• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    液晶/水界面上的氫鍵作用誘導(dǎo)液晶取向轉(zhuǎn)變

    2015-12-05 06:30:00廖芝建秦振立杜思南李思雨陳冠侯羅建斌
    物理化學(xué)學(xué)報 2015年9期
    關(guān)鍵詞:酚類液晶氫鍵

    廖芝建 秦振立 杜思南 李思雨 陳冠侯 左 芳 羅建斌

    (西南民族大學(xué)化學(xué)與環(huán)境保護(hù)工程學(xué)院, 成都 610041)

    液晶/水界面上的氫鍵作用誘導(dǎo)液晶取向轉(zhuǎn)變

    廖芝建 秦振立 杜思南 李思雨 陳冠侯 左 芳*羅建斌

    (西南民族大學(xué)化學(xué)與環(huán)境保護(hù)工程學(xué)院, 成都 610041)

    本文提出液晶/水界面上氫鍵作用可以誘導(dǎo)熱致型液晶(戊基聯(lián)苯氰, 簡稱: 5CB)發(fā)生取向轉(zhuǎn)變. 當(dāng)液晶5CB膜接觸酚類(如對硝基苯酚)水溶液的時候, 由于酚類物質(zhì)的酚羥基與液晶5CB分子中的氰基在液晶水界面上形成了氫鍵, 在氫鍵的作用下使得液晶5CB由平行取向轉(zhuǎn)變成了垂直取向. 此外, 還利用了液晶傳感器可視化了酚類物質(zhì)與牛血清蛋白(BSA)之間的相互作用. 本文的研究結(jié)果可為研究液晶/水界面上的界面現(xiàn)象提供新的思路, 并且有望開發(fā)出基于氫鍵作用的液晶生物化學(xué)傳感技術(shù).

    液晶; 氫鍵作用; 取向轉(zhuǎn)變; 界面現(xiàn)象; 光學(xué)響應(yīng); 酚類; 牛血清蛋白

    1 Introduction

    Liquid crystals (LCs) are materials typically composed of rod-like molecules, which possess short-range positional but long-range orientational order.1The orientation of LCs is extraordinarily sensitive to the change of the surface which they are in contact with. The surface-induced local order can be amplified over several tens of micrometers in the LC bulk due to the long-range interaction of LCs.2,3According to these features of LCs, the binding events between the interesting molecules and LC molecules at the LC interface can be transduced and amplified into optical signals that are distinguishable through the naked eye under polarized light microscopy.4–25

    Recently, the orientational ordering of thermotropic liquid crystals (LCs) at the LC-aqueous interface has attracted substantial attention due to both fundamental and technological interest.4–12Previous studies have demonstrated that the orientational transition of LCs is closely coupled to the presence and organization of amphiphiles which can spontaneously absorb at the interface created between the LC phase and the aqueous phase.26–33For example, Abbott's group reported that the tails of surfactants,26–28lipids,28–31and polymers32,33can orient the transition of nematic 5CB (4-cyano-4'-pentylbiphenyl) as well as induce a dark homeotropic alignment owing to the hydrophobic interaction between 5CB and the tails of amphiphiles. Furthermore, more complex LC-aqueous interfacial phenomena have been imaged, such as the specific binding events involving the hybridization of DNA,10,11,34,35proteins,14–17,30bacteria,18,19viruses,19and enzymatic reactions,8,23–25,36,37which can perturb the orientations ordered by the tails of amphiphiles.

    Many past studies were focused on the orientation of LCs at the LC-aqueous interface ordered by the tails of amphiphiles.26–38On the other hand, it was reported that ordering transitions of LC at the LC-solid interface could also be induced by hydrogen-bond (HB) interaction.39–43To the best of our knowledge, an anchoring orientation in LCs induced by the HB interaction at the LC-aqueous interface has not been reported.

    Here, we emphasize that the hydrogen-bond (HB) interaction between 5CB (containing -CN as HB acceptor) and a HB donor also plays an important role in the orientational ordering of 5CB at the LC-aqueous interface. In this work, phenols such as p-nitrophenol were selected as HB donors to anchor the orientation of 5CB through the attraction between the -OH group of phenol and the -CN group of 5CB at the LC-aqueous interface. The results presented in this paper will be interesting in that they provide new fundamental insights into the balance of intermolecular interactions that order the orientational transition of LCs at the LC-aqueous interface.

    2 Materials and methods

    2.1 Materials

    4-Cyano-4'-pentylbiphenyl (5CB, 99.5%), p- and m-hydroxybenzaldehyde (> 99%), p-, m-, and o-nitrophenol (> 99%), benzonitrile (> 98.5%), bovine serum albumin (BSA, > 98%) and dichloromethane (> 99%) were obtained from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used without further purification. Glass microscopy slides and transmission electron microscope (TEM) copper grids (100 mesh, 18 μm thickness, 285 μm grid spacing, and 55 μm bar width) were obtained from Beijing Zhongjingkeyi Technology Co., Ltd. All aqueous solutions were prepared with deionized water.

    2.2 Preparation of LC optical cells

    The LC optical cells were prepared following the procedures reported in the previous studies.12,30,32Briefly, glass slides were cleaned by sonication in ethanol for 15 min and then dried in a 100 °C oven for 30 min. Next, a silicon plate support with holes of 5 mm in diameter and 0.5 mm depth was placed onto the slide and the bubbles between the slide and the silicon plate was removed through pressure. Subsequently, the silicon plate was secured on the slide via adhesion. Meanwhile, TEM copper grids (100 mesh, 18 μm thickness, 285 μm grid spacing, and 55 μm bar width) were first cleaned in methanol, ethanol, and acetone (sonication for 10 min in each solvent), then heated overnight at 45 °C to evaporate residual solvents. The copper grid was then impregnated with about 0.5 μL of 5CB using a capillary tube. Excess of 5CB was removed by contacting the LCs with the other end of the capillary tube. The grids containing LCs were then put on the wells of the plate containing samples of interest. This optical cell was then ready for examination under cross-polarized lighting. The schematic (Fig.1(A)) and real (Fig.1(B)) pictures of the experimental equipment are shown in Fig.1.

    2.3 Preparation of the mixture of p-nitrophenol and 5CB

    The mixtures of p-nitrophenol and 5CB were prepared by mixing 2 mmol (or 1 mmol) p-nitrophenol with 8 mmol (or 9mmol) 5CB, and then dissolve into CH2Cl2for the uniform mixing of p-nitrophenol and 5CB. Next, the mixture solutions were incubated in a vacuum oven at a temperature of 35 °C for a set time period of 48 h. The mixtures of p-nitrophenol and 5CB were used to characterize the optical response of 5CB, Fourier transform infrared (FTIR) and ultraviolet visible (UV-Vis) absorption spectra.

