• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    分子動(dòng)力學(xué)研究F1-ATP合酶對(duì)三磷酸腺苷的穩(wěn)定和定位作用

    2015-12-05 06:30:14伍紹貴高曉彤徐成剛
    物理化學(xué)學(xué)報(bào) 2015年9期

    伍紹貴 高曉彤 李 權(quán) 廖 杰 徐成剛

    (1四川師范大學(xué)化學(xué)與材料科學(xué)學(xué)院, 成都 610068;2中國(guó)科學(xué)院理論物理研究所理論物理國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100190)

    分子動(dòng)力學(xué)研究F1-ATP合酶對(duì)三磷酸腺苷的穩(wěn)定和定位作用

    伍紹貴1,2,*高曉彤1李 權(quán)1廖 杰1徐成剛1

    (1四川師范大學(xué)化學(xué)與材料科學(xué)學(xué)院, 成都 610068;2中國(guó)科學(xué)院理論物理研究所理論物理國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100190)

    F1-ATP合酶通過(guò)與ATP之間建立廣泛的相互作用, 實(shí)現(xiàn)對(duì)ATP的位置進(jìn)行精確的定位. 這些相互作用為ATP的合成/水解創(chuàng)造了穩(wěn)定的環(huán)境. 理解這些相互作用是理解ATP的合成/水解機(jī)理的基礎(chǔ). 我們通過(guò)分子動(dòng)力學(xué)模擬方法研究這些相互作用, 找出在穩(wěn)定化過(guò)程中起到重要作用的殘基. 通過(guò)檢測(cè)ATP和F1-ATP合酶之間的非鍵相互作用, 發(fā)現(xiàn)殘基段158–164所形成的loop區(qū)域及殘基R189, Y345對(duì)ATP存在顯著相互作用. 其中, 該loop區(qū)域?qū)TP的三磷酸部分形成一個(gè)半包圍結(jié)構(gòu), 封閉活性位點(diǎn)區(qū)域, 并通過(guò)氫鍵網(wǎng)絡(luò)約束ATP三磷酸的運(yùn)動(dòng), 為ATP合成/水解創(chuàng)造穩(wěn)定的環(huán)境. 此外, 關(guān)鍵殘基Y345通過(guò)π–π疊加相互作用對(duì)ATP的堿基進(jìn)行約束, 但是ATP的堿基可以在平行于Y345芳香環(huán)的平面內(nèi)進(jìn)行滑動(dòng), 我們推斷這種滑動(dòng)運(yùn)動(dòng)有利于促進(jìn)ATP的水解.

    F1-ATP合酶; 氫鍵; 分子動(dòng)力學(xué); 突變

    1 Introduction

    FOF1-ATP synthase is a central enzyme in the energy conversion that produces high-energy compound adenosine triphosphate (ATP) for all living organisms.1It synthesizes ATP from adenosine diphosphate (ADP) and inorganic phosphate (Pi) using the energy released by the passive flux of protons across the membrane down their electrochemical gradient.2Due to its biological importance, FOF1-ATP synthase receives extensive research interests both experimentally and theoretically.3FOF1-ATP synthase consists of two parts: FOand F1moieties. The water insoluble FOdomain is embedded in membrane and the hydrophilic F1domain protrudes into matrix space.4The F1moiety, usually termed as F1-ATPase, is a typical ATPase responsible for both ATP synthesis and hydrolysis. It is composed of five types of subunits (α, β, γ, δ, ε) in the stoichiometry (αβ)3γδε and only the β subunits are catalytically active. The β subunits have three different conformations: two closed (βDPand βTP) and one open (βE).5The βDPand βTPstates are similar in conformation while contain bound ADP and ATP, respectively. The βEis an empty conformation without nucleotide. ATP synthesis/hydrolysis reactions occur in a steady environment in the catalytic site to shield the interfluence of intense thermal oscillation. Thus these interactions between protein and ATP are essential to guarantee successful ATP synthesis/hydrolysis reaction. Understanding the interactions between ATP and F1-ATPase is essential for understanding ATP synthesis/hydrolysis.

    Researchers have been focusing on how F1-ATPase works on a very efficient mode for more than 30 years.6To understand the basic interactions between substrate ATP and F1-ATPase is undoubtedly helpful for uncovering the ‘secret’ of the high efficient working mechanism of F1-ATPase. Alghouth experimental studies can solve high resolution structures of proteins with X-ray crystallography which provide a wealth of information, it is still chanllenging to obtain dynamics information from experiments at atomic resolution.7Protein dynamics are thought to be fundamental to protein function as protein structure.8Molecular dynamics (MD) simulations, a powerful complementary tool for experiments, can provide valuable dynamic information at atomic resolution.9By using physical force fields, all-atom MD simulations can reproduce detailed atomistic interactions between protein and ligands or between residues of protein.10These interactions can be analyzed by electrostatic interaction (Eele), van der Waals interaction (Evdw), hydrophobic contact, base-pairing, base stacking and so on. Therefore, computer simulations can complement experimental approaches by providing information inaccessible to experiments and helping address many remaining important questions.11

    In the current study, high-resolution X-ray crystal structure of the catalytic β subunit in F1-ATPase adopting βTPconformation with bound ATP was used as the basic model for simulations. MD simulations were performed with F1-ATPase β subunit-ATP complex in explicit water to study the interactions between F1-ATPase and ATP. By analyzing the non-bonded interactions, we attempted to identify these critical residues which play important roles in positioning and stabilizing ATP in a catalytically competent conformation. It is expected that our study delivers a clear picture to describe F1-ATPase interacting with ATP at atomic scale.

