22]as a tension transformation zone(TTZ) that describes the atomic cluster motion undergoing significant dilatation.For convenience of understanding,the TTZ can be regarded as a dilatation-dominated STZ,but the later is usually sheardominated[6,7,23].

    It is therefore expected that the ductile-to-brittle transition (DBT)of metallic glasses will take place if the STZs at the crack tip are restrained,whereas the TTZs are activated simultaneously. More specifically,the DBT is trigged by the change in the nature of the‘‘transformation zones’’from STZ-type to TTZ-type[11,19, 21,24–26].Nevertheless,why and how an STZ could convert into a TTZ remains to be further clarified.Very recently,we performed systematic experiments on the fracture behavior of a typical Zrbased(Vitreloy 1)bulk metallic glass at decreasing temperature from room temperature(300 K)to liquid helium temperature (4.2 K)[27].It was observed that the cryogenic temperature can incur a sharp DBT at about 20 K,which motivates us to explorethe critical condition for the STZ-to-TTZ transition.In the present letter,we propose a STZ dilatational strain to quantitatively characterize the STZ-to-TTZ transition by taking free volume into the cooperative shearing of STZs.This model is supported by the good agreement between the predicted DBT temperature and that determined experimentally[27].

    It has been recognized that plastic flow of metallic glasses occurs as a result of a series of STZ operations[2,6,7,28].However, unlike the unit glide of a dislocation in a crystalline material that is only driven by the deviatoric stress,the potential STZs require local dilatation or free volume for the shear transformations to take place[2,29].In fact,the STZs initiate easier in regions where the free volume is higher[8],although the STZ operation is sheardominated[2,23].We could thus envision an extreme situation in which an STZ experiences a remarkable dilatation rather than shearing,so that the STZ actually becomes a cavitation event, i.e.,the TTZ operation per se defined previously[11].The TTZs ahead the crack tip are widely believed to be responsible for the brittle fracture of metallic glasses[11,19,24,25,27].Hence, how to characterize the dilatation degree of STZ holds a key to the microscopic STZ-to-TTZ transition or the macroscopic DBT in metallic glasses.

    This definition means that if the active free volume or the absolute dilatation of an STZ is comparable to the STZ volume itself,the STZ will be prone to undergo a significant dilatation.When the STZ dilatational strain exceeds a threshold,the STZ becomes a TTZ-type cavitation operation.It should be pointed out that the STZ dilatational strain defined here is somewhat different from the cavitational strain defined by Guan et al.[15].The former mainly addresses the nucleation of a void due to shear(STZ)-induced dilatation,while the latter describes the void nucleation and plastic growth under a direct hydrostatic tension.

    The cooperative shearing model(CSM)of STZs points out that the plastic flow occurs in metallic glasses when the barrier crossing rate ofSTZs reaches a criticalvalue comparable to the applied strain rate[31].Considering that the STZ activation is usually assisted by free volume[2,6,29],we generalize this onset condition to involve the configurational(or free volume)probability,Fξ,of the activation of STZs that is statistically related to the free volume by[8,32]

    whereγ0is the characteristic shear strain of an STZ,ω0is an attempt frequency,Wτis the activation energy for an STZ at finite shear stress,kBis the Boltzmann constant,C is a dimensionless constant of order unity,and˙γis the applied shear strain rate. Following Johnson and Samwer[31],the activation energy for an STZ to flow in a stressed metallic glass can be written as

    In this equation,R is the‘‘fold ratio’’,ζis a correction factor arising from the matrix confinement.GTis the temperature-dependent shear modulus that can be obtained by[34]

    As for the temperature dependence of active free volume,we borrow from a result of the simulation by Starr et al.[35].It is suggested that the evolution of the active free volume with STZ operations at T<Tgcan be well approximated by a power law

    Next,we examine the effect of the environmental temperature on STZ volume(6),active free volume(7),and STZ dilatational strain(1),by using Vitreloy 1 as a modelmaterial.The relevant mechanicaland physicalparameters of Vitreloy 1 are derived fromthe recent literature[3,8,29,31,39–41]and listed in Table 1.By combining Eqs.(6)and(7),the evolution of active free volume and STZ volume with temperature is calculated in Fig.1.The calculated free volume and STZ volume are,respectively,comparable to the experimentally determined values[39,42,43].Itcan be seen thatboth STZ volume and STZ-activated free volume decrease monotonously and approach zero with decreasing temperature.This result implies that low temperatures render plastic flow more difficult.It isbecause that the STZ volume becomes smaller at lower temperatures,so that flow requires a relatively larger number of STZs, which,however,are difficult to synchronously cooperate during shearing[23].Furthermore,the active free volume becomes more insufficient with decreasing temperature,which in turn delays the activation of STZ and increases its activation stress[29].This is consistent with the common observation of low-temperature strengthening of shear failure of metallic glasses[27,44–46].The physical rationality of Fig.1 can be understood if we compare the STZ for flow of glassy solids to the cooperatively rearranging regions(CRRs)for relaxation of glassy liquids.Recently,Stevenson et al.[47]have found that with the temperature decreasing from the mode coupling critical temperature to the Kauzmann temperature,the CRR shape will change from a loose configuration to a compact one,and the characteristic size of CRR decreases correspondingly.Itis expected that the more compact CRRs with smaller size have smaller free volume.However,we note thateither the active free volume or the STZ volume alone cannot naturally predict the occurrence of the DBT.

