中南大學(xué)湘雅二醫(yī)院 蘇甜 羅湘杭
人口老齡化已經(jīng)成為全球關(guān)注的問題,伴隨而來的是動(dòng)脈粥樣硬化(atherosclorosis,AS)和骨質(zhì)疏松(osteoporosis,OP)患病率的增加。在過去10年中,不斷有研究表明,動(dòng)脈粥樣硬化和骨質(zhì)疏松有關(guān)聯(lián)[1-4]。在骨質(zhì)疏松患者中,動(dòng)脈鈣化也很普遍[5],并且動(dòng)脈鈣化的進(jìn)程和骨量減少的速度是一致的[1,2]。而且,脈搏波傳導(dǎo)速率的增加(反映動(dòng)脈鈣化的一個(gè)指標(biāo)[6])與骨密度和跟骨的骨定量超聲骨質(zhì)測(cè)量參數(shù)呈負(fù)相關(guān)[7]。這些研究都提示我們,心血管疾病和骨質(zhì)疏松通過一些共同作用于血管和骨細(xì)胞的因素而相互關(guān)聯(lián)。脂肪被公認(rèn)為是動(dòng)脈粥樣硬化和心血管疾病的危險(xiǎn)因素[8]。本文就脂代謝與骨代謝的關(guān)系予以綜述,旨在為骨質(zhì)疏松的治療提供一定的依據(jù)。
脂肪細(xì)胞和成骨細(xì)胞共同起源于骨髓基質(zhì)細(xì)胞[9]。脂肪細(xì)胞和成骨細(xì)胞的生理平衡是通過一系列信號(hào)通路的調(diào)節(jié)而實(shí)現(xiàn)的。參與這些信號(hào)通路的調(diào)節(jié)因子包括過氧化物酶體增生物激活受體γ2(peroxisome proliferator-activated receptor γ2,PPARγ2)、核因子κB受體活化因子配體(receptor activator of nuclear factor κB ligand,RANKL)、核因子κB受體活化因子(receptor activator of nuclear factor κB,RANK)、骨保護(hù)素(osteoprotegerin,OPG)、Wnt/β-catenin 信號(hào)通路[10]。
PPARγ屬于配體依賴性的核受體超家族的成員,它可以調(diào)節(jié)目標(biāo)基因的表達(dá)[11]。PPARγ基因是決定骨髓多能干細(xì)胞向脂肪細(xì)胞、成骨細(xì)胞或破骨細(xì)胞分化的關(guān)鍵轉(zhuǎn)錄因子。PPARγ有兩種表達(dá)形式:PPARγ1,主要表達(dá)于巨噬細(xì)胞、結(jié)腸上皮細(xì)胞、內(nèi)皮細(xì)胞以及血管平滑肌細(xì)胞;PPARγ2主要表達(dá)于脂肪組織,調(diào)節(jié)脂肪生成[12-14]。脂代謝紊亂可以促使氧化性脂質(zhì)增加,而增加的氧化性脂質(zhì)可以激活骨髓PPARγ2,從而抑制成骨細(xì)胞和骨形成,促進(jìn)脂肪細(xì)胞的分化[15]。噻唑烷二酮類(thiazolidinediones,TZDs)藥物通過與PPARγ結(jié)合并激活其通路,從而刺激細(xì)胞向脂肪分化并抑制成骨分化[16]。也有一些研究報(bào)告,PPARγ可以抑制破骨細(xì)胞生成[17-19]。
Wnt蛋白是一類分泌型的富含半胱氨酸的糖基化蛋白,可在多種細(xì)胞中表達(dá)。Wnt/β-catenin信號(hào)通路是調(diào)節(jié)骨代謝的經(jīng)典通路。Laudes[20]研究發(fā)現(xiàn),Wnt信號(hào)通路中幾個(gè)Wnt家族成員可以在脂肪形成的早期階段起到抑制作用,減少人類間充質(zhì)干細(xì)胞分化成前脂肪細(xì)胞。相反,Wnt通路的內(nèi)源性抑制物卻會(huì)提高脂肪細(xì)胞的形成而減少成骨細(xì)胞的分化。
OPG是一種可溶性糖蛋白,屬于腫瘤壞死因子超家族的成員[21],它可以與RANK結(jié)合,從而抑制破骨細(xì)胞的生成[22]。Ayina等[23]研究發(fā)現(xiàn),在肥胖女性中,高密度脂蛋白膽固醇(high density lipoproteincholesterol,HDL-C)與OPG呈正相關(guān),低密度脂蛋白膽固醇(low density lipoprotein-cholesterol,LDL-C)與OPG呈負(fù)相關(guān)。該研究結(jié)果與Bennett等[24]的研究結(jié)果相一致,在動(dòng)物研究中,OPG是心血管的保護(hù)因素。但是在Ayina等[25]之前的研究中發(fā)現(xiàn),在老年人群中,HDL-C 的濃度與OPG無關(guān)聯(lián)。
目前已經(jīng)有許多研究證實(shí),脂肪細(xì)胞不僅僅是一個(gè)能量?jī)?chǔ)存器官,它同時(shí)也可以分泌很多生物活性細(xì)胞因子,我們稱之為脂肪細(xì)胞因子,包括纖溶酶原激活物抑制劑-1、腫瘤壞死因子-α(Tumor Necrosis Factor,TNF-α)、抵抗素、瘦素以及脂聯(lián)素。本文主要論述瘦素和脂聯(lián)素。