    2 Details of MD simulation

    All-atom MD simulations were performed with the F1-ATPase β subunit-ATP complex in explicit water using GROMACS software, which is one of the fastest and most popular simulation packages available. Amber 03 force field12was used to describe protein residues and other Amber 03 force field parameters for ATP were developed by Meagher et al.13High resolution (0.19 nm) structure (PDB ID code 2JDI) reported by Walker et al.14was used as the basis for the F1-ATPase model. F1-ATPase consists of ~5400 residues and amounts to~26400 atoms in total. If the entire crystal structure is fully solvated in explicit water, the whole system will be computationally expensive for simulation. On the other hand, β subunit can serve as an ATPase to hydrolyze ATP independently. Therefore, only the β subunit with bound 5'-adenylyl-β-γ-imidodiphosphate (AMP-PNP) was separated from the original F1-ATPase crystal structure and the ligand AMP-PNP was modified to ATP by substituting the atom N connecting β and γ phosphates by an atom O. Additionally, the catalytic metal ion Mg2+and crystal water molecules were conserved for their important roles in forming essential interactions with protein or ligand (i.e. salt bridge/hydrogen bonds). The initial β subunit-ATP complex was solvated with 16199 three-point transferable intermolecular potential (TIP3P) water molecules15in a rectangular box of 6.73 nm × 7.82 nm × 10.94 nm. The distance from the surfaces of the box to the closest atoms of the solutes is ~1 nm, which is large enough to prevent F1-ATPase complex from contacting with its periodic images. All amino acid residues of F1-ATPase were set to protonation states at pH = 7. Sodium and chloride ions were added to make the system electrically neutral at a concentration of ~0.15 molL–1, close to the physiological ionic concentration. The final size of the system reaches~57000 atoms. A typical 1.0 nm cutoff was used for van der Waals and short-range electrostatic interactions. Long-range electrostatic interactions were treated using particle mesh Ewald (PME) method.16Berendsen barostat17and the velocity rescaling thermostat18were applied to control pressure and temperature at 1.01 × 105Pa and 300 K, respectively. A linear constraint solver (LINCS) algorithm was used to constrain all bonds involving hydrogen atoms.19Periodic boundary condition was applied in three dimensions of the simulation box. Motion equations were solved numerically with a time step of 2 fs and the neighbor list was updated every 10 steps. The solvatedsystem was firstly subjected to a thorough energy minimization using the steepest descent minimization method followed by a 200 ps MD simulation with position restrains on the heavy atoms of the solute. The final configurations were used for production simulations. To generate a representative ensemble of structures, each production simulation was performed for 100 ns and trajectories were saved at 2 ps intervals. The detailed conformation analysis and interaction calculations were conducted using the built-in tools of GROMACS. All the snapshots for protein-ligand complex were prepared with PyMOL (version 0.99) software.

    3 Results and discussion

    F1-ATPase makes extensive interactions with ATP through forming a network of hydrogen bonds/electrostatic interactions around ATP. Crystal structure shows that the bound ATP lies in a deep pocket of β subunit in F1-ATPase. The binding pocket of β subunit is responsible for the catalytically active reaction site. As shown in Fig.1, the binding pocket is enclosed by three helices (residues 156–178, residues 335–343, and residues 420–427) and two loops (residues 415–419 and residues 344–347). The triphosphate moiety of ATP is surrounded by a helix (residues 161–178) and a loop (residues 157–160). Owing to the charged nature of ATP triphosphate, multitude of hydrogen bond/electrostatic interactions are established between ATP triphosphate and F1-ATPase, which helps to seal off the catalytic site and leads to the closure of the previously open βEpocket.20

    GROMACS has provided a set of trajectory analysis tools, which are convenient for molecular conformation characterization and energy measurement. Non-bonded interaction energy (Enon-bonded) can be determined by electrostatic interaction (Eele) and van der Waals interaction (Evdw), which is an easy, simple but effective approach to elucidate the interactions between two specified groups. In order to identify these residues which have important roles in positioning and stabilizing ATP, the nonbonded interactions between ATP and each residue of β subunit were determined. As shown in Fig.2A, residues 158–164, R189, Y345 have significant attractive interactions with ATP, with the strong to weak sequence of K162 > R189 > V164 > V160 > G161 > G159 > T163 > A158 > Y345 > F424. The loop segment (residues 158–164) surrounds ATP by a half and interacts with the β and γ phosphate groups through forming a network of hydrogen bonds to constraint the motion of ATP triphosphate. Residues G157, E188, E192, and D256 have a certain repulsive interactions with ATP, with the strong to weak sequence of E188 > G157 > D256 > E192. If the non-bonded interaction is decomposed into electrostatic interaction and van der Waals interaction, it is easy to find that the non-bonded interactions are mainly contributed by electrostatic interaction. In particular, Y345 interacts with ATP mainly through van der Waals interaction. As shown in Fig.1B, the spatial position distribution of these groups suggests that Y345 interacts with ATP base through π–π stacking interaction, which serves to constraint the position of ATP base. Additionally, due to the presence of the catalytic metal ion Mg2+, strong electrostatic interactions are existing between T163 and ATP triphosphate. Owing to the rich charged/polar natures of T163, the triphosphate group, and Mg2+, their interactions are very robust.

    Fig.1 (A) X-ray crystal structure of F1-ATPase β subunit with bound ATP in βTPconformation, the box denotes the location of catalytic site; (B) enlarged drawing of the binding pocket involving the ATP and surrounding residues, Y345 interacting with ATP base through π–π stacking interaction

    ATP is composed of three parts: a base (adenine), a ribose, and a triphosphate (Fig.3A). The numbers of hydrogen bonds formed between protein and each part of ATP were determined as shown in Fig.3B. The triphosphate moiety forms 7–12 hydrogen bonds with protein, which forms a hydrogen bond network between protein and the triphosphate moiety. These interactions seal off the catalytic site conformation and create a steady environment for ATP synthesis/hydrolysis. For other two parts, expect only one hydrogen bond between ATP base and protein occasionally, nearly no hydrogen bonds are formed. It suggests that the hydrogen bond interactions between F1-ATPase and ATP are chiefly located at the triphosphate moiety.