    Fig.1 (A) Schematic and (B) real pictures of the experimental equipment

    2.4 Characterizations

    The optical texture of the 5CB films filled in the pores of the copper grids was examined by using plane-polarized light in transmission mode on an UOP UB200i microscope with crossed polarizer. All optical microscopy images were taken at room temperature with a digital camera (DPIXEL DP330C CCDCamera) mounted on the polarizing optical microscope. Arthroscopic examinations were performed with the source light intensity set to 50% of full illumination and the aperture set to 10% so as to collimate the incident light. Homeotropic alignments were determined by first observing no transmission of light during a 360° rotation of the sample. Insertion of a condenser below the stage and a Bertrand lens above the stage allowed conoscopic examination of the cell. An interference pattern consisting of two crossed isogyres indicated homeotropic alignment (Fig.2A).44,45In-plane birefringence was indicated by the presence of brush textures, typically four-brush textures emanating from a line defect (Fig.2B), when the sample was viewed between crossed polarizers.44,45

    Fig.2 Optical images of 5CB confined with copper grids at different time after exposure to 4 mmolL–1p-nitrophenol (A) and water (B) with insertion of a condenser below the stage and a Bertrand lens above the stage

    The FTIR spectra of 5CB, p-nitrophenol, and their mixtures (n(p-nitrophenol) : n(5CB) = 2 : 8 (molar ratio)) were measured at room temperature in the 4000–400 cm–1region with the use of a Thermo Nicolet IR 200 FTIR spectrometer. The spectral slit width was 2–4 cm–1. 5CB, p-nitrophenol, and their mixtures were casted on the KBr slides for testing.

    The UV-Vis absorption spectra of p-nitrophenol were measured at room temperature in the 200–800 cm–1region with the use of a Thermo UV-500 spectrophotometer, when pure 5CB was layered onto the surface of a 0.3 mmolL–1p-nitrophenol aqueous solution in a cuvette, or a 3 μL mixture of p-nitrophenol and 5CB (1 : 9, molar ratio) was layered onto the water surface in a cuvette.

    3 Results and discussion

    3.1 Imaging the HB interaction between 5CB and p-nitrophenol

    Driven by the interest in HB interaction on anchoring the orientational transition of 5CB at the LC-aqueous interface, we contacted the nematic phase of nitrile-containing mesogen 5CB with water and aqueous solutions of p-nitrophenol at various concentration. Under illumination with polarized light, nematic 5CB in contact with water exhibits a bright appearance consistent with a LC film that was anchored planar to the interface formed between the nematic 5CB phase and the aqueous phase (Fig.3A). Upon replacing the water with an aqueous solution of p-nitrophenol, the optical appearance 5CB changed from bright to dark over time (Fig.3(B–D)), corresponding to the planar to homeotropic orientational transition of 5CB, and the time required for 5CB to turn fully dark depended on the concentration of p-nitrophenol. The homeotropic alignment of the LC film was also confirmed by conoscopic examination (see Section 2.4).

    Fig.3 Optical images of 5CB confined with copper grids at different time after exposure to aqueous solutions of p-nitrophenol atvarious concentrations

    Previous studies have demonstrated the presence of intermolecular hydrogen bonds between -OH groups and -CN groups.46–48According to the above-reported results, a hypothesis can be proposed that the -OH group of p-nitrophenol molecules promotes an attractive interaction with the -CN of 5CB molecules via intermolecular HB interaction such that pnitrophenol can be absorbed into the 5CB phase (Fig.4, route A) or be attracted and assembled at interface created between the 5CB phase and the aqueous phase (Fig.4, route B), which facilitates the homeotropic orientation of nematic 5CB molecules.

    3.2 Determination of HB interaction between 5CB and nitrophenol at the LC-aqueous interface

    With a view to confirming the existence of hydrogen bonds between 5CB and p-nitrophenol, a series of FTIR characterizations were performed. Fig.5 shows the FTIR spectra of p-nitrophenol (A), 5CB (B), and a mixture of p-nitrophenol-doped 5CB (2 : 8, molar ratio) (C). The O-H stretch of p-nitrophenol appears at 3327.97 cm–1(Fig.5A), and the spectrum of 5CB has C≡N stretch peak at 2226.30 cm–1(Fig.5B). In the FTIR spectrum of p-nitrophenol-doped 5CB (Fig.5C), the O-H stretch shifted from 3327.97 to 3343.65 cm–1indicating an intermolecular HB interaction with the -CN groups of 5CB.47In addition, the C≡N stretch of 5CB changed from 2226.30 to 2227.35 cm–1in the mixture due to the intermolecular HB interaction with the OH groups of p-nitrophenol.47These results reveal the presence of intermolecular hydrogen bonds between the hydroxyl groups and the cyanogen groups (-CN…HO-),which are the essential driving force for homeotropic alignment of nematic 5CB.

    Fig.4 A model for the hypothesis that HB interaction between 5CB and p-nitrophenol orients the original alignment of 5CB homeotropically at the 5CB phase (route A) and LC-aqueous interface (route B)

    Fig.5 FTIR spectra of p-nitrophenol cast film (A), 5CB cast film (B) and the mixture of p-nitrophenol-doped 5CB (2 : 8, molar ratio) film (C) on a KBr slide

    Considering the possibility that the origin of the orientational transition of 5CB is caused by the HB interaction between 5CB and p-nitrophenol which enters into 5CB phase (as shown in Fig.4, route A), we prepared a film from a mixture of pnitrophenol and 5CB (1 : 9, molar ratio) to examine the optical response of 5CB at the aqueous interface. Fig.6 shows that the p-nitrophenol-doped 5CB had a dark appearance up to 3 min after the mixed monolayer was introduced onto the aqueous interface, indicating a homeotropic orientation of 5CB induced by intermolecular HB interaction at the 5CB phase. Subsequent observation revealed that the optical appearance shifted from dark to bright, and became almost completely bright at 5 min, suggesting that the intermolecular HB interaction between 5CB and p-nitrophenol at the 5CB phase was disrupted and then gave rise to an orientational transition of 5CB from a homeotropic to a planar state. Surprisingly, a gradual reorientation of 5CB from a planar to a homeotropic alignment was observed after 30 min, implying that a new intermolecular HB interaction was rebuilt between 5CB and p-nitrophenol.