    Consequently,we further examine the STZ dilatational strain defined by Eq.(1).A plot of the STZ dilatational strain as a function of temperature is shown in Fig.2,where the fracture strengths of Vitreloy 1 are also denoted at different temperatures[27].An obvious DBT temperature of about 20 K can be experimentally identified,based on the observation that the fracture strengths change from constant to discrete at a fixed temperature.Very interestingly and surprisingly,we find that,when the temperature decreases below 20 K,the STZ dilatational strain shows a sudden jump and its value can even reach up to 100%.This result implies an emergence of a TTZ-type atomic cluster motion that can be considered as a transient activation from a STZ with significant dilatation at very low temperatures.It is well known that the characteristic shear strain of a STZ is about 10%[6,8].If we roughly adopt the STZ dilatational strain of 10%as the threshold for the TTZ activation,a critical transition temperature can be predicted to be about 15 K.The predicted value is very close to the experimentally measured DBT temperature(about 20 K).Recently,a simulation work performed by Murali et al.[14]also provides an important information about the critical volumetric strain for nanoscale cavitation.It can be found that,in a brittle Fe80P20glass,the peak hydrostatic stress that just achieves the critical cavitation stress is insensitive to the initial void volume fraction;more importantly, the corresponding critical cavitational strain is also almost universal(about 12%).This critical cavitational strain is very close to our predicted STZ dilatational strain(10%)for the occurrence of the STZ-to-TTZ at the DBT temperature.Furthermore,the present picture regarding the STZ-to-TTZ transition(Fig.2)rules out the possibility that the active free volume or the STZ volume will decrease to zero in the zero temperature limit(Fig.1).

    At temperatures above 20 K,the dilatational strain keeps a very low level(about 10?4),much smaller than the characteristic shear strain of STZs by three orders of magnitude,and is almost insensitive to the temperature.The extremely small dilatation confirms that the STZ operations are volume conserving events of rearrangements[23]and still predominate the shear fracture of materials at T>20 K.Actually,in the temperature range(T>20 K),the temperature-dependent strength can be well predicted by the Johnson–Samwer T2/3law[31]that has the form:

    Table 1Mechanical and physical parameters for Vitreloy 1 metallic glass.

    Fig.1.Evolution of shear transformation zone volume(Eq.(6))and active free volume(Eq.(7))with temperature.

    Fig.2.STZ dilatational strain(Eq.(1))and fracture strength[27]as a function of temperature.At temperatures above 20 K,the temperature-dependent strength follows the Johnson–Samwer T2/3law expressed by Eq.(8).

    whereσf,0=2.22 GPa is the athermal ductile fracture strength, andΓ=0.01 GPa·K?2/3is the temperature softening coefficient. Eq.(8)is shown in Fig.2 as the dashed line.The agreementconfirms that the cooperative shear motions of STZs at the crack tip dominate the ductile fracture of metallic glasses[11,14,24]. However,the STZ model breaks down at very low temperatures due to the DBT intervention below a critical temperature(here about 20 K for as-cast Vitreloy 1[27]).

    Our theoretical results(Figs.1 and 2),together with the experimental observations[27],shed light on the cryogenictemperature-induced DBT mechanism in fracture of metallic glasses,which is schematized in Fig.3.At room temperature,the STZ is shear-dominated,accompanying a very limited dilatation (~10?4).The activation of one STZ gives rise to an‘‘Eshelby’’-type localized shear distortion in the surrounding elastic medium[6], and triggers an avalanche-like behavior of neighboring STZs to form shear banding[28,48–50],leading to a macroscopic sheardominated fracture.With decreasing temperature,the characteristic size of STZs(or the number of atoms participating in an STZ) reduces rapidly,which implies that the fraction of the surrounding elastic medium will increase.A direct consequence is that the activation of STZ needs to surmount a higher energy barrier and thus requires a higher activation stress for operations.This is why the fracture strength of metallic glasses will increase as temperature lowers,showing the shear strengthening behavior at T>20 K(Fig.2).At the same time,the capability of STZ to create free volume reduces due to the difficulty in activation of STZs,which keeps the dilatation degree of STZs at a very low level.When temperature decreases below a critical temperature,the dilatational strain of STZ will drastically grow,corresponding to an essential change of the cluster motion from shear-dominated STZ into dilatation-dominated TTZ.This critical transition originates from the significant difference in the temperature dependence of the STZ-activated free volume and the STZ volume(see Fig.1).Macroscopically,the STZ-to-TTZ transition corresponds to the change of the fracture modes from ductile(shear)to brittle(dilatational)in metallic glasses[27],which is verified by the almost identical critical temperature of both transitions(see Fig.2).