    As above mentioned, due to the charged nature of ATP triphosphate-Mg2+complex, there exists multitude of hydrogen bond/electrostatic interactions between ATP's triphosphate and F1-ATPase, which form an interaction network to seal off the open conformation of the catalytic site. To obtain a clear picture of the interaction network, the hydrogen bond interactionsbetween the ATP triphosphate and the surrounding residues were examined as shown in Fig.S1, with a hydrogen bond existence map as given in Fig.S2. ATP's triphosphate moiety is surrounded by a helix (residues 161–178) and a loop (residues 157–160). The surrounding residues can be classified into two types according to the number of their hydrogen bonds formed with ATP triphosphate. The first type is single-hydrogen-bond residue, which forms only one hydrogen bond with the ATP triphosphate, such as G159, V160, G161, T163, and V164. The single hydrogen bond is formed between nitrogen atom in these residues and β or γ oxygen atom in ATP triphosphate, with normal occupancy values 60%–80%, such as N-HOB1on V160 (occupancy = 60.0% ± 6.8%), N-HOB1on G161 (occupancy = 73.7% ± 7.7%) and N-HOB2on T163 (occupancy = 77.7% ± 3.5%). The strongest hydrogen bond N-HOA2is formed on V164 with occupancy as high as 100% ± 0% while the weakest hydrogen bond N-HOG3is formed on G159 with occupancy = 37.1% ± 13.4%. The second type is multi-hydrogen-bond residue, such as K162, R189. Similar to single-hydrogen-bond residue, a robust hydrogen bond N-HOB1is formed between the nitrogen atom of K162 and β oxygen atom in ATP triphosphate with a high occupancy (97.1% ± 0.6%). The other hydrogen bonds on K162 are formed between the amino group of K162 and the ATP triphosphate. K162's amino group has three hydrogen atoms, which are able to alternatively form hydrogen bonds with β or γ oxygenatoms in ATP triphosphate due to the rotational feature of the bond Cε-Nζof K162. Another multi-hydrogen-bond residue is R189 with two amino groups, which can form robust hydrogen bonds with ATP triphosphate: Nη1-HOG2(occupancy = 62.9% ± 9.8%) and Nη2-HOG1(occupancy = 91.9% ± 6.0%). It should be noted that except hydrogen bond, hydroxyl oxygen OG1on T163 establishes strong electrostatic interactions with the atoms OB2, OG2on ATP triphosphate through a catalytic ion Mg2+.

    Fig.2 Interactions between F1-ATPase β subunit and ATP

    Fig.3 (A) ATP is composed of a triphosphate, a ribose and a base; (B) time evolution of hydrogen bond number for each component of ATP

    As above mentioned, the ribose and base of ATP have nearly no hydrogen bond interactions with F1-ATPase. As shown in Fig.2D, a significant van der Waals interaction was detected between ATP base and Y345. As shown in Fig.4A, the spatial position distribution of these groups suggests that Y345 interacts with ATP base through π–π stacking interaction, which serves to position the ATP base. Single point mutations at Y345 were prepared as the starting configurations and MD simulations were carried out to further investigate the role of Y345. π–π stacking interactions are generally formed between aromatic groups. Considering the aromaticity of Y345's side chain, several aromatic amino acid residues were chosen to substitute for Y345, such as histidine (HIS), phenylalanine (PHE). HIS has a side chain of imidazole group which is aromatic under any pH value.21PHE is a nonpolar α-amino acid with an aromatic benzyl side chain. These mutated protein-ATP complexes were solvated and ionized following the same procedure as the WT system. MD simulations with each mutated system were carried out for 50 ns. For clarity, the distances between the center of masses (COMs) of ATP base and the aromatic groups of Y345, Y345F, and Y345H are referred as DY-base, DF-base, DH-baserespectively. Here, the time evolutions of these distances were monitored with their distributions as shown in Fig.4B. It is significant that DY-basefor WT system is small with a narrow distribution, suggesting the π–π stacking interaction between the hy-droxyphenyl group of Y345 and ATP base is robust. The DH-basedistribution curve for Y345H has one peak near 0.375 nm as well. However it has wider distribution with respect to the DY-basedistribution curve for WT system. This is attributed to the weak interaction between the imidazole ring of H345 and ATP base. A detailed examination of the MD simulation trajectory shows that the orientation of H345's imidazole ring can be easily deflected from the plane parallel to the ATP base, leading to a poor stacking on ATP base. Therefore the substitution of Y345 to HIS apparently decreases the stability of π–π stacking interaction in WT system. PHE has a similar stucture to TYR except one less hydroxy in the benzyl ring. Our simulations show the mutation Y345F can also establish π–π stacking interaction with ATP base. However, as shown in Fig.4B, the peak of DF-basecurve is located near 0.43 nm, a larger value than those of DY-base, DH-base, which means that a weaker π–π stacking interaction was established in the Y345F system. However, regardless of weak or strong interactions, these residues with aromatic side chains can establish π–π stacking interaction with ATP base. Compared with residue PHE, TYR has one more hydroxyl group. Although the additional OH group does not hydrogen bond with ATP, the above analysis suggests that it may help to strengthen the π–π stacking interaction between Y345 and ATP base.