    Fig.6 Optical images of the mixture of p-nitrophenol and 5CB (1 : 9 molar ratio) confined with copper grids at different times afterexposure to water

    The above phenomena may be explained by the mechanism proposed in Fig.7. At the 5CB phase dark alignment of 5CB is triggered by the HB interaction between 5CB and p-nitrophenol (Fig.7a). When the p-nitrophenol-doped 5CB film contacts with water, p-nitrophenol transfers into the aqueous phase leading to the bright alignment (Fig.7b). Subsequently, p-nitrophenol assembles at the LC-aqueous interface inducing a homeotropic orientation of 5CB (Fig.7c). These results are consistent with Fig.4, route B, which suggests that when contacting with p-nitrophenol aqueous solution, the homeotropic orientation of 5CB is caused by the HB interaction from p-nitrophenol which assembles at the LC-aqueous interface, as opposed to entering into the 5CB phase (as shown in Fig.4, route A).

    Fig.7 A model for explaining the transfer progress of p-nitrophenol doped in 5CB phase

    To provide further insight into the proposed HB interactiondriven orientational transition of 5CB at the LC-aqueous interface, a series of UV-Vis characterizations was performed. A 3-μL mixture of p-nitrophenol and 5CB (1 : 9, molar ratio) was layered onto the water surface in a cuvette to monitor the timedependent process by which p-nitrophenol transfers into the aqueous phase from the 5CB phase. Here the mixture layer was above the beam of UV-Vis light through the cuvette. It was observed that the intensity of the absorption peaks of p-nitrophenol located at 226 and 319 nm increased during the first 30 min,and there was no significant change in intensity after 60 min (Fig.8). This result showed that p-nitrophenol did in fact transfer into the aqueous phase from the 5CB phase, causing the orientational transition of 5CB from dark to bright (Fig.6) by the disruption of the HB interaction between 5CB and p-nitrophenol at the 5CB phase. This was consistent with the explanation that p-nitrophenol transferred from the 5CB phase into the aqueous interface and assembled at the LC-aqueous interface leading to a dark-to-bright-to-dark appearance (as shown in Fig.6 and Fig.7).

    Fig.8 UV-Vis absorption spectra of p-nitrophenol transferring into the aqueous phase from the p-nitophenol-5CB phase at different time intervals

    In addition, we layered pure 5CB onto the surface of an aqueous solution containing p-nitrophenol in a cuvette to monitor the assembly of p-nitrophenol at the LC-aqueous interface. Here the 5CB layer was above the beam of UV-Vis light through the cuvette. It was observed that the intensity of the absorption peaks of p-nitrophenol located at 226 and 319 nm decreased during the range of time from 0 to 120 min (Fig.9), consistent with the assembly of p-nitrophenol at the LC-aqueous interface through the attraction of the -CN of 5CB, which reduced the concentration of p-nitrophenol in solution. This supports the explanation that the reorientational transition of 5CB from bright to dark shown in Fig.6 was ordered by the intermolecular HB interaction rebuilt between 5CB and p-nitrophenol at the LC-aqueous interface, and the homeotropic orientation of 5CB (as shown in Fig.3(B–D)) caused by the HB interaction between 5CB and p-nitrophenol did in fact occur at the LC-aqueous interface (as shown in Fig.4, route B) not at the 5CB phase (as shown in Fig.4, route A).

    Fig.9 UV-Vis absorption spectra of p-nitrophenol assembling at the LC-aqueous interface from the aqueous phase at different time intervals

    Fig.10 Optical images of 5CB confined with copper grids at different time after exposure to 10 mmolL–1benzonitrile (A), mixture solutions of 4 mmolL–1p-nitrophenol and 10 mmolL–1benzonitrile (B)

    Gupta group48have proved that the HB interaction between phenol and benzonitrile was stronger than that between phenol and 5CB. Furthermore, in order to disturb the intermolecular HB interaction between 5CB and p-nitrophenol at the LC-aqueous interface, we contacted 5CB confined within a copper grid with an aqueous solution containing a mixture of 4 mmolL–1p-nitrophenol and 10 mmolL–1benzonitrile. We found that the optical response of 5CB showed a bright appearance (Fig.10), implying that benzonitrile can disrupt the intermolecular HB interaction between 5CB and p-nitrophenol due to the formation of an intermolecular HB interaction between pnitrophenol and benzonitrile, causing the homeotropic dark alignment of 5CB to be shifted to the planar bright alignment (Fig.10).

    The results described above lead to the conclusion that intermolecular HB interaction between 5CB and p-nitrophenol triggered the homeotropic orientation of 5CB at the LC-aqueous interface, then gradually propagated this interfacial homeotropic orientation into the bulk 5CB phase, and finally gave rise to an almost uniform homeotropic appearance.

    Fig.11 Optical images of 5CB confined with copper grids at different time after exposure to aqueous solutions of m-nitrophenol at various concentrations

    Fig.12 Optical images of 5CB confined with copper grids at different time after exposure to aqueous solutions of o-nitrophenol at various concentrations

    3.3 Monitering the optical response of LC couple to other phenols

    Here, o- and m-nitrophenol were evaluated as alternative hydrogen-bond donors to anchor the orientational transition of 5CB at LC-aqueous interface. When exposed 5CB confined within copper grids to aqueous solutions containing o- or m-nitrophenol, the optical images of 5CB turned black gradually, indicating the formation of HB interaction between 5CB and o- or m-nitrophenol. It was also found that the response time of 5CB when contracted with m-nitrophenol (Fig.11) solution was shorter than that with o-nitrophenol (Fig.12) at the same concentration, owing to the intramolecular HB interaction in o-nitrophenol which weakened the intermolecular HB interaction between 5CB and o-nitrophenol. Additionally, m- and p-hydroxybenzaldehyde were able to anchor the orientational transition of 5CB at the LC-aqueous interface (Fig.13). These results reinforce the hypothesis that the -OH group of phenols (e.g. p-nitrophenol) can promote an attractive interaction with the -CN of 5CB via intermolecular HB interaction such that phenols can be absorbed and assemble at the interface created between the 5CB phase and the aqueous phase, facilitating the homeotropic orientation of nematic 5CB molecules.