    Based on the free-volume assisted cooperative shearing of STZs, the concept of STZ dilatational strain is proposed to understand the underlying mechanism for the DBT of metallic glasses in fracture.It is predicted that the DBT will take place when the dilatational strain of STZs increases dramatically,and exceeds their characteristic shear strain,corresponding to an STZ-to-TTZ transition.The predicted DBT temperature agrees well with the experimentally observed[27].Our work implies that the relative contribution of shear to dilatation of STZs or the intrinsic competition between STZ and TTZ is temperature-dependent, and further substantiates the idea that very-low-temperature or athermal STZs are inclined to undergo a dilatational TTZ mode. In fact,our model shows that the STZ dilatational strain depends not only on temperature,but also on composition/structure or loading conditions.As predicted by Eq.(6),decreasing free volume and/or increasing strain rate will also result in a smaller STZ size, thus incurs a higher STZ dilatational strain or a brittle fracture. Therefore,the picture of STZ(shear)versus TTZ(dilatation)leads to an improved understanding of the DBT of metallic glasses,and is also consistent with the well-known Poisson’s ratio criterion for plasticity of amorphous solids[51–53].

    Fig.3.Two-dimensionalschematics ofthe transition ofatomic cluster motion from shear-dominated STZ to dilatation-dominated TTZ at a DBT temperature.

    Acknowledgments

    The authors are very gratefulto Prof.K.Samwerforenlightening discussions.This work was supported by the National Nature Science Foundation of China(Grant Nos.11522221,11372315, 11472287,and 51171138),the National Basic Research Program of China(Grant No.2012CB937500),the CAS/SAFEA International Partnership Program for Creative Research Teams,and partially also by DFG.

    References

    [1]F.Spaepen,A microscopic mechanism for steady state inhomogeneous flow in metallic glasses,Acta Metall.25(1977)407–415.

    [2]A.Lema?tre,Rearrangements and dilatancy for sheared dense materials,Phys. Rev.Lett.89(2002)195503.

    [3]M.Q.Jiang,L.H.Dai,On the origin of shear banding instability in metallic glasses,J.Mech.Phys.Solids 57(2009)1267–1292.

    [4]A.Furukawa,H.Tanaka,Inhomogeneous flow and fracture of glassy materials, Nature Mater.8(2009)601–609.

    [5]H.H.Ruan,L.C.Zhang,J.Lu,A new constitutive model for shear banding instability in metallic glass,Int.J.Solids Struct.48(2011)3112–3127.

    [6]A.S.Argon,Plastic deformation in metallic glasses,Acta Metall.27(1979) 47–58.

    [7]M.L.Falk,J.S.Langer,Dynamics of viscoplastic deformation in amorphous solids,Phys.Rev.E 57(1998)7192–7205.

    [8]C.A.Schuh,T.C.Hufnagel,U.Ramamurty,Mechanical behavior of amorphous alloys,Acta Mater.55(2007)4067–4109.

    [9]A.S.Argon,M.S.Salama,The mechanism of fracture in glassy material capable of some inelastic deformation,Mater.Sci.Eng.23(1976)219–230.

    [10]G.Wang,D.Q.Zhao,H.Y.Bai,et al.,Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses,Phys.Rev.Lett.98(2007)235501.

    [11]M.Q.Jiang,Z.Ling,J.X.Meng,et al.,Energy dissipation in fracture of bulk metallic glasses via inherent competition between local softening and quasicleavage,Phil.Mag.88(2008)407–426.

    [12]E.Bouchaud,D.Boivin,J.L.Pouchou,et al.,Fracture through cavitation in a metallic glass,Europhys.Lett.83(2008)66006.

    [13]X.Huang,Z.Ling,H.S.Zhang,et al.,How does spallation microdamage nucleate in bulk amorphous alloys under shock loading?J.Appl.Phys.110(2011) 103519.

    [14]P.Murali,T.F.Guo,Y.W.Zhang,et al.,Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses,Phys.Rev.Lett.107(2011) 215501.

    [15]P.Guan,S.Lu,M.J.B.Spector,et al.,Cavitation in amorphous solids,Phys.Rev. Lett.110(2013)185502.

    [16]R.L.Narayan,P.Tandaiya,R.Narasimhan,et al.,Wallner lines,crack velocity and mechanisms ofcrack nucleation and growth in a brittle bulk metallic glass, Acta Mater.80(2014)407–420.

    [17]R.Narasimhan,P.Tandaiya,I.Singh,et al.,Fracture in metallic glasses: mechanics and mechanisms,Int.J.Fract.191(2015)53–75.

    [18]X.K.Xi,D.Q.Zhao,M.X.Pan,et al.,Fracture of brittle metallic glasses: Brittleness or plasticity,Phys.Rev.Lett.94(2005)125501.

    [19]F.Jiang,M.Q.Jiang,H.F.Wang,et al.,Shear transformation zone volume determining ductile–brittle transition of bulk metallic glasses,Acta Mater.59 (2011)2057–2068.

    [20]G.Li,M.Q.Jiang,F.Jiang,et al.,Temperature-induced ductile-to-brittle transition of bulk metallic glasses,Appl.Phys.Lett.102(2013)171901.

    [21]G.Li,M.Q.Jiang,F.Jiang,et al.,The ductile to brittle transition behavior in a Zr-based bulk metallic glass,Mater.Sci.Eng.A-Struct.625(2015)393–402.