    Fig.4 (A) Definition of distance between these π–π stacking interaction groups; (B) histograms of the distance distribution for DY-base, DF-base, DH-base

    Additionally, the time evolution of the distance between the triphosphate and base of ATP, was determined as shown in Fig.5. It is interesting to find that at time t = 50, 60, 80 ns, many peaks are observed in the distance curve, suggesting that the distance between ATP triphosphate and its base is increased suddenly and then restores to its original value. The MD trajectory movie shows that these peaks are corresponding to the sliding motions of ATP base, which are still parallel to the aromatic ring of Y345. Known from the above analysis, protein almost does not impose constraint on ATP base through hydrogen bonds. Compared to electrostatic interaction, van der Waals interaction is a weak but essential interaction. Among these residues, Y345 has a strongest van der Waals interaction with ATP (Fig.2D). This interaction is mainly manifested as the π–π stacking interaction between Y345 aromatic ring and ATP base. It is evident that Y345 applies a two-dimensional constraint on ATP base and ATP base can make sliding motions parallel to Y345's aromatic ring. This motion can widen the distancebetween ATP triphosphate and base. On the other hand, the phosphate terminal of ATP is firmly held by the hydrogen bond network imposed by F1-ATPase. In view of the hydrolysis of ATP is the process to separate terminal phosphate from ATP, it is deduced that this motion may have a favorable contribution to ATP hydrolysis.

    Fig.5 (A) Definition of the distance, d, between the COMs of ATP's triphosphate and base; (B) time evolution of d

    4 Conclusion remarks

    ATP synthesis/hydrolysis reactions occur in steady environments to shield the disturbance from thermal oscillation. F1-ATPase makes extensive interactions with ATP through forming a network of interactions around ATP. The interactions between protein and ATP provide a powerful guarantee for successful ATP synthesis/hydrolysis. Understanding these interactions between ATP and F1-ATPase is essential for understanding ATP synthesis/hydrolysis. In this work, all-atom MD simulations were performed using the βTPsubunit in F1-ATPase with bound ATP in explicit water to elucidate these interactions. By scanning the non-bonded interactions between ATP and each residue of the βTPsubunit in F1-ATPase, it is found that residues 158–164, R189, Y345 have significant interactions with ATP. The loop segment (residues 158–164) and R189 surround ATP by a half and they interact with the β and γ phosphates through forming a network of hydrogen bonds to constraint the motion of ATP triphosphate. The interaction network seals off the catalytic site conformation, and creates a steady environment for ATP synthesis/hydrolysis. In addition, ATP base is constrainted by the π–π stacking interaction from Y345. However, ATP base can make sliding motions parallel to Y345's aromatic ring. It is deduced that this motion may have relationship with ATP hydrolysis.

    On the other hand, it is evidenced that ATP interacting with F1-ATPase adopts a different way from that in transcription. RNA polymerase adopts a three-component (hydrophobic contact, base stacking, and base pairing) mechanism for correctly positioning the incoming NTP base and the motion of the incoming NTP base is minimized. For ATP hydrolysis in F1-ATPase, ATP base is constrainted only by the π–π stacking interaction from Y345 and it can move in the two-dimensional plane parallel to Y345's aromatic group. The nucleotide moiety of NTP is incorporated into the 3' terminal of a nascent RNA with a pyrophosphate (PPi) which is released from the active site. For ATP hydrolysis in F1-ATPase, ATP is hydrolyzed into an ADP and a Piwhile both of them are released from the active site. Their resemblance lies in the fact that a steady environment is needed for chemical reactions. It is expected that our study throws light on the interactions between F1-ATPase and ATP and provides useful information for understanding the mechanism of ATP synthesis/hydrolysis.

    Supporting Information: The snapshots of the hydrogen bonds between ATP triphosphate and F1-ATPase have been shown. Additionally, the existence map for these hydrogen bonds has been included. This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Ueno, H.; Suzuki, T.; Kinosita, K.; Yoshida, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 1333. doi: 10.1073/pnas.0407857102

    (2)(a) Mitchell, P. Nature 1961, 191, 144. doi: 10.1038/191144a0 (b) Rastogi, V. K.; Girvin, M. E. Nature 1999, 402, 263.

    (3)(a) Abrahams, J. P.; Leslie, A.; Lutter, R.; Walker, J. E. Nature 1994, 370, 621. doi: 10.1038/370621a0 (b) Zhou, Y.; Duncan, T. M.; Cross, R. L. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 10583. (c) Okuno, D.; Iino, R.; Noji, H. J. Biochem. 2011, 149, 655. (d) Iino, R.; Hasegawa, R.; Tabata, K. V.; Noji, H. J. Biol. Chem. 2009, 284, 17457.

    (4)Al-Shawi, M. K.; Nakamoto, R. K. Biochemistry 1997, 36, 12954. doi: 10.1021/bi971477z

    (5)Masaike, T.; Mitome, N.; Noji, H.; Muneyuki, E.; Yasuda, R.; Kinosita, K.; Yoshida, M. J. Exp. Biol. 2000, 203, 1.

    (6)Dittrich, M.; Schulten, K. J. Bioenerg. Biomembr. 2005, 37, 441. doi: 10.1007/s10863-005-9487-7

    (7)Da, L. T.; Avila, F. P.; Wang, D.; Huang, X. PLOS Comput. Biol.2013, 9, e1003020.

    (8)(a) Moustafa, I. M.; Shen, H.; Morton, B.; Colina, C. M.; Cameron, C. E. J. Mol. Biol. 2011, 410, 159. doi: 10.1016/j.jmb.2011.04.078(b) Hammes-Schiffer, S.; Benkovic, S. J. Annu. Rev. Biochem. 2006, 75.

    (9)Zhang, H.; Lu, J. R.; Mu, J. B.; Liu, J. B.; Yang, X. Y.; Wang, M. J.; Zhang, R. B. Acta Phys. -Chim. Sin. 2015, 31, 566. [張 賀,盧俊瑞, 穆江蓓, 劉金彪, 楊旭云, 王美君, 張瑞波. 物理化學(xué)學(xué)報(bào), 2015, 31, 566.] doi: 10.3866/PKU.WHXB 201501061

    (10)Ai, Y. X.; Lu, J. R.; Xin, C. W.; Mu, J. B.; Yang, X. Y.; Zhang, H. Acta Phys. -Chim. Sin. 2015, 30, 559. [艾義新, 盧俊瑞, 辛春偉, 穆江蓓, 楊旭蕓, 張 賀. 物理化學(xué)學(xué)報(bào), 2014, 30, 559.]. doi: 10.3866/PKU.WHXB201401132

    (11)Wu, S. G.; Sun, T.; Zhou, P.; Zhou, J. Acta Phys. -Chim. Sin. 2012, 28, 978. [伍紹貴, 孫 婷, 周 萍, 周 俊. 物理化學(xué)學(xué)報(bào), 2012, 28, 978.] doi: 10.3866/PKU.WHXB201202142

    (12)Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T. J. Comput. Chem. 2003, 24, 1999.