    3.4 Imaging interactions between p-nitrophenol and BSA

    Fig.13 Optical images of 5CB confined with copper grids at different time after exposure to 50 mmolL–1m-hydroxybenzaldehyde (A), 50 mmolL–1p-hydroxybenzaldehyde (B)

    Fig.14 Optical images of 5CB confined with copper grids at different time after exposure to 10 μmolL–1BSA (A), 4 mmolL–1p-nitrophenol(B), mixture solutions of 4 mmolL–1p-nitrophenol and 10 μmolL–1BSA (C)

    Fig.15 Optical images of 5CB confined with copper grids at different time after exposure to 10 μmolL–1BSA (A), 4 mmolL–1m-nitrophenol(B), mixture solutions of 4 mmolL–1m-nitrophenol and 10 μmolL–1BSA (C)

    Furthermore, the interaction between p-nitrophenol and bovine serum albumin was imaged by the LC sensor. When contact with aqueous solutions of 10 μmolL–1BSA, the image of 5CB remained bright in appearance (Fig.14A). The addition of 4 mmolL–1p-nitrophenol into the optical cell resulted in a bright-to-dark change in the optical response of LCs within 5 min (Fig.14B). When exchanged the p-nitrophenol aqueous solution in the optical cell with the mixture aqueous solution of p-nitrophenol and BSA, an obvious optical shift from a dark appearance to a nearly bright appearance (Fig.14C) was observed, which suggests that LCs underwent an orientational transition from the homeotropic to the nearly planar state. The result was consistent with the previous study49that p-nitrophenol interacts with BSA mainly through the hydrogen bonds, which disrupt the interaction between p-nitrophenol and 5CB. The interaction between m-nitrophenol and BSA was also imaged by the LC sensor as shown in Fig.15.

    4 Conclusions

    In summary, we have demonstrated that the hydrogen-bond interaction could also induce the orientational ordering of 5CBat the LC-aqueous interface. Phenol molecules (such as nitrophenol, p- and m-hydroxybenzaldehyde) could assemble at the interface created between the aqueous phase and the nematic 5CB phase, and anchor the transition of nematic 5CB driven by the HB interactions between 5CB and phenols at the LC-aqueous interface, which facilitated the homeotropic orientation of 5CB molecules. In addition, the interaction of pnitrophenol or m-nitrophenol with BSA was imaged by the LC sensor. The results reported in this paper, therefore, provide new guidance for the design of interfaces that can report chemical and biological interactions.

    Acknowledgment: The authors thank Brian McGarvey for revising the manuscript.

    (1)De Gennes, P. G. The Physics of Liquid Crystals; Clarendon: Oxford, 1974.

    (2)Gupta, V. K.; Skaife, J. J.; Dubrovsky, T. B.; Abbott, N. L. Science 1998, 279, 2077. doi: 10.1126/science.279.5359.2077

    (3)Shah, R. R.; Abbott, N. L. Science 2001, 293, 1296. doi: 10.1126/science.1062293

    (4)Brake, J. M.; Daschner, M. K.; Luk, Y. Y.; Abbott, N. L. Science 2003, 302, 2094. doi: 10.1126/science.1091749

    (5)Mushenheim, P. C.; Trivedi, R. R.; Weibel, D. B.; Abbott, N. L. Biophysical Journal 2014, 107, 255. doi: 10.1016/j.bpj.2014.04.047

    (6)Li, X.; Li, G.; Yang, M.; Chen, L. C.; Xiong, X. L. Sensor. Actuat. B 2015, 215, 152. doi: 10.1016/j.snb.2015.03.054

    (7)Zhu, Q.; Yang, K. L. Anal. Chim. Acta 2015, 853, 696. doi: 10.1016/j.aca.2014.08.039

    (8)Zhang, M.; Jang, C. H. ChemPhysChem 2014, 15, 2569. doi: 10.1002/cphc.201402120

    (9)Yang, S.; Liu, Y.; Tan, H.; Wu, C.; Li, X.; Wu, Z.; Shen, G.; Yu, R. Chem. Commun. 2012, 48, 2861. doi: 10.1039/c2cc17861c

    (10)Tan, H.; Li, X.; Liao, S.; Yu, R.; Wu, Z. Biosens. Bioelectron. 2014, 62, 84. doi: 10.1016/j.bios.2014.06.029

    (11)Noonan, P. S.; Mohan, P.; Goodwin, A. P.; Schwartz, D. K. Adv. Funct. Mater. 2014, 24, 3206. doi: 10.1002/adfm.201303885

    (12)Zuo, F.; Liao, Z.; Zhao, C.; Qin, Z.; Li, X.; Zhang, C.; Liu, D. Chem. Commun. 2014, 50, 1857.

    (13)Jung, Y. D.; Khan, M.; Park, S. Y. J. Mater. Chem. B 2014, 2, 4922. doi: 10.1039/C4TB00476K

    (14)Seo, J. M.; Khan, W.; Park, S. Y. Soft Matter 2012, 8, 198. doi: 10.1039/C1SM06616A

    (15)Hartono, D.; Xue, C. Y.; Yang, K. L.; Yung, L. Y. L. Adv. Funct. Mater. 2009, 19, 3574. doi: 10.1002/adfm.v19:22

    (16)Tan, L. N.; Orler, V. J.; Abbott, N. L. Langmuir 2012, 28, 6364. doi: 10.1021/la300108f

    (17)Das, D.; Sidiq, S.; Pal, S. K. ChemPhysChem 2015, 16, 753. doi: 10.1002/cphc.v16.4

    (18)Hu, Q. Z.; Jang, C. H. Analyst 2012, 137, 567. doi: 10.1039/C1AN15743D

    (19)Sivvakumar, S.; Wark, K. L.; Gupta, J. K.; Abbott, N. L.; Caruso, F. Adv. Funct. Mater. 2009, 19, 2260. doi: 10.1002/adfm.v19:14

    (20)Bai, Y.; Abbott, N. L. Langmuir 2011, 27, 5719. doi: 10.1021/la103301d

    (21)Yang, Z.; Gupta, J. K.; Kishimoto, K.; Shoji, Y.; Kato, T.; Abbott, N. L. Adv. Funct. Mater. 2010, 20, 2098.

    (22)Xue, C. Y.; Khan, S. A.; Yang, K. L. Adv. Mater. 2009, 21, 198. doi: 10.1002/adma.v21:2

    (23)Bi, X.; Hartono, D.; Yang, K. L. Adv. Funct. Mater. 2009, 19, 3760. doi: 10.1002/adfm.v19:23

    (24)Hu, Q. Z.; Jang, C. H. Talanta 2012, 99, 36. doi: 10.1016/j.talanta.2012.05.016

    (25)Hartono, D.; Bi, X.; Yang, K. L.; Yung, L. Y. L. Adv. Funct. Mater. 2008, 18, 2938. doi: 10.1002/adfm.v18:19

    (26)Lockwood, N. A.; Gupta, J. K.; Abbott, N. L. Surf. Sci. Rep.2008, 63, 255. doi: 10.1016/j.surfrep.2008.02.002

    (27)Lockwood, N. A.; Pablo, J. J.; Abbott, N. L. Langmuir 2005, 21, 6805. doi: 10.1021/la050231p

    (28)Lockwood, N. A.; Abbott, N. L. Current Opinion Colloid Interface 2005, 10, 111. doi: 10.1016/j.cocis.2005.06.002

    (29)Brake, J. M.; Daschner, M. K.; Abbott, N. L. Langmuir 2005, 21, 2218. doi: 10.1021/la0482397

    (30)Brake, J. M.; Abbott, N. L. Langmuir 2007, 23, 8497. doi: 10.1021/la0634286

    (31)Liu, D.; Hu, Q. Z.; Jang, C. H. Colloid Surface B 2013, 108, 142. doi: 10.1016/j.colsurfb.2013.02.047

    (32)Kinsinger, M. I.; Sun, B.; Abbott, N. L.; Lynn, D. M. Adv. Mater. 2007, 19, 4208.