瘦素(Leptin)是由脂肪細(xì)胞分泌的蛋白質(zhì)類激素,主要由白色脂肪組織產(chǎn)生。瘦素作為脂肪組織的保護(hù)因素,目前已經(jīng)被認(rèn)成為是骨代謝的重要調(diào)節(jié)因素,但是瘦素對(duì)骨代謝的具體作用,各學(xué)者的研究結(jié)果不一。有文獻(xiàn)[26]報(bào)道,在編碼瘦素基因缺失的小鼠中,其骨形成和骨量是減少的。Thomas等人以及其他學(xué)者[27-29]研究報(bào)道,成骨細(xì)胞系也有瘦素的作用位點(diǎn)。瘦素可以誘導(dǎo)激活絲裂原活化蛋白激酶(mitogen-activated protein kinases,MAPK)通路,該通路的激活可以刺激成骨細(xì)胞的分化[30]及PPARγ,而PPARγ可以抑制脂肪生成[31]。而且,在人類成骨細(xì)胞培養(yǎng)實(shí)驗(yàn)中,瘦素可以通過抑制凋亡的作用而促進(jìn)成骨細(xì)胞的活動(dòng)[32]。有學(xué)者[33]曾報(bào)道,瘦素可以抑制RANKL的表達(dá),從而抑制破骨細(xì)胞的生成;而且瘦素還可以刺激OPG的表達(dá)從而抑制骨吸收,促進(jìn)骨形成。瘦素也能夠促進(jìn)人類單核細(xì)胞分泌白細(xì)胞介素-1(interleukin-1,IL-1)[34],而該受體拮抗劑可以減少與IL-1相關(guān)的骨轉(zhuǎn)換以及雌激素缺乏引起的骨量丟失。與這些研究結(jié)果一致的是,Cornish等[35]的研究也表明,與對(duì)應(yīng)的野生型小鼠相比,瘦素缺乏的ob/ob小鼠,其骨礦物質(zhì)含量(bone mineral conten,BMC)和骨密度(bone mineral density,BMD)較低[29]。對(duì)下丘腦予以瘦素基因治療后,ob/ob小鼠骨量和骨長(zhǎng)度增加[35]。
盡管一些研究者報(bào)道,血清瘦素水平與BMD[36-41]或者BMC[42]呈正相關(guān),但是其他學(xué)者卻未能發(fā)現(xiàn)兩組之間存在正關(guān)聯(lián),甚至有些學(xué)者發(fā)現(xiàn)兩者呈負(fù)相關(guān)[42-45]。Ducy及其同事[48]研究發(fā)現(xiàn),瘦素缺乏的ob/ob小鼠擁有更高的骨量。相反,向下丘腦注射瘦素后,其骨量減少,可能原因是瘦素促進(jìn)了骨吸收、抑制骨形成。有研究[38,40-42]發(fā)現(xiàn),當(dāng)校正脂肪質(zhì)量以后,兩者之間的正相關(guān)關(guān)系就不存在了。
前文已述及瘦素可以增加OPG的生成,減少RANKL的表達(dá),進(jìn)而抑制破骨細(xì)胞的分化,并可以抑制骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cells,BMSCs)向脂肪細(xì)胞的分化、促進(jìn)成骨細(xì)胞的分化。但是高水平的瘦素卻可以導(dǎo)致BMSCs的凋亡[46],同時(shí)也可以增加骨吸收、減少骨形成。Hamrick等[47]提出這一假設(shè):脂肪生成增加可以增加骨髓微環(huán)境瘦素的濃度,從而導(dǎo)致骨量減少。這也許可以解釋為何各學(xué)者關(guān)于瘦素與BMD關(guān)系的研究結(jié)果不一,其他的原因還包括種族的差異、研究人群的數(shù)量以及統(tǒng)計(jì)學(xué)方法的差異。
脂聯(lián)素(Adiponectin,ADPN)是脂肪細(xì)胞分泌的一種內(nèi)源性生物活性多肽或蛋白質(zhì)。脂聯(lián)素又被稱作Acrp30、apM1、AdipoQ、GBP28,在分化的脂肪細(xì)胞中高度特異性表達(dá),在血漿中含量豐富[48-50]。脂聯(lián)素是分子量為30KD的多肽,由氨基末端的分泌信號(hào)序列、一段特異序列、一組由22個(gè)氨基酸組成的膠原重復(fù)序列和一段球狀序列組成[48-50]。成熟的脂肪細(xì)胞和成骨細(xì)胞表達(dá)和分泌一些共同的因子,提示我們這些細(xì)胞之間存在密切聯(lián)系[51]。有研究[52]報(bào)道,脂聯(lián)素及其受體也可以在骨形成細(xì)胞中表達(dá)。這些研究可以表明,脂聯(lián)素可以將脂肪組織的信號(hào)傳遞到骨組織,但是脂聯(lián)素對(duì)骨代謝的影響,目前意見尚未統(tǒng)一。
在羅湘杭等[53]的研究中發(fā)現(xiàn),脂聯(lián)素可以促進(jìn)成骨細(xì)胞的增殖和分化。這種增殖應(yīng)答反應(yīng)是由AdipoR/JNK信號(hào)通路調(diào)控,而分化應(yīng)答反應(yīng)是由AdipoR/p38 MAPK信號(hào)通路調(diào)控,這些發(fā)現(xiàn)表明人類破骨細(xì)胞是脂聯(lián)素的直接調(diào)控靶點(diǎn)。Kazuya Oshima等[54]也認(rèn)為脂聯(lián)素可以通過抑制破骨細(xì)胞生成、激活成骨細(xì)胞生成而增加骨量。