    (13)Meagher, K. L.; Redman, L. T.; Carlson, H. A. J. Comput. Chem. 2003, 24, 1016. doi: 10.1002/jcc.v24:9

    (14)Bowler, M. W.; Montgomery, M. G.; Leslie, A. G.; Walker, J. E. J. Biol. Chem. 2007, 282, 14238. doi: 10.1074/jbc.M700203200

    (15)Miyamoto, S.; Kollman, P. A. J. Comp. Chem. 1992, 13, 952.

    (16)(a) Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117(b) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.

    (17)Berendsen, H. J.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. J. Chem. Phys. 1984, 81, 3684. doi: 10.1063/1.448118

    (18)Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101. doi: 10.1063/1.2408420

    (19)Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. J. Comput. Chem. 1997, 18, 1463.

    (20)Oster, G.; Wang, H. Biochim. Biophys. Acta 2000, 1458, 482. doi: 10.1016/S0005-2728(00)00096-7

    (21)Mrozek, A.; Karolak-Wojciechowska, J.; Kie?-Kononowicz, K. J. Mol. Struct. 2003, 655, 397. doi: 10.1016/S0022-2860(03)00282-5

    F1-ATPase Stabilizes and Positions Adenosine Triphosphate Revealed by Molecular Dynamics Simulations

    WU Shao-Gui1,2,*GAO Xiao-Tong1LI Quan1LIAO Jie1XU Cheng-Gang1
    (1College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China;2State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China)

    F1-ATPase makes extensive interactions with ATP through forming a network of interactions around ATP. These interactions create a steady environment for ATP synthesis/hydrolysis. Thus understanding these interactions between ATP and F1-ATPase is essential for understanding ATP synthesis/hydrolysis mechanism. We performed all-atom molecular dynamics (MD) simulations to elucidate these interactions and attempted to identify key residues which play important roles in stabilizing and positioning ATP. By examining the non-bonded energies between ATP and residues of βTPsubunit in F1-ATPase, it is found that residues 158–164, R189, Y345 have significant interactions with ATP. The loop segment (residues 158–164) and R189 surround ATP by a half and they interact with β and γ phosphates through forming a network of hydrogen bonds to constraint the motion of ATP triphosphate. The interaction network seals off the conformation of the catalytic site, creating a steady environment for ATP synthesis/hydrolysis. Additionally, ATP base is positioned by the π–π stacking interaction from Y345. However, ATP base can slide and move paralleling to the aromatic group of Y345. It is deduced that this motion may facilitate ATP hydrolysis.

    F1-ATPase; Hydrogen bond; Molecular dynamics; Mutation

    O641; Q641.12

    10.3866/PKU.WHXB201508062

    Received: April 17, 2015; Revised: August 6, 2015; Published on Web: August 6, 2015.

    *Corresponding author. Email: wsgchem@foxmail.com; Tel: +86-28-84760802.

    The project was supported by the National Natural Science Foundation of China (11405113), Science and Technology Plan of Sichuan Province, China (2010JY0122), and Science Research Fund of Sichuan Normal University, China (10MSL02).

    國(guó)家自然科學(xué)基金(11405113), 四川省科技廳項(xiàng)目(2010JY0122)和四川師范大學(xué)科學(xué)研究基金(10MSL02)資助