    (33)Kinsinger, M. I.; Buck, M. E.; Meli, M. V.; Abbott, N. L.; Lynn, D. M. J. Colloid Interface Sci. 2010, 341, 124. doi: 10.1016/j.jcis.2009.09.026

    (34)Price, A. D.; Schwartz, D. K. J. Am. Chem. Soc. 2008, 130, 8188. doi: 10.1021/ja0774055

    (35)Umber, A. C. M.; Noonan, P. S.; Schwartz, D. K. Soft Matter 2012, 8, 4335. doi: 10.1039/c2sm07483d

    (36)Hartono, D., Lai, S. L.; Yang, K. L.; Yung, L. Y. L. Biosens. Bioelectron. 2009, 24, 2289. doi: 10.1016/j.bios.2008.11.021

    (37)Park, J. S.; Abbott, N. L. Adv. Mater. 2008, 20, 1185. doi: 10.1002/adma.v20:6

    (38)Hu, Q. Z.; Jang, C. H. Appl. Mater. Interfaces 2012, 4, 1791. doi: 10.1021/am300043d

    (39)Bai, Y.; Abbott, N. L. J. Am. Chem. Soc. 2012, 134, 548. doi: 10.1021/ja2089475

    (40)Luk, Y. Y.; Yang, K. L.; Cadwell, K.; Abbott, N. L. Surf. Sci. 2004, 570, 43. doi: 10.1016/j.susc.2004.06.180

    (41)Park, J. S.; Jang, C. H.; Tingey, M. L.; Lowe, A. M.; Abbott, N. L. J. Colloid Interface Sci. 2006, 304, 459. doi: 10.1016/j.jcis.2006.08.063

    (42)Hunter, J. T.; Abbott, N. L. Sensor. Actuat. B 2013, 183, 71. doi:10.1016/j.snb.2013.03.094

    (43)Ding, X.; Yang, K. L. Sensor. Actuat. B 2012, 173, 607. doi: 10.1016/j.snb.2012.07.067

    (44)Brake, J. M.; Mezera, A. D.; Abbott, N. L. Langmuir 2003, 19, 8629. doi: 10.1021/la034469u

    (45)Tan, L. N.; Abbott, N. L. J. Colloid Interface Sci. 2015, 449, 452. doi: 10.1016/j.jcis.2015.01.078

    (46)Han, S.; Martin, S. M. J. Phys. Chem. B 2009, 113, 12696. doi: 10.1021/jp903726d

    (47)Thote, A. J.; Gupta, R. B. Ind. Eng. Chem. Res. 2003, 42, 1129. doi: 10.1021/ie020513+

    (48)Thote, A. J.; Gupta, R. B. Fluid Phase Equilibria 2004, 220, 47. doi: 10.1016/j.fluid.2004.01.035

    (49)Guo, X.; Li, X.; Jiang, Y.; Yi, L.; Wu, Q.; Chang, H.; Diao, X.; Sun, Y.; Pan, X.; Zhou, N. J. Lumin. 2014, 149, 353. doi: 10.1016/j.jlumin.2014.01.036

    Orientational Transitions of Liquid Crystal Driven by Hydrogen-Bond Interaction at the Liquid Crystal-Aqueous Interface

    LIAO Zhi-Jian QIN Zhen-Li DU Si-Nan LI Si-Yu CHEN Guan-Hou
    Z
    UO Fang*LUO Jian-Bin
    (College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China)

    In this paper, an orientational anchoring transition of the thermotropic nematic liquid crystal (LC) (4-cyano-4'-pentylbiphenyl (5CB)) driven by hydrogen-bond (HB) interaction at the LC-aqueous interface is presented. After a 5CB film is introduced onto an aqueous solution of phenols such as nitrophenol, the alignment of 5CB changes from planar to homeotropic, which is attributed to HB interaction between 5CB and phenols at the LC-aqueous interface. On the other hand, the interaction of pnitrophenol or m-nitrophenol with bovine serum albumin (BSA) is imaged by the LC sensor. Overall, the results provide new insight into interfacial phenomena occurring at the LC-aqueous interface, and hold the potential for biological and chemical sensing techniques based on HB interaction.

    Liquid crystal; Hydrogen-bond interaction; Orientational transition; Interfacial phenomenon; Optical response; Phenols; Bovine serum albumin

    O647

    10.3866/PKU.WHXB201508101

    Received: June 5, 2015; Revised: August 7, 2015; Published on Web: August 10, 2015.

    *Corresponding author. Email: polymerzf@swun.cn; Tel: +86-28-85522315.

    The project was supported by the National Natural Science Foundation of China (51273220) and Fundamental Research Funds for the Central Universities, China (11NZYQN23).