Kajimura等[55]研究認(rèn)為,根據(jù)作用部位和作用方式不同,脂聯(lián)素具有雙向作用:脂聯(lián)素直接作用于成骨細(xì)胞,會(huì)抑制成骨細(xì)胞的增殖;而在中樞信號(hào)通路中,脂聯(lián)素卻會(huì)促進(jìn)成骨細(xì)胞的增殖。羅湘杭等[56]在他們的另一研究中指出,脂聯(lián)素通過促進(jìn)成骨細(xì)胞RANKL的表達(dá),抑制OPG的表達(dá),間接促進(jìn)破骨細(xì)胞的形成。
在脂聯(lián)素過度表達(dá)的小鼠模型中,小鼠的骨量和骨形成增加,遠(yuǎn)高于野生型小鼠[57]。但是,Ealey等[58]卻發(fā)現(xiàn)了不一樣的結(jié)果,跟對(duì)照小鼠相比,脂聯(lián)素過度表達(dá)的小鼠其股骨的BMC和股骨頸的峰值負(fù)荷能力更低。另外有學(xué)者發(fā)現(xiàn),在脂聯(lián)素編碼基因敲除的小鼠模型中,其骨量是增加的[59-62]。
由于脂聯(lián)素對(duì)骨代謝的影響意見尚未統(tǒng)一,還有待進(jìn)一步研究。
血脂異常指血漿中脂質(zhì)量和質(zhì)的異常。OP是一種以骨量降低和骨組織微結(jié)構(gòu)破壞為特征,導(dǎo)致骨脆性增加和易于骨折的的代謝性骨病。骨質(zhì)疏松癥的診斷主要是根據(jù)BMD和臨床表現(xiàn)。骨質(zhì)疏松在女性中的發(fā)病率要高于男性[63],但是男性骨質(zhì)疏松性骨折卻比女性更為常見[64],而且絕經(jīng)后女性骨質(zhì)疏松的發(fā)病率要高于絕經(jīng)前女性[65]。
血脂與BMD之間可能存在聯(lián)系,最初是因?yàn)樗☆愃幬飳?duì)BMD有正向作用而被逐漸發(fā)現(xiàn)的[66,67]。各類研究都表明,他汀類藥物(HMG-CoA還原酶抑制劑)可以增加骨密度,降低骨折發(fā)生率[68,69]。在Orozco等[70]的研究中發(fā)現(xiàn),和血脂正常的女性相比,血脂異常的絕經(jīng)后女性腰椎和股骨骨密度較低,骨量減少的風(fēng)險(xiǎn)增加,提示高脂血癥與骨質(zhì)疏松相關(guān)。
之前有關(guān)骨密度和血清膽固醇(total cholesterol,TC)之間關(guān)系的研究缺乏一致性。有相關(guān)報(bào)道[71-74]指出骨密度和血清膽固醇之間無密切聯(lián)系,即血清膽固醇對(duì)骨細(xì)胞的代謝無顯著作用。但是動(dòng)物實(shí)驗(yàn)和臨床實(shí)驗(yàn)均已證實(shí)血清膽固醇和骨密度相關(guān)聯(lián),采用膽固醇喂養(yǎng)的兔子髖部的骨小梁減少[75]。該作者認(rèn)為,循環(huán)中血脂增加,導(dǎo)致脂質(zhì)高度聚集在血管組織及動(dòng)脈壁[75],脂蛋白微粒進(jìn)入血管壁以后會(huì)導(dǎo)致氧化應(yīng)激,從而誘導(dǎo)炎癥反應(yīng)發(fā)生,最終引起斑塊形成[76]。由于成骨細(xì)胞前體與內(nèi)皮下骨血管基質(zhì)相臨,因此上述病理過程會(huì)影響骨形成細(xì)胞的功能[77]。膽固醇及其代謝產(chǎn)物在體內(nèi)和體外試驗(yàn)中都影響著成骨細(xì)胞的功能活動(dòng)[76,77]。Sivas等[78]在土耳其絕經(jīng)后女性中進(jìn)行的研究顯示,血脂譜的改變和骨密度沒有顯著的相關(guān)性,但是與脊椎骨折的發(fā)生存在顯著相關(guān)性。對(duì)所調(diào)查人群的年齡、絕經(jīng)年數(shù)、體質(zhì)指數(shù)及血脂成分進(jìn)行l(wèi)ogistic回歸分析發(fā)現(xiàn),TC是骨質(zhì)疏松發(fā)生的最強(qiáng)影響因素,平均每升高1mg/dl可以使脊椎骨折發(fā)生風(fēng)險(xiǎn)降低2.2%。日本學(xué)者Yamaguchi[79]也認(rèn)為,適度的內(nèi)臟脂肪的聚集是骨代謝的一個(gè)保護(hù)因素。Cui等[8]研究發(fā)現(xiàn),血清膽固醇水平與絕經(jīng)前女性腰椎骨密度、絕經(jīng)后女性髖部骨密度呈負(fù)相關(guān),血清甘油三酯(trigly ceride,TG)水平與絕經(jīng)后女性髖部骨密度呈正相關(guān)。該研究結(jié)果與Adami等的結(jié)果相一致[80]。