    ? Editorial office of Acta Physico-Chimica Sinica

    美女大奶头黄色视频| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美成人综合另类久久久| 九九在线视频观看精品| 日韩精品免费视频一区二区三区 | 日韩av免费高清视频| 男女边摸边吃奶| 久久久久国产网址| 日本欧美视频一区| 91精品国产九色| 国产 精品1| 成人无遮挡网站| 国产精品免费大片| 桃花免费在线播放| 婷婷色综合大香蕉| 中文欧美无线码| 亚洲欧美一区二区三区黑人 | 毛片一级片免费看久久久久| 中国国产av一级| 91久久精品国产一区二区三区| 一级毛片 在线播放| 亚洲av成人精品一二三区| 哪个播放器可以免费观看大片| 汤姆久久久久久久影院中文字幕| 成人毛片a级毛片在线播放| av.在线天堂| 我的老师免费观看完整版| 日本-黄色视频高清免费观看| 伦理电影大哥的女人| 日本91视频免费播放| 欧美精品高潮呻吟av久久| 国产淫语在线视频| 赤兔流量卡办理| 国产午夜精品一二区理论片| 99久久精品一区二区三区| 国产乱人偷精品视频| 日日啪夜夜爽| 99热全是精品| 国产精品国产三级国产专区5o| 精品人妻熟女av久视频| 欧美 亚洲 国产 日韩一| videossex国产| 中文字幕精品免费在线观看视频 | a级毛片免费高清观看在线播放| 极品人妻少妇av视频| 人人妻人人澡人人看| 黄片无遮挡物在线观看| 日韩一本色道免费dvd| 交换朋友夫妻互换小说| 狠狠婷婷综合久久久久久88av| 国产高清不卡午夜福利| 最近中文字幕2019免费版| av.在线天堂| 日本黄大片高清| 肉色欧美久久久久久久蜜桃| 最近中文字幕2019免费版| 国产成人精品在线电影| 免费高清在线观看日韩| 三级国产精品欧美在线观看| 两个人的视频大全免费| 亚洲欧美精品自产自拍| 亚洲一区二区三区欧美精品| 亚洲精品日韩在线中文字幕| 91aial.com中文字幕在线观看| 69精品国产乱码久久久| 国产一区二区在线观看av| 国产成人91sexporn| 国产国拍精品亚洲av在线观看| 日韩强制内射视频| 免费大片18禁| 亚洲色图综合在线观看| 午夜91福利影院| 2021少妇久久久久久久久久久| 狂野欧美白嫩少妇大欣赏| 另类精品久久| 高清在线视频一区二区三区| 日本91视频免费播放| 午夜精品国产一区二区电影| 国产乱人偷精品视频| 国产高清三级在线| 在线观看免费视频网站a站| 蜜桃在线观看..| 欧美日本中文国产一区发布| 久久久久久久久久成人| 国产白丝娇喘喷水9色精品| 国产av精品麻豆| 交换朋友夫妻互换小说| 亚洲精品日韩av片在线观看| 免费播放大片免费观看视频在线观看| 草草在线视频免费看| 免费不卡的大黄色大毛片视频在线观看| 九色成人免费人妻av| 久久人人爽av亚洲精品天堂| 最近中文字幕高清免费大全6| 久久午夜福利片| 色婷婷久久久亚洲欧美| 欧美精品亚洲一区二区| 妹子高潮喷水视频| 亚洲国产精品国产精品| 国产日韩欧美亚洲二区| 男女无遮挡免费网站观看| 中国美白少妇内射xxxbb| 伦精品一区二区三区| 国产在线免费精品| av.在线天堂| 精品人妻偷拍中文字幕| 大香蕉久久成人网| 精品国产一区二区久久| 在线观看三级黄色| 国产精品女同一区二区软件| 性色avwww在线观看| 亚洲精品成人av观看孕妇| 亚洲精品乱码久久久v下载方式| 在线观看人妻少妇| 日韩成人伦理影院| 夫妻性生交免费视频一级片| 国产永久视频网站| 在线观看免费日韩欧美大片 | av国产久精品久网站免费入址| 日本欧美国产在线视频| 97精品久久久久久久久久精品| 亚洲五月色婷婷综合| 九九爱精品视频在线观看| 丝袜喷水一区| 极品少妇高潮喷水抽搐| 在线观看人妻少妇| 青春草视频在线免费观看| 国产伦理片在线播放av一区| 久久久国产精品麻豆| 欧美变态另类bdsm刘玥| 日韩精品免费视频一区二区三区 | 亚洲高清免费不卡视频| 亚洲四区av| 国产一级毛片在线| 国产乱人偷精品视频| 国产不卡av网站在线观看| 不卡视频在线观看欧美| 国产av精品麻豆| 亚洲av欧美aⅴ国产| 亚洲精品视频女| 精品国产一区二区久久| 欧美国产精品一级二级三级| 人人妻人人添人人爽欧美一区卜| 亚洲成人手机| 国产精品熟女久久久久浪| 国产 精品1| 欧美日韩亚洲高清精品| 乱码一卡2卡4卡精品| 国产色婷婷99| 大又大粗又爽又黄少妇毛片口| 国产精品99久久久久久久久| 夫妻性生交免费视频一级片| 中文天堂在线官网| 亚洲天堂av无毛| 99久久中文字幕三级久久日本| 亚洲欧美成人综合另类久久久| 精品久久国产蜜桃| 好男人视频免费观看在线| 亚洲欧美日韩另类电影网站| 欧美3d第一页| 涩涩av久久男人的天堂| 丝袜在线中文字幕| 精品亚洲成国产av| 午夜免费男女啪啪视频观看| 久久国产精品大桥未久av| 男女边摸边吃奶| 日本wwww免费看| 欧美另类一区| 亚洲婷婷狠狠爱综合网| 久久久久国产精品人妻一区二区| 久久久精品区二区三区| 国产色婷婷99| 晚上一个人看的免费电影| 色吧在线观看| 内地一区二区视频在线| 亚洲精品日韩av片在线观看| 激情五月婷婷亚洲| 国产在线免费精品| 国产精品一区二区在线观看99| 国产精品一区二区三区四区免费观看| 亚洲欧美精品自产自拍| 美女主播在线视频| 日韩三级伦理在线观看| 国产av国产精品国产| 亚洲欧美清纯卡通| 香蕉精品网在线| 人妻 亚洲 视频| 99国产综合亚洲精品| 亚洲一区二区三区欧美精品| 久久热精品热| 国产精品国产三级专区第一集| 欧美人与性动交α欧美精品济南到 | 伦理电影免费视频| 精品少妇内射三级| 国产精品一二三区在线看| 国产成人精品一,二区| 女性生殖器流出的白浆| a级毛片在线看网站| 美女国产视频在线观看| 人人妻人人添人人爽欧美一区卜| 黄色视频在线播放观看不卡| 精品亚洲乱码少妇综合久久| 国产伦理片在线播放av一区| 日本黄大片高清| 亚洲av.av天堂| 久久99热这里只频精品6学生| 国产精品一区www在线观看| 中文字幕人妻熟人妻熟丝袜美| 精品人妻熟女毛片av久久网站| 三级国产精品欧美在线观看| 草草在线视频免费看| 黑人欧美特级aaaaaa片| 