    [22]M.Q.Jiang,Z.Ling,J.X.Meng,et al.,Nanoscale periodic corrugation to dimple transition due to beat in a bulk metallic glass,Scr.Mater.62(2010)572–575.

    [23]M.L.Falk,J.S.Langer,L.Pechenik,Thermal effects in the shear-transformationzone theory ofamorphous plasticity:Comparisons to metallic glass data,Phys. Rev.E 70(2004)011507.

    [24]R.Raghavan,P.Murali,U.Ramamurty,On factors influencing the ductile-tobrittle transition in a bulk metallic glass,Acta Mater.57(2009)3332–3340.

    [25]J.P.Escobedo,Y.M.Gupta,Dynamic tensile response of Zr-based bulk amorphous alloys:Fracture morphologies and mechanisms,J.Appl.Phys.107 (2010)123502.

    [26]X.Huang,Z.Ling,L.H.Dai,Ductile-to-brittle transition in spallation of metallic glasses,J.Appl.Phys.116(2014)143503.

    [27]M.Q.Jiang,G.Wilde,J.H.Chen,et al.,Cryogenic-temperature-induced transition from shear to dilatational failure in metallic glasses,Acta Mater.77 (2014)248–257.

    [28]A.Lema?tre,C.Caroli,Rate-dependent avalanche size in athermally sheared amorphous solids,Phys.Rev.Lett.103(2009)065501.

    [29]M.Q.Jiang,G.Wilde,L.H.Dai,Origin of stress overshoot in amorphous solids, Mech.Mater.81(2015)72–83.

    [30]D.Turnbull,M.H.Cohen,Free-volume model of the amorphous phase:glass transition,J.Chem.Phys.34(1961)120–125.

    [31]W.L.Johnson,K.Samwer,A universal criterion for Plastic yielding of metallic glasses with a(T/Tg)2/3temperature dependence,Phys.Rev.Lett.95(2005) 195501.

    [32]M.Heggen,F.Spaepen,M.Feuerbacher,Creation and annihilation of free volume during homogeneous flow of a metallic glass,J.Appl.Phys.97(2005) 033506.

    [33]M.Q.Jiang,W.H.Wang,L.H.Dai,Prediction of shear-band thickness in metallic glass,Scr.Mater.60(2009)1004–1007.

    [34]Z.Y.Zhang,V.Keppens,T.Egami,A simple model to predict the temperature dependence of elastic moduli of bulk metallic glasses,J.Appl.Phys.102(2007) 123508.

    [35]F.W.Starr,S.Sastry,J.F.Douglas,et al.,What do we learn from the local geometry of glass-forming liquids?Phys.Rev.Lett.89(2002)125501.

    [36]W.Dmowski,T.Iwashita,C.P.Chuang,et al.,Elastic heterogeneity in metallic glasses,Phys.Rev.Lett.105(2010)205502.

    [37]M.H.Cohen,G.S.Grest,Liquid-glass transition,a free-volume approach,Phys. Rev.B 20(1979)1077–1098.

    [38]G.Adam,J.Gibbs,On the temperature dependence of cooperative relaxation properties in glass-forming liquids,J.Chem.Phys.43(1965)139–146.

    [39]A.Masuhr,T.A.Waniuk,R.Busch,et al.,Time scales for viscous flow,atomic transport,and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5,Phys.Rev.Lett.82(1999)2290–2293.

    [40]Y.Q.Cheng,E.Ma,Intrinsic shear strength of metallic glass,Acta Mater.59 (2011)1800–1807.

    [41]W.H.Wang,The elastic properties,elastic models and elastic perspectives of metallic glasses,Prog.Mater.Sci.57(2012)487–656.

    [42]Z.Evenson,R.Busch,Equilibriumviscosity,enthalpy recovery and free volume relaxation in a Zr44Ti11Ni10Cu10Be25bulk metallic glass,Acta Mater.59(2011) 4404–4415.

    [43]D.Pan,A.Inoue,T.Sakurai,et al.,Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses,Proc.Natl.Acad. Sci.105(2008)14769–14772.

    [44]H.Q.Li,G.Fan,K.X.Tao,etal.,Compressive behaviorofa Zr-based metallic glass at cryogenic temperatures,Adv.Mater.18(2006)752–754.

    [45]A.Dubach,F.H.Dalla Torre,J.F.Loffler,Constitutive model for inhomogeneous flow in bulk metallic glasses,Acta Mater.57(2009)881–892.

    [46]A.Kawashima,Y.Yokoyama,I.Seki,et al.,Enhanced tensile strength and plasticity of Zr–Cu–Al bulk glassy alloys at cryogenic temperatures,Mater. Trans.50(2009)2685–2690.

    [47]J.D.Stevenson,J.Schmalian,P.G.Wolynes,The shapes of cooperatively rearranging regions in glass-forming liquids,Nat.Phys.2(2006)268–274.

    [48]A.S.Argon,Strain avalanches in plasticity,Phil.Mag.93(2013)3795–3808.

    [49]W.Jiao,B.A.Sun,P.Wen,et al.,Crossover from stochastic activation to cooperative motions of shear transformation zones in metallic glasses,Appl. Phys.Lett.103(2013)081904.