目前已經(jīng)有很多關(guān)于HDL-C與骨密度之間關(guān)系的報(bào)道,盡管這些研究結(jié)果不一致。Yamaguchi等[81]認(rèn)為兩者之間呈正相關(guān),但是Adami、D'Amelio、Buizert、Dennison、Zabaglia等[80,82-85]卻認(rèn)為兩者是負(fù)相關(guān)。而Poli等[86]認(rèn)為在絕經(jīng)后女性中,兩者之間無關(guān)聯(lián),這與Cui等[8]的研究結(jié)果相一致:在絕經(jīng)前和絕經(jīng)后女性中,腰椎和髖部骨密度與HDL-C無顯著關(guān)系。中國(guó)學(xué)者Li[87]在790例中國(guó)絕經(jīng)后女性的橫斷面研究中指出,跟較低的HDL-C患者相比,較高的HDL-C患者更容易患骨質(zhì)疏松。HDL-C是心血管疾病的保護(hù)因素,卻是骨質(zhì)疏松的危險(xiǎn)因素,這可能與如下因素有關(guān)[88,89]:首先,HDL-C和脂肪量直接相關(guān)。有研究表明非脂肪組織的比例越高,特別是肌肉組織越多,機(jī)械刺激作用越強(qiáng)。肌肉收縮會(huì)使骨骼處于緊張狀態(tài),這樣就會(huì)通過骨細(xì)胞上的機(jī)械受體在骨皮質(zhì)內(nèi)外促進(jìn)骨重建,使骨量和骨骼幾何結(jié)構(gòu)參數(shù)均增加,從而提高骨強(qiáng)度。而脂肪組織較多,則可能引起骨重建紊亂、骨量和骨結(jié)構(gòu)參數(shù)下降,進(jìn)而易于發(fā)生骨質(zhì)疏松。其次,HDL-C對(duì)骨質(zhì)疏松的影響還可能存在性別差異。研究表明TC和LDL-C是男性重要的心血管疾病風(fēng)險(xiǎn)因素,而在女性中HDL-C和TG卻起著更為重要的作用。
他汀類藥物除了具有降低血脂的作用,還對(duì)骨密度具有正向作用。他汀類藥物、骨質(zhì)疏松、脂肪生成擁有共同的信號(hào)通路——RANKL/OPG[90,91]。辛伐他汀和洛伐他汀都可以促進(jìn)骨形態(tài)發(fā)生蛋白-2(bone morphogenetic protein-2,BMP-2)mRNA的表達(dá)[67]。
盡管Lima[92]等認(rèn)為他汀類藥物對(duì)骨修復(fù)具有負(fù)向作用,但是大部分研究[93-96]表明,他汀類藥物可以促進(jìn)成骨細(xì)胞的活動(dòng)并抑制破骨細(xì)胞,從而可以增加骨密度,預(yù)防骨質(zhì)疏松,減少骨折發(fā)生率。故有學(xué)者提出[97],他汀類藥物可以用來治療骨質(zhì)疏松,但是最小的有效劑量仍在探索中。
雌激素主要是用來治療絕經(jīng)后女性骨質(zhì)疏松。雌激素的主要作用是降低骨轉(zhuǎn)換、維持骨形成和骨吸收的動(dòng)態(tài)平衡。骨細(xì)胞內(nèi)有兩種雌激素受體——ERα和ERβ,當(dāng)雌激素與受體結(jié)合后,就會(huì)激活相關(guān)基因。脂肪組織是絕經(jīng)后女性雌激素的主要來源,主要由雄激素在脂肪細(xì)胞通過芳香化作用轉(zhuǎn)變而來。
綜上所述,可見血脂譜對(duì)骨密度的影響仍存在爭(zhēng)議,這可能與研究對(duì)象的種族、年齡、性別、基礎(chǔ)疾病狀態(tài)以及研究方法等不同有關(guān)。此外,一項(xiàng)針對(duì)骨質(zhì)疏松和心血管疾病相互關(guān)系的研究[98]發(fā)現(xiàn),動(dòng)脈粥樣硬化過程而非血脂本身更加速骨量的丟失。血管壁動(dòng)脈粥樣硬化斑塊形成過程中釋放較多的炎癥因子和脂肪因子,這些因子可能對(duì)骨質(zhì)疏松的發(fā)生發(fā)展起著更為重要的作用。脂代謝對(duì)骨質(zhì)疏松的影響涉及血脂本身、脂肪分布、脂肪因子、炎癥因子等多方面,其對(duì)骨質(zhì)疏松的最終影響也取決于各因素間的平衡。
[1] Kiel DP, Kauppila LI, Cupples LA, et al. Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study[J]. Calcif Tissue Int, 2001, 68(5): 271-276.
[2] Hak AE, Pols HA, van Hemert AM, et al. Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study[J]. Arterioscler Thromb Vasc Biol, 2000, 20(8): 1926-1931.
[3] Fleet JC, Hock JM. Identification of osteocalcin mRNA in nonosteoid tissue of rats and humans by reverse transcription-polymerase chain reaction[J]. J Bone Miner Res, 1994, 9(10): 1565-1573.
[4] Giachelli CM, Liaw L, Murry CE, et al. Osteopontin expression in cardiovascular diseases[J]. Ann N Y Acad Sci, 1995, 760: 109-126.
[5] Vogt MT, San Valentin R, Forrest KY, et al. Bone mineral density and aortic calcification: the Study of Osteoporotic Fractures[J]. J Am Geriatr Soc, 1997, 45(2): 140-145.