    國家自然科學(xué)基金(51273220)和中央高?;究蒲谢?11NZYQN23)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    酚類液晶氫鍵
    教材和高考中的氫鍵
    不可壓液晶方程組的Serrin解
    《液晶與顯示》征稿簡則
    液晶與顯示(2020年8期)2020-08-08 07:01:46
    倒掛金鉤中酚類成分的研究
    黃荊酚類成分的研究
    中成藥(2017年7期)2017-11-22 07:33:21
    車前子酚類成分的研究
    中成藥(2017年3期)2017-05-17 06:09:00
    液晶與顯示2015年第30卷第1期 目錄
    液晶與顯示(2015年1期)2015-02-28 21:15:54
    五味子漿果酚類成分提取與分離鑒定
    二水合丙氨酸復(fù)合體內(nèi)的質(zhì)子遷移和氫鍵遷移
    液晶與顯示2014年第29卷第2期 目錄
    液晶與顯示(2014年2期)2014-02-28 21:11:05
    淫妇啪啪啪对白视频 | 亚洲熟女毛片儿| 久久人人爽人人片av| 天堂俺去俺来也www色官网| 国产深夜福利视频在线观看| 欧美精品高潮呻吟av久久| 国产一卡二卡三卡精品| 满18在线观看网站| 波多野结衣一区麻豆| 国产成人欧美在线观看 | 爱豆传媒免费全集在线观看| 国产av国产精品国产| 王馨瑶露胸无遮挡在线观看| 黄色 视频免费看| 国产精品麻豆人妻色哟哟久久| 欧美黑人精品巨大| 亚洲欧美一区二区三区黑人| 国产精品亚洲av一区麻豆| 国产精品一区二区免费欧美 | 久久久久国内视频| 国产97色在线日韩免费| 亚洲精品av麻豆狂野| 国产精品一区二区精品视频观看| 欧美av亚洲av综合av国产av| 久久女婷五月综合色啪小说| 一进一出抽搐动态| 国产精品欧美亚洲77777| 伦理电影免费视频| 欧美人与性动交α欧美软件| 国产精品久久久久久精品古装| 国产精品久久久av美女十八| 国产精品av久久久久免费| 亚洲一卡2卡3卡4卡5卡精品中文| 国产一区二区 视频在线| 老司机深夜福利视频在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 黑人猛操日本美女一级片| 天天躁日日躁夜夜躁夜夜| 欧美日韩精品网址| 国产视频一区二区在线看| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 成年av动漫网址| 国产无遮挡羞羞视频在线观看| 777久久人妻少妇嫩草av网站| 亚洲成人免费电影在线观看| 国产精品一区二区精品视频观看| 真人做人爱边吃奶动态| 久久久久久久久免费视频了| 国产精品一区二区在线不卡| 国产区一区二久久| 欧美人与性动交α欧美精品济南到| 啪啪无遮挡十八禁网站| 久久人妻熟女aⅴ| 日本精品一区二区三区蜜桃| 国产不卡av网站在线观看| 精品人妻在线不人妻| 亚洲精品av麻豆狂野| 国产精品av久久久久免费| 国产精品麻豆人妻色哟哟久久| 波多野结衣av一区二区av| 999久久久精品免费观看国产| 咕卡用的链子| 啦啦啦视频在线资源免费观看| 我的亚洲天堂| 欧美少妇被猛烈插入视频| 亚洲欧洲日产国产| 欧美另类亚洲清纯唯美| 法律面前人人平等表现在哪些方面 | 色94色欧美一区二区| 性高湖久久久久久久久免费观看| 亚洲精品中文字幕一二三四区 | 99久久99久久久精品蜜桃| 妹子高潮喷水视频| 久久久久精品人妻al黑| 汤姆久久久久久久影院中文字幕| 91大片在线观看| 在线 av 中文字幕| 手机成人av网站| 99久久人妻综合| 十八禁网站网址无遮挡| 亚洲七黄色美女视频| 国产成人av教育| 日本av手机在线免费观看| 欧美精品av麻豆av| 亚洲精品一卡2卡三卡4卡5卡 | 欧美日韩视频精品一区| 成年美女黄网站色视频大全免费| 国产成人精品久久二区二区91| 欧美日韩中文字幕国产精品一区二区三区 | 91麻豆精品激情在线观看国产 | 久久性视频一级片| 美女高潮喷水抽搐中文字幕| 香蕉丝袜av| 欧美亚洲 丝袜 人妻 在线| 爱豆传媒免费全集在线观看| 在线av久久热| 日本一区二区免费在线视频| 爱豆传媒免费全集在线观看| 黑人猛操日本美女一级片| 亚洲 欧美一区二区三区| 免费日韩欧美在线观看| 欧美日韩黄片免| 青春草视频在线免费观看| a级片在线免费高清观看视频| 国产精品麻豆人妻色哟哟久久| 欧美激情极品国产一区二区三区| av超薄肉色丝袜交足视频| 免费高清在线观看日韩| 人妻一区二区av| 国产亚洲精品久久久久5区| 又大又爽又粗| 国产国语露脸激情在线看| 嫁个100分男人电影在线观看| 成年av动漫网址| 国产精品影院久久| 成人国产一区最新在线观看| 97在线人人人人妻| 欧美老熟妇乱子伦牲交| 午夜福利,免费看| 亚洲精品国产精品久久久不卡| 国产成人精品在线电影| 汤姆久久久久久久影院中文字幕| 十分钟在线观看高清视频www| 久久影院123| 操美女的视频在线观看| 色婷婷av一区二区三区视频| 极品人妻少妇av视频| 伦理电影免费视频| 热99国产精品久久久久久7| 在线观看舔阴道视频| 国产成+人综合+亚洲专区| 亚洲精品一卡2卡三卡4卡5卡 | 久久精品国产亚洲av香蕉五月 | 日日爽夜夜爽网站| 在线 av 中文字幕| 亚洲专区国产一区二区| 老司机靠b影院| 亚洲熟女毛片儿| 亚洲少妇的诱惑av| 美女高潮到喷水免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看 | 水蜜桃什么品种好| 悠悠久久av| av在线app专区| 啦啦啦 在线观看视频| 最近最新中文字幕大全免费视频| 免费高清在线观看视频在线观看| 亚洲欧洲日产国产| 亚洲精品国产av成人精品| av天堂在线播放| 国产欧美亚洲国产| 国产成人精品无人区| 性少妇av在线| 中国国产av一级| 久久国产亚洲av麻豆专区| 日韩免费高清中文字幕av| 不卡一级毛片| av天堂在线播放| 一个人免费看片子| 在线观看一区二区三区激情| 日韩精品免费视频一区二区三区| 丝袜喷水一区| 日韩欧美一区二区三区在线观看 | 亚洲第一欧美日韩一区二区三区 | 欧美人与性动交α欧美精品济南到| 久久久久视频综合| 国精品久久久久久国模美| 免费在线观看视频国产中文字幕亚洲 | 国产精品香港三级国产av潘金莲| 大香蕉久久网| 久久中文字幕一级| 91国产中文字幕| 精品免费久久久久久久清纯 | 热re99久久精品国产66热6| 欧美精品亚洲一区二区| xxxhd国产人妻xxx| 