    [50]J.Antonaglia,W.J.Wright,X.J.Gu,et al.,Bulk metallic glasses deform via slip avalanches,Phys.Rev.Lett.112(2014)155501.

    [51]J.J.Lewandowski,W.H.Wang,A.L.Greer,Intrinsic plasticity or brittleness of metallic glasses,Phil.Mag.Lett.85(2005)77–87.

    [52]M.Q.Jiang,L.H.Dai,Short-range-order effects on intrinsic plasticity of metallic glasses,Phil.Mag.Lett.90(2010)269–277.

    [53]G.N.Greaves,A.L.Greer,R.S.Lakes,etal.,Poisson’s ratio and modern materials, Nature Mater.10(2011)823–837.

    30 July 2015

    ?.Tel.:+86 10 52843931;fax:+86 10 82543977.

    E-mail addresses:mqjiang@imech.ac.cn(M.Q.Jiang),lhdai@lnm.imech.ac.cn (L.H.Dai).

    http://dx.doi.org/10.1016/j.taml.2015.09.002

    2095-0349/?2015 The Authors.Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    *This article belongs to the Solid Mechanics

    欧美黄色淫秽网站| 日韩人妻精品一区2区三区| 国产有黄有色有爽视频| 无人区码免费观看不卡 | 亚洲专区中文字幕在线| 免费在线观看完整版高清| 老汉色av国产亚洲站长工具| 国产伦理片在线播放av一区| 一区二区日韩欧美中文字幕| 国产不卡一卡二| 精品亚洲乱码少妇综合久久| 韩国精品一区二区三区| 在线亚洲精品国产二区图片欧美| 91字幕亚洲| 国产免费av片在线观看野外av| 精品国产乱码久久久久久男人| 欧美精品一区二区免费开放| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 国产精品欧美亚洲77777| 成人三级做爰电影| 777米奇影视久久| 制服人妻中文乱码| 国产精品电影一区二区三区 | 国产成人欧美在线观看 | 国产熟女午夜一区二区三区| 精品少妇黑人巨大在线播放| 99国产极品粉嫩在线观看| 大型黄色视频在线免费观看| 飞空精品影院首页| e午夜精品久久久久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久久久久久大奶| 天天操日日干夜夜撸| a在线观看视频网站| 最近最新中文字幕大全免费视频| 一本大道久久a久久精品| 国产成人啪精品午夜网站| 十八禁人妻一区二区| 啪啪无遮挡十八禁网站| 免费观看av网站的网址| 亚洲av第一区精品v没综合| a级毛片在线看网站| 欧美精品一区二区免费开放| 国产一区二区在线观看av| 国产区一区二久久| 亚洲欧洲日产国产| 一本久久精品| 精品视频人人做人人爽| 最新的欧美精品一区二区| 色尼玛亚洲综合影院| 曰老女人黄片| 久久中文看片网| 又大又爽又粗| 亚洲 欧美一区二区三区| 国产精品久久久久久精品古装| 国产伦理片在线播放av一区| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 午夜福利视频精品| 欧美性长视频在线观看| 国产精品一区二区精品视频观看| 丰满饥渴人妻一区二区三| 少妇粗大呻吟视频| 天天躁狠狠躁夜夜躁狠狠躁| 欧美激情 高清一区二区三区| 亚洲精品自拍成人| 色视频在线一区二区三区| 激情视频va一区二区三区| 午夜福利,免费看| 69av精品久久久久久 | 国产人伦9x9x在线观看| 丰满少妇做爰视频| 一个人免费看片子| 天天操日日干夜夜撸| 国产激情久久老熟女| 黄色视频在线播放观看不卡| 1024香蕉在线观看| 国产精品美女特级片免费视频播放器 | 国产在视频线精品| 欧美精品av麻豆av| 无人区码免费观看不卡 | 99久久人妻综合| 亚洲精品久久成人aⅴ小说| 人妻 亚洲 视频| 99国产精品免费福利视频| 欧美日韩视频精品一区| 精品国产国语对白av| 精品亚洲成国产av| 大型av网站在线播放| 欧美成人免费av一区二区三区 | 麻豆乱淫一区二区| 午夜福利,免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕精品免费在线观看视频| tube8黄色片| 18禁美女被吸乳视频| 十分钟在线观看高清视频www| 免费在线观看视频国产中文字幕亚洲| 精品人妻在线不人妻| 久久精品91无色码中文字幕| 国产aⅴ精品一区二区三区波| 精品国产亚洲在线| 免费高清在线观看日韩| 亚洲成a人片在线一区二区| 