[6] Ouchi Y, Akishita M, de Souza AC, et al. Age-related loss of bone mass and aortic/aortic valve calcification--reevaluation of recommended dietary allowance of calcium in the elderly[J]. Ann N Y Acad Sci, 1993, 676: 297-307.
[7] Hirose K, Tomiyama H, Okazaki R, et al. Increased pulse wave velocity associated with reduced calcaneal quantitative osteo-sono index: possible relationship between atherosclerosis and osteopenia[J]. J Clin Endocrinol Metab, 2003, 88: 2573-2578.
[8] Cui LH, Shin MH, Chung EK, et al. Association between bone mineral densities and serum lipid profiles of pre- and post-menopausal rural women in South Korea[J]. Osteoporos Int, 2005, 16: 1975-1981.
[9] Rosen CJ, Klibanski A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis[J]. Am J Med, 2009, 122: 409-414.
[10] Tian L, Yu X. Lipid metabolism disorders and bone dysfunction--interrelated and mutually regulated(review)[J]. Mol Med Rep, 2015, 12: 783-794.
[11] Dantas AT, Pereira MC, de Melo Rego MJ, et al. The Role of PPAR Gamma in Systemic Sclerosis[J]. PPAR Res, 2015, 2015: 124624.
[12] Marx N, Bourcier T, Sukhova GK, et al. PPARgamma activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARgamma as a potential mediator in vascular disease[J]. Arterioscler Thromb Vasc Biol, 1999, 19: 546-551.
[13] Ricote M, Li AC, Willson TM, et al. The peroxisome proliferatoractivated receptor-gamma is a negative regulator of macrophage activation[J]. Nature, 1998, 391: 79-82.
[14] Sarraf P, Mueller E, Jones D, et al. Differentiation and reversal of malignant changes in colon cancer through PPAR gamma[J]. Nat Med, 1998, 4: 1046-1052.
[15] Lecka-Czernik B, Moerman EJ, Grant DF, et al. Divergent effects of selective peroxisome proliferator-activated receptor-gamma 2 ligands on adipocyte versus osteoblast differentiation[J]. Endocrinology, 2002, 143: 2376-2384.
[16] Kumar A, Singh AK, Gautam AK, et al. Identification of kaempferolregulated proteins in rat calvarial osteoblasts during mineralization by proteomics[J]. Proteomics, 2010, 10: 1730-1739.
[17] Chan BY, Gartland A, Wilson PJ, et al. PPAR agonists modulate human osteoclast formation and activity in vitro[J]. Bone, 2007, 40: 149-159.