一本一本综合久久| 亚洲图色成人| 亚洲久久久国产精品| 久久热精品热| av免费在线看不卡| 99久久综合免费| 另类精品久久| 国产精品人妻久久久久久| 纵有疾风起免费观看全集完整版| 免费播放大片免费观看视频在线观看| 欧美性感艳星| 国产精品99久久99久久久不卡 | 男人添女人高潮全过程视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品,欧美精品| 五月玫瑰六月丁香| 免费观看无遮挡的男女| 国产日韩欧美视频二区| 国产亚洲精品第一综合不卡 | 亚洲中文av在线| 亚洲精品自拍成人| 欧美精品国产亚洲| 美女福利国产在线| 美女内射精品一级片tv| 国产视频内射| 夜夜爽夜夜爽视频| 老司机影院毛片| 蜜臀久久99精品久久宅男| 亚洲综合色惰| 国精品久久久久久国模美| 日本黄色片子视频| 午夜免费观看性视频| 国产av精品麻豆| 国产伦精品一区二区三区视频9| 色视频在线一区二区三区| 人妻少妇偷人精品九色| 精品人妻一区二区三区麻豆| 久久久欧美国产精品| 国产男女超爽视频在线观看| av福利片在线| 久久影院123| 水蜜桃什么品种好| h视频一区二区三区| 另类亚洲欧美激情| 午夜福利在线观看免费完整高清在| 日本wwww免费看| 色视频在线一区二区三区| 韩国高清视频一区二区三区| 91精品一卡2卡3卡4卡| 美女脱内裤让男人舔精品视频| 国产极品粉嫩免费观看在线 | 人妻人人澡人人爽人人| 飞空精品影院首页| 国产精品人妻久久久久久| 日韩一本色道免费dvd| 免费av中文字幕在线| 性色avwww在线观看| 亚洲精品一区蜜桃| 成年人免费黄色播放视频| 免费人妻精品一区二区三区视频| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| av在线app专区| 全区人妻精品视频| 亚洲国产精品专区欧美| 国产免费一区二区三区四区乱码| 韩国高清视频一区二区三区| 久久婷婷青草| 插逼视频在线观看| 精品久久久久久电影网| 99九九线精品视频在线观看视频| 在线 av 中文字幕| 高清在线视频一区二区三区| 亚洲av二区三区四区| 亚洲综合色惰| 午夜福利影视在线免费观看| 亚洲av不卡在线观看| 亚洲精品美女久久av网站| 国产成人精品久久久久久| 国产午夜精品久久久久久一区二区三区| 亚洲欧洲日产国产| 国产精品一区www在线观看| 国产午夜精品一二区理论片| 交换朋友夫妻互换小说| 亚州av有码| 亚洲欧美清纯卡通| 男人添女人高潮全过程视频| 美女脱内裤让男人舔精品视频| 人人妻人人澡人人看| 好男人视频免费观看在线| 国产亚洲精品第一综合不卡 | 亚洲,欧美,日韩| 欧美日韩成人在线一区二区| 97在线视频观看| 99久国产av精品国产电影| 欧美一级a爱片免费观看看| 久久人妻熟女aⅴ| 国产成人免费观看mmmm| 日日摸夜夜添夜夜爱| 国产精品久久久久久久久免| 国产在线视频一区二区| 精品国产一区二区久久| 一级毛片我不卡| 国产日韩欧美在线精品| 国产成人精品无人区| 日本猛色少妇xxxxx猛交久久| a 毛片基地| 国产淫语在线视频| 亚洲欧美精品自产自拍| 欧美少妇被猛烈插入视频| a级毛色黄片| 伦精品一区二区三区| 男人操女人黄网站| 最近中文字幕高清免费大全6| 成年av动漫网址| 久久人妻熟女aⅴ| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产精品成人久久小说| 成年女人在线观看亚洲视频| 久久久午夜欧美精品| 久久ye,这里只有精品| 久久久精品区二区三区| 看免费成人av毛片| 国产精品秋霞免费鲁丝片| 久久午夜福利片| tube8黄色片| 人体艺术视频欧美日本| 亚洲av.av天堂| 简卡轻食公司| 日韩一区二区视频免费看| 久久久亚洲精品成人影院| 久久午夜综合久久蜜桃| 国产69精品久久久久777片| 欧美激情极品国产一区二区三区 | 日韩精品有码人妻一区| 男男h啪啪无遮挡| 免费黄网站久久成人精品| 国产免费现黄频在线看| 亚洲av.av天堂| 国产精品99久久99久久久不卡 | 蜜桃在线观看..| av在线观看视频网站免费| 黄色怎么调成土黄色| 亚洲性久久影院| 亚洲天堂av无毛| 国产高清国产精品国产三级| 热re99久久精品国产66热6| 伦精品一区二区三区| 午夜av观看不卡| 99久久综合免费| 国产免费又黄又爽又色| 久久热精品热| 99九九线精品视频在线观看视频| 成年av动漫网址| 国产免费福利视频在线观看| 国产亚洲欧美精品永久| 久久人人爽人人片av| 午夜免费观看性视频| 国产精品国产三级专区第一集| 国产高清国产精品国产三级| 如何舔出高潮| 99国产综合亚洲精品| 久久人人爽人人爽人人片va| 人妻 亚洲 视频| 18+在线观看网站| 久久精品国产自在天天线| 国内精品宾馆在线| 精品人妻在线不人妻| 欧美日韩在线观看h| 美女福利国产在线| 男女无遮挡免费网站观看| 一区在线观看完整版| av电影中文网址| 少妇被粗大的猛进出69影院 | 伦精品一区二区三区| 亚洲国产av新网站| 最后的刺客免费高清国语| 赤兔流量卡办理| 欧美日韩在线观看h| 久久97久久精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱码久久久久久按摩| 日本爱情动作片www.