老司机深夜福利视频在线观看 | 美女国产高潮福利片在线看| e午夜精品久久久久久久| 亚洲精品自拍成人| 夜夜夜夜夜久久久久| 黄片播放在线免费| 久久99热这里只频精品6学生| 久久久精品94久久精品| 精品少妇久久久久久888优播| 久久青草综合色| 伦理电影免费视频| 精品高清国产在线一区| 高潮久久久久久久久久久不卡| 欧美黄色淫秽网站| svipshipincom国产片| 亚洲情色 制服丝袜| 久久午夜综合久久蜜桃| 黄色怎么调成土黄色| 啦啦啦视频在线资源免费观看| 久久久久久久精品精品| 国产成人a∨麻豆精品| 欧美日韩精品网址| 亚洲精品美女久久av网站| 麻豆国产av国片精品| 欧美久久黑人一区二区| 亚洲精品国产av蜜桃| 亚洲人成77777在线视频| 久久香蕉激情| 精品国产乱子伦一区二区三区 | 大陆偷拍与自拍| 操出白浆在线播放| 黑人操中国人逼视频| 黄色 视频免费看| 亚洲国产毛片av蜜桃av| 国产区一区二久久| 欧美激情高清一区二区三区| 国产一区二区激情短视频 | 国产熟女午夜一区二区三区| 欧美精品一区二区免费开放| 嫁个100分男人电影在线观看| 亚洲人成电影免费在线| 亚洲一区二区三区欧美精品| 久久精品国产亚洲av高清一级| 免费观看av网站的网址| 满18在线观看网站| 国产一区二区三区在线臀色熟女 | cao死你这个sao货| 久久女婷五月综合色啪小说| 欧美xxⅹ黑人| 大陆偷拍与自拍| 成在线人永久免费视频| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 9热在线视频观看99| 性色av一级| 伊人久久大香线蕉亚洲五| 亚洲欧美精品综合一区二区三区| 亚洲欧美精品综合一区二区三区| 国产免费一区二区三区四区乱码| 免费在线观看日本一区| 超碰成人久久| 免费在线观看视频国产中文字幕亚洲 | 2018国产大陆天天弄谢| 美女扒开内裤让男人捅视频| 亚洲国产精品一区三区| 啦啦啦视频在线资源免费观看| 亚洲一区中文字幕在线| 国产亚洲精品第一综合不卡| 亚洲黑人精品在线| 中文字幕最新亚洲高清| 十八禁高潮呻吟视频| 一级片免费观看大全| 制服人妻中文乱码| 精品亚洲成a人片在线观看| 人妻一区二区av| 久久久水蜜桃国产精品网| 国产精品久久久久成人av| 老司机影院成人| 久久久久久免费高清国产稀缺| 国产精品久久久久久精品古装| 女人高潮潮喷娇喘18禁视频| 亚洲第一青青草原| 亚洲九九香蕉| 在线观看免费午夜福利视频| 国产精品秋霞免费鲁丝片| 国产成人精品久久二区二区免费| 水蜜桃什么品种好| 纯流量卡能插随身wifi吗| 80岁老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频| 日本a在线网址| 久久中文字幕一级| 国产黄色免费在线视频| av网站在线播放免费| 亚洲中文日韩欧美视频| 亚洲精品av麻豆狂野| 曰老女人黄片| 99久久人妻综合| 久久久国产精品麻豆| 最黄视频免费看| 91老司机精品| 成年人午夜在线观看视频| 巨乳人妻的诱惑在线观看| 亚洲精品粉嫩美女一区| www.av在线官网国产| 最近最新免费中文字幕在线| av片东京热男人的天堂| 一本色道久久久久久精品综合| 国产成人av激情在线播放| 亚洲午夜精品一区,二区,三区| 女人爽到高潮嗷嗷叫在线视频| 高清在线国产一区| 国产av国产精品国产| 各种免费的搞黄视频| 精品少妇内射三级| 在线观看www视频免费| 国产淫语在线视频| 国产成人精品在线电影| 久久中文字幕一级| 又大又爽又粗| 日韩制服骚丝袜av| 久久 成人 亚洲| av不卡在线播放| 久久久久久人人人人人| www.自偷自拍.com| 国产在线视频一区二区| 亚洲美女黄色视频免费看| 亚洲人成电影免费在线| 欧美日韩亚洲国产一区二区在线观看 | 91麻豆精品激情在线观看国产 | 精品国产超薄肉色丝袜足j| 99re6热这里在线精品视频| 日本wwww免费看| 99久久99久久久精品蜜桃| 精品国产一区二区三区四区第35| 欧美日韩一级在线毛片| 夜夜骑夜夜射夜夜干| 老汉色av国产亚洲站长工具| 777米奇影视久久| 亚洲专区国产一区二区| 男女下面插进去视频免费观看| 青青草视频在线视频观看| 老熟妇乱子伦视频在线观看 | 亚洲国产av新网站| 国产精品1区2区在线观看. | 亚洲三区欧美一区| 国产成人精品在线电影| 久久综合国产亚洲精品| 天天影视国产精品| 操美女的视频在线观看| 亚洲三区欧美一区| 亚洲av日韩精品久久久久久密| 中文字幕色久视频| 欧美亚洲日本最大视频资源| 一区二区三区精品91| 黑人操中国人逼视频| 伊人久久大香线蕉亚洲五| 男女边摸边吃奶| 在线观看免费高清a一片| 久久久久久免费高清国产稀缺| 亚洲精品国产区一区二| 国产高清videossex| av又黄又爽大尺度在线免费看| 丁香六月欧美| 国产精品一区二区精品视频观看| 老熟妇仑乱视频hdxx| 久久精品aⅴ一区二区三区四区| 久热这里只有精品99| www.999成人在线观看| 视频在线观看一区二区三区| 国产精品成人在线| 国产激情久久老熟女| 欧美日韩精品网址| 97在线人人人人妻| 美女高潮到喷水免费观看| 最新的欧美精品一区二区| 亚洲欧洲精品一区二区精品久久久| 国产视频一区二区在线看| 亚洲国产日韩一区二区| 国产人伦9x9x在线观看| 国产主播在线观看一区二区| 在线观看免费午夜福利视频| 动漫黄色视频在线观看| 精品免费久久久久久久清纯 | 免费女性裸体啪啪无遮挡网站| 国产高清videossex| 91字幕亚洲| 如日韩欧美国产精品一区二区三区| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 欧美中文综合在线视频| 在线观看免费视频网站a站| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 久久久水蜜桃国产精品网| 免费在线观看黄色视频的| 黑丝袜美女国产一区| 国产成人精品久久二区二区91| 久久久国产成人免费| 国产一区二区 视频在线| 久久精品国产综合久久久| 女人高潮潮喷娇喘18禁视频| 女人久久www免费人成看片| 在线看a的网站| 69av精品久久久久久 | 男人添女人高潮全过程视频| 亚洲欧美清纯卡通| 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品古装| 成年动漫av网址| 亚洲七黄色美女视频| 国产高清国产精品国产三级| 老熟妇乱子伦视频在线观看 | a级毛片在线看网站| 欧美性长视频在线观看| 成人免费观看视频高清| 久久久久久久久免费视频了| 