[18] Hassumi MY, Silva-Filho VJ, Campos-Junior JC, et al. PPAR-gamma agonist rosiglitazone prevents inflammatory periodontal bone loss by inhibiting osteoclastogenesis[J]. Int Immunopharmacol, 2009, 9: 1150-1158.
[19] Wei W, Wang X, Yang M, et al. PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss[J]. Cell Metab, 2010, 11: 503-516.
[20] Laudes M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes[J]. J Mol Endocrinol, 2011, 46: R65-72.
[21] Hofbauer LC, Heufelder AE. Clinical review 114: hot topic. The role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in the pathogenesis and treatment of metabolic bone diseases[J]. J Clin Endocrinol Metab, 2000, 85: 2355-2363.
[22] Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation[J]. Cell, 1998, 93: 165-176.
[23] Ayina CN, Sobngwi E, Essouma M, et al. Osteoprotegerin in relation to insulin resistance and blood lipids in sub-Saharan African women with and without abdominal obesity[J]. Diabetol Metab Syndr, 2015, 7: 47.
[24] Bennett BJ, Scatena M, Kirk EA, et al. Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE-/- mice[J]. Arterioscler Thromb Vasc Biol, 2006, 26: 2117-2124.
[25] Ayina CN, Boudou P, Fidaa I, et al. Osteoprotegerin is not a determinant of metabolic syndrome in sub-Saharan Africans after age adjustment[J]. Ann Endocrinol(Paris), 2014, 75: 165-170.
[26] urner RT, Kalra SP, Wong CP, et al. Peripheral leptin regulates bone formation[J]. J Bone Miner Res, 2013, 28: 22-34.
[27] Thomas T, Gori F, Khosla S, et al. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes[J]. Endocrinology, 1999, 140: 1630-1638.
[28] Reseland JE, Syversen U, Bakke I, et al. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization[J]. J Bone Miner Res, 2001, 16: 1426-1433.
[29] Cornish J, Callon KE, Bava U, et al. Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo[J]. J Endocrinol, 2002, 175: 405-415.
[30] Lai CF, Chaudhary L, Fausto A, et al. Erk is essential for growth, differentiation, integrin expression, and cell function in human osteoblastic cells[J]. J Biol Chem, 2001, 276: 14443-14450.
[31] Hu E, Kim JB, Sarraf P, et al. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma[J]. Science, 1996, 274: 2100-2103.
[32] Gordeladze JO, Drevon CA, Syversen U, et al. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling[J]. J Cell Biochem, 2002, 85: 825-836.
[33] Burguera B, Hofbauer LC, Thomas T, et al. Leptin reduces ovariectomyinduced bone loss in rats[J]. Endocrinology, 2001, 142: 3546-3553.
[34] Gabay C, Dreyer M, Pellegrinelli N, et al. Leptin directly induces the secretion of interleukin 1 receptor antagonist in human monocytes[J]. J Clin Endocrinol Metab, 2001, 86: 783-791.
[35] Iwaniec UT, Boghossian S, Lapke PD, et al. Central leptin gene therapy corrects skeletal abnormalities in leptin-deficient ob/ob mice[J]. Peptides, 2007, 28: 1012-1019.
[36] Thomas T, Burguera B, Melton LJ, et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women[J]. Bone, 2001, 29: 114-120.
[37] Goulding A, Taylor RW. Plasma leptin values in relation to bone mass and density and to dynamic biochemical markers of bone resorption and formation in postmenopausal women[J]. Calcif Tissue Int, 1998, 63: 456-458.
[38] Yamauchi M, Sugimoto T, Yamaguchi T, et al. Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women[J]. Clin Endocrinol(Oxf), 2001, 55: 341-347.
[39] Ruhl CE, Everhart JE. Relationship of serum leptin concentration with bone mineral density in the United States population[J]. J Bone Miner Res, 2002, 17: 1896-1903.
[40] Blain H, Vuillemin A, Guillemin F, et al. Serum leptin level is a predictor of bone mineral density in postmenopausal women[J]. J Clin Endocrinol Metab, 2002, 87: 1030-1035.
[41] Zoico E, Zamboni M, Adami S, et al. Relationship between leptin levels and bone mineral density in the elderly[J]. Clin Endocrinol(Oxf), 2003, 59: 97-103.
[42] Pasco JA, Henry MJ, Kotowicz MA, et al. Serum leptin levels are associated with bone mass in nonobese women[J]. J Clin Endocrinol Metab, 2001, 86: 1884-1887.
[43] Ushiroyama T, Ikeda A, Hosotani T, et al. Inverse correlation between serum leptin concentration and vertebral bone density in postmenopausal women[J]. Gynecol Endocrinol, 2003, 17: 31-36.
[44] Blum M, Harris SS, Must A, et al. Leptin, body composition and bone mineral density in premenopausal women[J]. Calcif Tissue Int, 2003, 73: 27-32.