在线观看| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 大香蕉97超碰在线| 成年女人在线观看亚洲视频| 91国产中文字幕| 色视频在线一区二区三区| 老女人水多毛片| 亚洲精品乱码久久久久久按摩| 久久国产亚洲av麻豆专区| 91成人精品电影| 久久久久久久久久人人人人人人| 在线观看三级黄色| 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 午夜日本视频在线| 欧美性感艳星| 国产精品麻豆人妻色哟哟久久| 永久免费av网站大全| 人人澡人人妻人| 免费黄频网站在线观看国产| 男女啪啪激烈高潮av片| xxxhd国产人妻xxx| 18禁动态无遮挡网站| 国产av码专区亚洲av| 丰满乱子伦码专区| 久久久久久久大尺度免费视频| 成人亚洲精品一区在线观看| 午夜激情久久久久久久| 91精品国产九色| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 内地一区二区视频在线| 十八禁网站网址无遮挡| 亚州av有码| 亚洲精品456在线播放app| 国产av码专区亚洲av| 搡老乐熟女国产| 久久精品国产a三级三级三级| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 在线播放无遮挡| 桃花免费在线播放| 最近2019中文字幕mv第一页| 久久女婷五月综合色啪小说| 黑人高潮一二区| 国产精品久久久久久久久免| 欧美日韩综合久久久久久| 欧美国产精品一级二级三级| 欧美xxxx性猛交bbbb| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 午夜福利视频在线观看免费| 亚洲精品视频女| 最后的刺客免费高清国语| 成人18禁高潮啪啪吃奶动态图 | 在线亚洲精品国产二区图片欧美 | 亚洲成人手机| 少妇被粗大的猛进出69影院 | 高清午夜精品一区二区三区| 少妇的逼好多水| 18禁观看日本| 亚洲av中文av极速乱| 嫩草影院入口| 亚洲人成网站在线观看播放| 亚洲国产av新网站| 国产69精品久久久久777片| 久久99一区二区三区| 卡戴珊不雅视频在线播放| 国产又色又爽无遮挡免| 各种免费的搞黄视频| 欧美成人精品欧美一级黄| 交换朋友夫妻互换小说| 亚洲国产最新在线播放| 青春草视频在线免费观看| 在现免费观看毛片| 中国美白少妇内射xxxbb| 中国三级夫妇交换| 亚洲成人一二三区av| 母亲3免费完整高清在线观看 | 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 欧美另类一区| 日本91视频免费播放| 日本午夜av视频| 国产精品一区www在线观看| 美女脱内裤让男人舔精品视频| xxxhd国产人妻xxx| 另类亚洲欧美激情| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 超色免费av| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久免费av| 精品少妇久久久久久888优播| 一级毛片aaaaaa免费看小| 亚洲伊人久久精品综合| 国产69精品久久久久777片| av网站免费在线观看视频| 国产成人a∨麻豆精品| 看免费成人av毛片| 精品一区在线观看国产| 国产高清三级在线| 少妇人妻 视频| 国产精品久久久久久久久免| 日韩一本色道免费dvd| 中文字幕精品免费在线观看视频 | 久久久久久久久久成人| 午夜久久久在线观看| 国产日韩欧美亚洲二区| 免费播放大片免费观看视频在线观看| 欧美3d第一页| 蜜臀久久99精品久久宅男| 国产成人aa在线观看| 边亲边吃奶的免费视频| 亚洲综合精品二区| 国产成人精品在线电影| 黄色毛片三级朝国网站| 亚洲久久久国产精品| 18禁在线播放成人免费| 考比视频在线观看| 精品久久久久久久久av| 天天影视国产精品| 99久久中文字幕三级久久日本| 内地一区二区视频在线| 最黄视频免费看| 亚洲国产成人一精品久久久| 国产午夜精品久久久久久一区二区三区| 亚洲欧美日韩另类电影网站| 日韩av在线免费看完整版不卡| 五月天丁香电影| 中文字幕人妻丝袜制服| videossex国产| 久久女婷五月综合色啪小说| 91精品国产国语对白视频| 国产探花极品一区二区| 最近中文字幕高清免费大全6| 人人妻人人爽人人添夜夜欢视频| 中文字幕最新亚洲高清| 18+在线观看网站| 男女高潮啪啪啪动态图| 久久精品熟女亚洲av麻豆精品| 亚洲精品色激情综合| tube8黄色片| 一本—道久久a久久精品蜜桃钙片| 中文字幕人妻熟人妻熟丝袜美| 九九久久精品国产亚洲av麻豆| 国产爽快片一区二区三区| 五月伊人婷婷丁香| 国产精品久久久久久久久免| 免费观看a级毛片全部| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 最近2019中文字幕mv第一页| 亚洲一区二区三区欧美精品| 男人爽女人下面视频在线观看| 日本黄大片高清| 国产精品久久久久久精品电影小说| 满18在线观看网站| 国产精品一区www在线观看| 国产精品 国内视频| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久久久按摩| 午夜激情福利司机影院| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说| 久久99一区二区三区| 曰老女人黄片| 国产女主播在线喷水免费视频网站| 美女国产高潮福利片在线看| 午夜福利网站1000一区二区三区| 丝袜脚勾引网站| 22中文网久久字幕| 99热这里只有是精品在线观看| 只有这里有精品99| 亚洲精品456在线播放app| 亚洲精品日韩av片在线观看| 久热久热在线精品观看| 少妇被粗大猛烈的视频| 久久精品国产a三级三级三级| 亚洲av男天堂| 少妇精品久久久久久久| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频| 国产精品三级大全| 国产又色又爽无遮挡免| 亚洲av电影在线观看一区二区三区| 国产不卡av网站在线观看| 黄片播放在线免费| 欧美激情极品国产一区二区三区 | 久久 成人 亚洲| 国产男女超爽视频在线观看| 国产在视频线精品| 午夜福利在线观看免费完整高清在| 色婷婷久久久亚洲欧美| 欧美精品一区二区大全| 国产成人aa在线观看| 蜜臀久久99精品久久宅男| 欧美亚洲日本最大视频资源| 人人妻人人澡人人看| 精品亚洲成a人片在线观看| xxx大片免费视频| 午夜免费男女啪啪视频观看| 人人妻人人添人人爽欧美一区卜| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 99国产综合亚洲精品| 我要看黄色一级片免费的| 永久免费av网站大全| 在线免费观看不下载黄p国产| 久久99蜜桃精品久久| 纯流量卡能插随身wifi吗| 久久久久久久久大av| 欧美97在线视频| 在线观看国产h片| 人妻制服诱惑在线中文字幕| 国语对白做爰xxxⅹ性视频网站|