国产精品国产av在线观看| 首页视频小说图片口味搜索| 老熟女久久久| tocl精华| 黄网站色视频无遮挡免费观看| 久久久久国内视频| 下体分泌物呈黄色| 成年人免费黄色播放视频| 女人高潮潮喷娇喘18禁视频| 一级片'在线观看视频| 成年人午夜在线观看视频| 1024香蕉在线观看| 久久久久视频综合| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲七黄色美女视频| 女人精品久久久久毛片| 不卡av一区二区三区| 美女午夜性视频免费| 国产三级黄色录像| 欧美精品一区二区免费开放| 亚洲欧美日韩高清在线视频 | 国产99久久九九免费精品| 少妇 在线观看| 国产av一区二区精品久久| 亚洲美女黄色视频免费看| 亚洲情色 制服丝袜| 每晚都被弄得嗷嗷叫到高潮| 一区福利在线观看| 日韩大码丰满熟妇| 久久久久久久精品精品| 狠狠精品人妻久久久久久综合| 亚洲九九香蕉| 日日摸夜夜添夜夜添小说| avwww免费| 国产熟女午夜一区二区三区| 又紧又爽又黄一区二区| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区黑人| 午夜免费鲁丝| 91精品国产国语对白视频| 日日爽夜夜爽网站| 欧美 日韩 精品 国产| 日本黄色日本黄色录像| 亚洲五月婷婷丁香| 欧美另类一区| 999久久久精品免费观看国产| 成人亚洲精品一区在线观看| 国产精品欧美亚洲77777| 日韩中文字幕欧美一区二区| 亚洲男人天堂网一区| 精品国产乱码久久久久久小说| 亚洲专区字幕在线| 美女高潮喷水抽搐中文字幕| 别揉我奶头~嗯~啊~动态视频 | 女人被躁到高潮嗷嗷叫费观| 黄色视频,在线免费观看| 国产精品亚洲av一区麻豆| 欧美日韩亚洲高清精品| 性高湖久久久久久久久免费观看| 中文精品一卡2卡3卡4更新| 纯流量卡能插随身wifi吗| 黄片大片在线免费观看| 亚洲精品国产av成人精品| 高清视频免费观看一区二区| 午夜久久久在线观看| 在线观看www视频免费| 午夜福利免费观看在线| 免费人妻精品一区二区三区视频| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 在线观看免费午夜福利视频| 国产精品久久久久成人av| 国产精品国产av在线观看| 亚洲精品国产精品久久久不卡| 成人黄色视频免费在线看| 看免费av毛片| 欧美97在线视频| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 免费看十八禁软件| 热re99久久国产66热| 黄片小视频在线播放| 亚洲国产av影院在线观看| 欧美日韩精品网址| 国产在线免费精品| 国产高清国产精品国产三级| 亚洲专区国产一区二区| 欧美性长视频在线观看| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 日本91视频免费播放| 悠悠久久av| 国产一区二区三区在线臀色熟女 | 国产亚洲精品久久久久5区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 欧美日韩一级在线毛片| 热99国产精品久久久久久7| 美女高潮喷水抽搐中文字幕| 成人三级做爰电影| 亚洲国产欧美日韩在线播放| 亚洲av日韩在线播放| 午夜福利视频精品| 高清视频免费观看一区二区| 久久久久久亚洲精品国产蜜桃av| 国产精品国产三级国产专区5o| 成人亚洲精品一区在线观看| 一级片'在线观看视频| 国产精品影院久久| 日韩大码丰满熟妇| 亚洲av片天天在线观看| 久久久精品免费免费高清| 三级毛片av免费| a 毛片基地| 少妇裸体淫交视频免费看高清 | 999精品在线视频| 国产伦人伦偷精品视频| av国产精品久久久久影院| a级片在线免费高清观看视频| 人人妻人人澡人人看| 久久精品亚洲熟妇少妇任你| 亚洲精品国产精品久久久不卡| 国产免费视频播放在线视频| 国产三级黄色录像| 在线观看免费高清a一片| 日本a在线网址| 欧美性长视频在线观看| 日韩人妻精品一区2区三区| 97精品久久久久久久久久精品| 久久性视频一级片| 在线观看www视频免费| 国产一区二区在线观看av| 精品亚洲成国产av| 中文精品一卡2卡3卡4更新| 国产伦理片在线播放av一区| 午夜免费鲁丝| 欧美激情高清一区二区三区| 在线 av 中文字幕| 亚洲色图 男人天堂 中文字幕| 不卡一级毛片| 一本—道久久a久久精品蜜桃钙片| 在线观看一区二区三区激情| 国产男女内射视频| 久久毛片免费看一区二区三区| 日本猛色少妇xxxxx猛交久久| 精品人妻熟女毛片av久久网站| 日本av手机在线免费观看| 成在线人永久免费视频| 国产精品熟女久久久久浪| 免费看十八禁软件| 国产精品一二三区在线看| 久久久精品国产亚洲av高清涩受| 97在线人人人人妻| 三级毛片av免费| 日本五十路高清| 后天国语完整版免费观看| 十八禁高潮呻吟视频| 国产精品亚洲av一区麻豆| a级片在线免费高清观看视频| 久久久久久久精品精品| 性色av乱码一区二区三区2| 老司机影院成人| 成人黄色视频免费在线看| 亚洲国产成人一精品久久久| 一进一出抽搐动态| 在线观看免费视频网站a站| 日本wwww免费看| 欧美日韩黄片免| 两人在一起打扑克的视频| 99久久人妻综合| 精品一区二区三区四区五区乱码| 丁香六月天网| 国产亚洲欧美精品永久| 午夜福利乱码中文字幕| 一级毛片精品| 最近中文字幕2019免费版| 亚洲欧美清纯卡通| 日韩大码丰满熟妇| 国产成人欧美| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 国产成人啪精品午夜网站| 国产av一区二区精品久久| 亚洲欧洲精品一区二区精品久久久| a级片在线免费高清观看视频| 国精品久久久久久国模美| 女性生殖器流出的白浆| 99国产精品一区二区三区| 男女免费视频国产| 超碰成人久久| 母亲3免费完整高清在线观看| 亚洲欧美激情在线| 制服诱惑二区| 一边摸一边抽搐一进一出视频| 日韩视频一区二区在线观看| 久久久久久久久久久久大奶| 在线av久久热| 亚洲精品中文字幕在线视频| 久久久久久久久久久久大奶| 窝窝影院91人妻| 一区二区日韩欧美中文字幕| 亚洲成国产人片在线观看| 国产高清视频在线播放一区 | 伊人亚洲综合成人网| 99久久99久久久精品蜜桃| 国产精品久久久av美女十八| e午夜精品久久久久久久| 悠悠久久av| 天天操日日干夜夜撸| 欧美黄色淫秽网站| 男人爽女人下面视频在线观看| www.av在线官网国产| 亚洲国产av新网站| 激情视频va一区二区三区| 国产在线视频一区二区|