[45] Ducy P, Amling M, Takeda S, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass[J]. Cell, 2000, 100: 197-207.
[46] Kim GS, Hong JS, Kim SW, et al. Leptin induces apoptosis via ERK/cPLA2/cytochrome c pathway in human bone marrow stromal cells[J]. J Biol Chem, 2003, 278: 21920-21929.
[47] Hamrick MW, Ferrari SL. Leptin and the sympathetic connection of fat to bone[J]. Osteoporos Int, 2008, 19: 905-912.
[48] Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem, 1995, 270: 26746-26749.
[49] Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1(AdiPose Most abundant Gene transcript 1)[J]. Biochem Biophys Res Commun, 1996, 221: 286-289.
[50] Nakano Y, Tobe T, Choi-Miura NH, et al. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma[J]. J Biochem, 1996, 120: 803-812.
[51] Dennis JE, Charbord P. Origin and differentiation of human and murine stroma[J]. Stem Cells, 2002, 20: 205-214.
[52] Berner HS, Lyngstadaas SP, Spahr A, et al. Adiponectin and its receptors are expressed in bone-forming cells[J]. Bone, 2004, 35: 842-849.
[53] Luo XH, Guo LJ, Yuan LQ, et al. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway[J]. Exp Cell Res, 2005, 309: 99-109.
[54] Oshima K, Nampei A, Matsuda M, et al. Adiponectin increases bone mass by suppressing osteoclast and activating osteoblast[J]. Biochem Biophys Res Commun, 2005, 331: 520-526.
[55] Kajimura D, Lee HW, Riley KJ, et al. Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1[J]. Cell Metab, 2013, 17: 901-915.
[56] Luo XH, Guo LJ, Xie H, et al. Adiponectin stimulates RANKL and inhibits OPG expression in human osteoblasts through the MAPK signaling pathway[J]. J Bone Miner Res, 2006, 21: 1648-1656.
[57] Mitsui Y, Gotoh M, Fukushima N, et al. Hyperadiponectinemia enhances bone formation in mice[J]. BMC Musculoskelet Disord, 2011, 12: 18.
[58] Ealey KN, Kaludjerovic J, Archer MC, et al. Adiponectin is a negative regulator of bone mineral and bone strength in growing mice[J]. Exp Biol Med(Maywood), 2008, 233: 1546-1553.
[59] Yano W, Kubota N, Itoh S, et al. Molecular mechanism of moderate insulin resistance in adiponectin-knockout mice[J]. Endocr J, 2008, 55: 515-522.
[60] Nawrocki AR, Rajala MW, Tomas E, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists[J]. J Biol Chem, 2006, 281: 2654-2660.
[61] Kubota N, Terauchi Y, Yamauchi T, et al. Disruption of adiponectin causes insulin resistance and neointimal formation[J]. J Biol Chem, 2002, 277: 25863-25866.
[62] Maeda N, Shimomura I, Kishida K, et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30[J]. Nat Med, 2002, 8: 731-737.
[63] Cole ZA, Dennison EM, Cooper C. Osteoporosis epidemiology update[J]. Curr Rheumatol Rep, 2008, 10: 92-96.
[64] Nguyen ND, Ahlborg HG, Center JR, et al. Residual lifetime risk of fractures in women and men[J]. J Bone Miner Res, 2007, 22: 781-788.
[65] Pinheiro MM, Reis Neto ET, Machado FS, et al. Risk factors for osteoporotic fractures and low bone density in pre and postmenopausal women[J]. Rev Saude Publica, 2010, 44: 479-485.
[66] Wang PS, Solomon DH, Mogun H, et al. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly patients[J]. JAMA, 2000, 283: 3211-3216.
[67] Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins[J]. Science, 1999, 286: 1946-1949.
[68] Meier CR, Schlienger RG, Kraenzlin ME, et al. HMG-CoA reductase inhibitors and the risk of fractures[J]. JAMA, 2000, 283: 3205-3210.
[69] Schoofs MW, Sturkenboom MC, van der Klift M, et al. HMG-CoA reductase inhibitors and the risk of vertebral fracture[J]. J Bone Miner Res, 2004, 19: 1525-1530.
[70] Orozco P. Atherogenic lipid profile and elevated lipoprotein(a) are associated with lower bone mineral density in early postmenopausal overweight women[J]. Eur J Epidemiol, 2004, 19: 1105-1112.
[71] Samelson EJ, Cupples LA, Hannan MT, et al. Long-term effects of serum cholesterol on bone mineral density in women and men: the Framingham Osteoporosis Study[J]. Bone, 2004, 34: 557-561.
[72] Perez-Castrillon JL, De Luis D, Martin-Escudero JC, et al. Non-insulindependent diabetes, bone mineral density, and cardiovascular risk factors[J]. J Diabetes Complications, 2004, 18: 317-321.
[73] Tanko LB, Bagger YZ, Nielsen SB, et al. Does serum cholesterol contribute to vertebral bone loss in postmenopausal women?[J]. Bone, 2003, 32: 8-14.