午夜福利影视在线免费观看| 欧美午夜高清在线| 亚洲人成电影免费在线| av电影中文网址| 国产真人三级小视频在线观看| 纵有疾风起免费观看全集完整版| 国产精品 欧美亚洲| 欧美日韩精品网址| 捣出白浆h1v1| 操美女的视频在线观看| 亚洲五月色婷婷综合| 国产精品免费一区二区三区在线 | 亚洲国产av影院在线观看| 国产在视频线精品| a级片在线免费高清观看视频| 日本av免费视频播放| 国精品久久久久久国模美| 成人国产一区最新在线观看| 精品福利永久在线观看| 91大片在线观看| 超碰97精品在线观看| 岛国毛片在线播放| 777米奇影视久久| 国产精品免费视频内射| 女人久久www免费人成看片| 日本撒尿小便嘘嘘汇集6| 两性午夜刺激爽爽歪歪视频在线观看 | 天天躁日日躁夜夜躁夜夜| 国产在线观看jvid| 十八禁人妻一区二区| 欧美精品av麻豆av| 国产在视频线精品| 精品一区二区三区视频在线观看免费 | 亚洲午夜理论影院| 亚洲专区国产一区二区| 亚洲少妇的诱惑av| 亚洲第一青青草原| 久久99一区二区三区| 操出白浆在线播放| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 麻豆av在线久日| 国产在线精品亚洲第一网站| 久久久久久久国产电影| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 久久精品国产a三级三级三级| 少妇裸体淫交视频免费看高清 | 色婷婷av一区二区三区视频| 国产男女内射视频| 精品卡一卡二卡四卡免费| 欧美日韩黄片免| 亚洲精品一二三| 久久亚洲真实| 亚洲一码二码三码区别大吗| 亚洲精品国产区一区二| 欧美老熟妇乱子伦牲交| 视频在线观看一区二区三区| 精品第一国产精品| 少妇粗大呻吟视频| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 国产单亲对白刺激| 色婷婷久久久亚洲欧美| 无遮挡黄片免费观看| 99国产精品一区二区蜜桃av | 色综合欧美亚洲国产小说| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 99久久人妻综合| 美女高潮到喷水免费观看| 亚洲人成电影免费在线| 国产精品一区二区在线不卡| 777久久人妻少妇嫩草av网站| 国产又爽黄色视频| 夜夜夜夜夜久久久久| 欧美一级毛片孕妇| 亚洲自偷自拍图片 自拍| 成人av一区二区三区在线看| 91精品三级在线观看| 69精品国产乱码久久久| 丁香六月欧美| 欧美 日韩 精品 国产| 日韩欧美一区视频在线观看| 大陆偷拍与自拍| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 精品一区二区三卡| 女警被强在线播放| 欧美激情久久久久久爽电影 | 亚洲色图综合在线观看| 精品视频人人做人人爽| 国产成人免费观看mmmm| 国产高清视频在线播放一区| 电影成人av| 91精品国产国语对白视频| 一区福利在线观看| 色婷婷av一区二区三区视频| 欧美成人午夜精品| 久久精品国产亚洲av高清一级| 午夜免费鲁丝| 国产av一区二区精品久久| 日本一区二区免费在线视频| 欧美日韩精品网址| 中文字幕人妻丝袜制服| 精品高清国产在线一区| 午夜福利,免费看| 国产成人欧美在线观看 | 国产精品二区激情视频| 亚洲avbb在线观看| 久久久国产欧美日韩av| 亚洲人成电影免费在线| 一边摸一边做爽爽视频免费| 老司机影院毛片| svipshipincom国产片| 成人国产一区最新在线观看| 久久午夜亚洲精品久久| 国产精品98久久久久久宅男小说| 黄频高清免费视频| 精品高清国产在线一区| 十八禁网站网址无遮挡| 国产高清国产精品国产三级| 十八禁高潮呻吟视频| av超薄肉色丝袜交足视频| 精品少妇内射三级| 国产伦理片在线播放av一区| 多毛熟女@视频| 老熟女久久久| 久久香蕉激情| 亚洲五月色婷婷综合| 久久中文字幕一级| 99精品在免费线老司机午夜| kizo精华| 亚洲国产欧美在线一区| videos熟女内射| 香蕉国产在线看| 老司机亚洲免费影院| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 极品少妇高潮喷水抽搐| 最黄视频免费看| 亚洲精品一卡2卡三卡4卡5卡| 视频区欧美日本亚洲| 欧美精品av麻豆av| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 一区二区三区激情视频| 1024视频免费在线观看| 欧美性长视频在线观看| 国内毛片毛片毛片毛片毛片| 色综合婷婷激情| 黄片小视频在线播放| 狂野欧美激情性xxxx| 久久久久久久大尺度免费视频| 国产伦人伦偷精品视频| 国产成人啪精品午夜网站| 国产一区二区三区视频了| 日本a在线网址| 在线观看免费高清a一片| 欧美午夜高清在线| 国产极品粉嫩免费观看在线| 色视频在线一区二区三区| 成人av一区二区三区在线看| 日本一区二区免费在线视频| 亚洲情色 制服丝袜| 亚洲中文字幕日韩| av视频免费观看在线观看| 久久免费观看电影| svipshipincom国产片| 黄色成人免费大全| 午夜福利乱码中文字幕| 久久中文字幕人妻熟女| 免费看十八禁软件| 免费观看av网站的网址| 99香蕉大伊视频| 啦啦啦在线免费观看视频4| 男女午夜视频在线观看| 国产三级黄色录像| 亚洲精品自拍成人| 国产精品秋霞免费鲁丝片| 久久久国产精品麻豆| 十八禁人妻一区二区| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 捣出白浆h1v1| aaaaa片日本免费| av免费在线观看网站| 高清视频免费观看一区二区| 亚洲国产av影院在线观看| 欧美日韩黄片免| 亚洲精华国产精华精| 免费在线观看视频国产中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 咕卡用的链子| 国产男女超爽视频在线观看| 亚洲色图综合在线观看| 在线天堂中文资源库| 两个人看的免费小视频| 欧美老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 久久天堂一区二区三区四区| 在线播放国产精品三级| 另类亚洲欧美激情| 伦理电影免费视频| 欧美午夜高清在线| 亚洲欧洲精品一区二区精品久久久| 十八禁高潮呻吟视频| 国产欧美日韩综合在线一区二区| 女人被躁到高潮嗷嗷叫费观| 69精品国产乱码久久久| 美女视频免费永久观看网站| 日本av免费视频播放| 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av | 国产精品免费视频内射| 最近最新免费中文字幕在线| 一二三四在线观看免费中文在| 国产伦人伦偷精品视频| 不卡av一区二区三区| 国产精品一区二区在线观看99| 99精品在免费线老司机午夜| 亚洲精品粉嫩美女一区| 91精品国产国语对白视频| 日韩成人在线观看一区二区三区| 最新在线观看一区二区三区| 精品亚洲成a人片在线观看| 国产成人一区二区三区免费视频网站| 丝瓜视频免费看黄片| 午夜精品久久久久久毛片777| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| 99国产精品一区二区三区| 俄罗斯特黄特色一大片| 日韩免费高清中文字幕av| 视频区欧美日本亚洲| 啦啦啦在线免费观看视频4| 99国产精品免费福利视频| 久久人妻av系列| 蜜桃在线观看..| av一本久久久久| h视频一区二区三区| 日韩中文字幕视频在线看片| 巨乳人妻的诱惑在线观看| 十分钟在线观看高清视频www| 99国产极品粉嫩在线观看| 午夜老司机福利片| av线在线观看网站| av片东京热男人的天堂| 无遮挡黄片免费观看| e午夜精品久久久久久久| 日本五十路高清| 精品国产一区二区久久| 99久久人妻综合| 麻豆国产av国片精品| 亚洲中文字幕日韩| 亚洲色图 男人天堂 中文字幕| 亚洲精品在线美女| 成人黄色视频免费在线看| 亚洲精品在线美女| 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 人人妻人人澡人人看| 韩国精品一区二区三区| 亚洲成a人片在线一区二区| 97在线人人人人妻| 国产精品亚洲av一区麻豆| 国产日韩欧美亚洲二区| 日本撒尿小便嘘嘘汇集6| 十八禁高潮呻吟视频| 两人在一起打扑克的视频| av线在线观看网站| 一本色道久久久久久精品综合| 亚洲成人免费av在线播放| 两人在一起打扑克的视频| 国产高清视频在线播放一区| 一级片免费观看大全| 在线观看免费高清a一片| 国产日韩欧美在线精品| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| 一进一出好大好爽视频| 人人妻人人澡人人看| 亚洲精品一卡2卡三卡4卡5卡| 99在线人妻在线中文字幕 | 男女高潮啪啪啪动态图| 国产伦理片在线播放av一区| 国产99久久九九免费精品| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 啦啦啦 在线观看视频| 日日摸夜夜添夜夜添小说| 亚洲第一青青草原| av网站在线播放免费| 成人特级黄色片久久久久久久 | 视频区图区小说| 又紧又爽又黄一区二区| 露出奶头的视频| 男女高潮啪啪啪动态图| 精品亚洲乱码少妇综合久久| 欧美精品一区二区大全| 国产成+人综合+亚洲专区| 大陆偷拍与自拍| 我要看黄色一级片免费的| 啦啦啦 在线观看视频| 18在线观看网站| 最新的欧美精品一区二区| av国产精品久久久久影院| 少妇精品久久久久久久| 久久精品成人免费网站| 中文字幕高清在线视频| 少妇被粗大的猛进出69影院| 国产麻豆69| 国产日韩欧美视频二区| 男女免费视频国产| 免费一级毛片在线播放高清视频 | 高清视频免费观看一区二区| 国产99久久九九免费精品| 成人免费观看视频高清| 成人18禁高潮啪啪吃奶动态图| 悠悠久久av| 动漫黄色视频在线观看| 亚洲人成77777在线视频| 成年女人毛片免费观看观看9 | 欧美久久黑人一区二区| 美女午夜性视频免费| 无人区码免费观看不卡 | 久久久精品94久久精品| 热99久久久久精品小说推荐| 成年女人毛片免费观看观看9 | 精品一区二区三卡| 大型av网站在线播放| 国产1区2区3区精品| 国产高清激情床上av| 久久久精品国产亚洲av高清涩受| 