[74] Wu LY, Yang TC, Kuo SW, et al. Correlation between bone mineral density and plasma lipids in Taiwan[J]. Endocr Res, 2003, 29: 317-325.
[75] Bartels T, Beitz J, Hein W, et al. Changes in the spongiosa density in the femoral head of rabbits in atherosclerosis[J]. Beitr Orthop Traumatol, 1990, 37: 291-297.
[76] Parhami F, Garfinkel A, Demer LL. Role of lipids in osteoporosis[J]. Arterioscler Thromb Vasc Biol, 2000, 20: 2346-2348.
[77] Parhami F, Morrow AD, Balucan J, et al. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients[J]. Arterioscler Thromb Vasc Biol, 1997, 17: 680-687.
[78] Sivas F, Alemdaroglu E, Elverici E, etal. Serum lipid profile: its relationship with osteoporotic vertebrae fractures and bone mineral density in Turkish postmenopausal women[J]. Rheumatol Int, 2009, 29: 885-890.
[79] Yamaguchi T. Bone metabolism in dyslipidemia and metabolic syndrome[J]. Clin Calcium, 2011, 21: 677-682.
[80] Adami S, Braga V, Zamboni M, et al. Relationship between lipids and bone mass in 2 cohorts of healthy women and men[J]. Calcif Tissue Int, 2004, 74: 136-142.
[81] Yamaguchi T, Sugimoto T, Yano S, et al. Plasma lipids and osteoporosis in postmenopausal women[J]. Endocr J, 2002, 49: 211-217.
[82] D'Amelio P, Pescarmona GP, Gariboldi A, et al. High density lipoproteins(HDL) in women with postmenopausal osteoporosis: a preliminary study[J]. Menopause, 2001, 8: 429-432.
[83] Buizert PJ, van Schoor NM, Lips P, et al. Lipid levels: a link between cardiovascular disease and osteoporosis?[J]. J Bone Miner Res, 2009, 24: 1103-1109.
[84] Dennison EM, Syddall HE, Aihie Sayer A, et al. Lipid profile, obesity and bone mineral density: the Hertfordshire Cohort Study[J]. QJM, 2007, 100: 297-303.
[85] Zabaglia SF, Pedro AO, Pinto Neto AM, et al. An exploratory study of the association between lipid profile and bone mineral density in menopausal women in a Campinas reference hospital[J]. Cad Saude Publica, 1998, 14: 779-786.
[86] Poli A, Bruschi F, Cesana B, et al. Plasma low-density lipoprotein cholesterol and bone mass densitometry in postmenopausal women[J]. Obstet Gynecol, 2003, 102: 922-926.
[87] Li S, Guo H, Liu Y, et al. Relationships of serum lipid profiles and bone mineral density in postmenopausal Chinese women[J]. Clin Endocrinol(Oxf), 2015, 82: 53-58.
[88] Hsu YH, Venners SA, Terwedow HA, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women[J]. Am J Clin Nutr, 2006, 83: 146-154.
[89] D'Amelio P, Di Bella S, Tamone C, et al. HDL cholesterol and bone mineral density in normal-weight postmenopausal women: is there any possible association?[J]. Panminerva Med, 2008, 50: 89-96.
[90] Savopoulos C, Dokos C, Kaiafa G, et al. Adipogenesis and osteoblastogenesis: trans-differentiation in the pathophysiology of bone disorders[J]. Hippokratia, 2011, 15: 18-21.
[91] Song C, Guo Z, Ma Q, et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells[J]. Biochem Biophys Res Commun, 2003, 308: 458-462.
[92] Lima CE, Calixto JC, Anbinder AL. Influence of the association between simvastatin and demineralized bovine bone matrix on bone repair in rats[J]. Braz Oral Res, 2011, 25: 42-48.
[93] Saraf SK, Singh A, Garbyal RS, et al. Effect of simvastatin on fracture healing--an experimental study[J]. Indian J Exp Biol, 2007, 45: 444-449.
[94] Wang JW, Xu SW, Yang DS, et al. Locally applied simvastatin promotes fracture healing in ovariectomized rat[J]. Osteoporos Int, 2007, 18: 1641-1650.
[95] Nyan M, Sato D, Oda M, et al. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect[J]. J Pharmacol Sci, 2007, 104: 384-386.
[96] Skoglund B, Aspenberg P. Locally applied Simvastatin improves fracture healing in mice[J]. BMC Musculoskelet Disord, 2007, 8: 98.
[97] Uzzan B, Cohen R, Nicolas P, et al. Effects of statins on bone mineral density: a meta-analysis of clinical studies[J]. Bone, 2007, 40: 1581-1587.
[98] Bagger YZ, Rasmussen HB, Alexandersen P, et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se?[J]. Osteoporos Int, 2007, 18: 505-512.