水蜜桃什么品种好| 亚洲av国产av综合av卡| www.999成人在线观看| 精品欧美一区二区三区在线| 欧美+亚洲+日韩+国产| 欧美精品一区二区免费开放| 侵犯人妻中文字幕一二三四区| 亚洲精华国产精华精| 精品一区二区三区视频在线观看免费 | 成人永久免费在线观看视频 | 国产成人欧美| 老司机午夜十八禁免费视频| 久久狼人影院| 9色porny在线观看| 免费高清在线观看日韩| 9热在线视频观看99| 亚洲欧美一区二区三区黑人| 王馨瑶露胸无遮挡在线观看| 久久久久网色| 男人舔女人的私密视频| 国产精品久久久久久人妻精品电影 | 亚洲av片天天在线观看| 日本黄色日本黄色录像| 搡老乐熟女国产| 一区二区日韩欧美中文字幕| 中文字幕色久视频| 亚洲中文字幕日韩| 久久人人爽av亚洲精品天堂| 999久久久国产精品视频| 欧美精品一区二区免费开放| 亚洲午夜精品一区,二区,三区| 亚洲性夜色夜夜综合| 成人精品一区二区免费| 十八禁网站网址无遮挡| 久久热在线av| 国产精品国产av在线观看| 老司机福利观看| 亚洲欧美色中文字幕在线| e午夜精品久久久久久久| 午夜视频精品福利| 99久久精品国产亚洲精品| 国产不卡一卡二| 欧美中文综合在线视频| 精品视频人人做人人爽| 国产精品 欧美亚洲| 91精品三级在线观看| 亚洲成人手机| 国产男女超爽视频在线观看| netflix在线观看网站| 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 国产亚洲精品久久久久5区| 99热国产这里只有精品6| 怎么达到女性高潮| 国产主播在线观看一区二区| 一本—道久久a久久精品蜜桃钙片| 成人国产一区最新在线观看| 最新的欧美精品一区二区| 国产成+人综合+亚洲专区| 日韩视频一区二区在线观看| 91精品国产国语对白视频| 大香蕉久久网| 窝窝影院91人妻| 国产欧美亚洲国产| 99国产精品99久久久久| 精品福利永久在线观看| 中文字幕制服av| 大码成人一级视频| 国产伦理片在线播放av一区| 搡老熟女国产l中国老女人| 1024视频免费在线观看| 老熟女久久久| 黄色丝袜av网址大全| 亚洲中文av在线| 欧美激情久久久久久爽电影 | 一边摸一边抽搐一进一出视频| 后天国语完整版免费观看| 精品亚洲成a人片在线观看| av一本久久久久| 久久久国产精品麻豆| 亚洲av成人一区二区三| 成在线人永久免费视频| 我的亚洲天堂| 亚洲第一青青草原| 两个人看的免费小视频| h视频一区二区三区| 熟女少妇亚洲综合色aaa.| 精品国产一区二区三区四区第35| 99热网站在线观看| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 少妇精品久久久久久久| 亚洲综合色网址| av在线播放免费不卡| 国产精品久久电影中文字幕 | 亚洲精品粉嫩美女一区| 亚洲午夜精品一区,二区,三区| 中文字幕人妻熟女乱码| 精品一品国产午夜福利视频| 日日夜夜操网爽| 纵有疾风起免费观看全集完整版| 日韩免费av在线播放| www.精华液| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久久精品电影小说| 麻豆国产av国片精品| 亚洲国产看品久久| 中文字幕av电影在线播放| 最近最新中文字幕大全免费视频| 飞空精品影院首页| 国产激情久久老熟女| 亚洲av日韩精品久久久久久密| 国产精品免费视频内射| 99久久精品国产亚洲精品| a级片在线免费高清观看视频| 搡老熟女国产l中国老女人| 91国产中文字幕| 在线观看一区二区三区激情| 怎么达到女性高潮| 人成视频在线观看免费观看| 成人国产一区最新在线观看| 国产人伦9x9x在线观看| 精品国产乱码久久久久久男人| 妹子高潮喷水视频| 久久久久国产一级毛片高清牌| 久久久久精品人妻al黑| 9热在线视频观看99| 一区二区av电影网| 他把我摸到了高潮在线观看 | 亚洲av国产av综合av卡| 亚洲美女黄片视频| 久久99热这里只频精品6学生| 99国产精品一区二区蜜桃av | 一个人免费在线观看的高清视频| 日韩一区二区三区影片| 久久久久视频综合| 午夜日韩欧美国产| 久久久久国内视频| 国产高清视频在线播放一区| 久久中文字幕一级| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久人人人人人| 日本wwww免费看| 精品亚洲成国产av| 久久久久国产一级毛片高清牌| 成年动漫av网址| 国产片内射在线| 十八禁网站网址无遮挡| 一本久久精品| 十八禁人妻一区二区| 日韩欧美国产一区二区入口| 国产精品亚洲av一区麻豆| 男女无遮挡免费网站观看| 国产精品一区二区在线不卡| 亚洲熟妇熟女久久| 香蕉久久夜色| 久久久久久久久久久久大奶| 久久久精品区二区三区| 免费在线观看黄色视频的| 久热这里只有精品99| 亚洲欧美一区二区三区久久| av网站免费在线观看视频| 999久久久精品免费观看国产| av片东京热男人的天堂| 十八禁网站网址无遮挡| 美女国产高潮福利片在线看| 老司机午夜十八禁免费视频| 亚洲久久久国产精品| 亚洲午夜精品一区,二区,三区| 国产一区二区在线观看av| 国产av一区二区精品久久| 国产99久久九九免费精品|