• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pu在Gd2Zr2O7基質(zhì)中的模擬固化: (Gd1–xCex)2Zr2O7+x的熱物理性能研究

    2015-12-05 06:30:15夏祥來李林艷艷陳曉謀潘社奇
    物理化學(xué)學(xué)報 2015年9期
    關(guān)鍵詞:中國工程物理研究院遼寧大學(xué)葡萄膜

    夏祥來 李林艷 郭 放 蘇 偉 劉 艷陳曉謀 潘社奇

    (1遼寧大學(xué)化學(xué)院, 沈陽 110036; 2清華大學(xué)核能與新能源技術(shù)研究院, 北京 100084;3中國工程物理研究院, 四川 綿陽 621900)

    Pu在Gd2Zr2O7基質(zhì)中的模擬固化: (Gd1–xCex)2Zr2O7+x的熱物理性能研究

    夏祥來1,2李林艷2,*郭 放1,*蘇 偉3劉 艷3陳曉謀3潘社奇3

    (1遼寧大學(xué)化學(xué)院, 沈陽 110036;2清華大學(xué)核能與新能源技術(shù)研究院, 北京 100084;3中國工程物理研究院, 四川 綿陽 621900)

    采用高溫固相反應(yīng), 以NaF作助熔劑, 在1000 °C的溫度下合成了錒系元素Pu的模擬固化體(Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7). 研究了模擬固化體的物相、熱膨脹系數(shù)(TEC)、熱導(dǎo)率(TC)隨溫度及組成的變化規(guī)律. 粉末X射線衍射(XRD)測試結(jié)果表明: Gd2Zr2O7基質(zhì)本身呈弱有序燒綠石結(jié)構(gòu), 而用Ce4+取代Gd3+的模擬固化體都呈缺陷螢石結(jié)構(gòu). (Gd1–xCex)2Zr2O7+x的Ce(3d) X射線光電子能譜(XPS)有六個峰, 結(jié)合能分別位于 881.7, 888.1, 897.8, 900.4, 907.1, 916.1 eV處, 與CeO2的XPS圖譜非常相似, 說明Ce為四價. 隨著溫度的升高, 所有樣品的熱膨脹系數(shù)總體上呈增大趨勢. 在室溫至750 °C附近, 大部分樣品的熱導(dǎo)率隨溫度的升高而降低, 之后熱導(dǎo)率又呈小幅上升. 在相同溫度下, 固化體(Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7)的熱膨脹系數(shù)及熱導(dǎo)率隨組成變化呈相同趨勢: 在0 ≤ x ≤ 0.1范圍內(nèi)隨x的增大而增大, 隨后在x = 0.1–0.7時逐漸減小.

    核廢料固化; 燒綠石結(jié)構(gòu); 螢石結(jié)構(gòu); 熱膨脹系數(shù); 熱導(dǎo)率

    1 Introduction

    With the increasing severe energy crisis and environment pollution, many countries were forced to develop nuclear power due to its higher energy density and less waste emission than traditional fossil fuel. However, the spent nuclear fuel (SNF) contains fission products, corrosion products, process contaminants, fuel components, and transmutation products.1These wastes would be a severe threat to ecological environment because they contain high radioactive and long-lived actinides, such as238Pu,239Pu,237Np,243Am and so on.2Therefore, safe and effective disposal of high level waste (HLW) is crucial to the public acceptance and sustainable development of nuclear energy. Substantial amounts of HLW will require to be immobilized in an inert matrix for geological disposal. Many different types of glass and ceramic materials have been investigated for the immobilization of HLW,3such as borosilicate glasses,4phosphate glasses,5aluminosilicate glasses,6tianate or zirconate pyrochlore,7–13phosphate ceramics,14,15etc.

    However, the glass solidified form has a tendency to get devitrified in the presence of water and steam at elevated pressure and temperature in geological repositories, which results in water soluble salt and increases the leachability of radioactive elements.16Studies about heavy-ion irradiation on the Gd2(ZrxTi1–x)2O7system demonstrated that amorphization decreases systematically with increasing Zr content. For the end member Gd2Zr2O7, no amorphization occurred at extremely high ion fluences, which indicated that Gd2Zr2O7is a very stable matrix and suitable for HLW immobilization.8–10

    However, Gd2Zr2O7is difficult to be synthesized. For example, fluorite Gd2(ZrxTi1–x)2O7was prepared by a sol-gel route: the Gd-Ti-Zr-O gels were calcined at 700 °C for 1 h, then the calcine was wet ball-milled, pressed into pellets, and sintered at 1600 °C for 50 h in air.11Pyrochlore Gd2Zr2?xCexO7was prepared by grinding, pelletizing, and calcining the stoichiometric oxide mixture repeatedly at 1200 °C for 36 h, 1300 °C for 36 h, and 1400 °C for 48 h, respectively.17In addition, high pressure, high temperature, and microwave sintering were also used to synthesize Gd2Zr2O7.18,19Tetravalent cerium is very similar to tetravalent plutonium in many aspects, such as oxidation state, ionic radius, hydrolysis, and redox behavior. As the host of actinides, the thermal expansion coefficient should not be very high but the thermal conductivity should be high enough.20

    This work used Ce as an analogue of Pu to simulate its immobilization in Gd2Zr2O7.21–23(Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) were synthesized at relatively low temperature compared with traditional high-temperature solid-state reaction,24and the thermophysical properties of these simulated solidified forms were also studied.

    2 Experimental

    Polycrystalline samples of (Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) were prepared by solid-state reaction using NaF as a flux. AR grade pow

    ders of Gd(NO3)36H2O (99.9%), Zr(NO3)4(99.5%), Ce(NO3)36H2O (99.9%) in stoichiometric ratio and 5% (w, mass fraction) NaF (98.0%) were ground adequately. The mixtures were put in alumina crucibles and calcined in furnace (SX3-8-13, Tianjin City Central Experimental Electric Furnace Co., Ltd. China) at 1000 °C for 10 h in air.24The resulted calcines were washed by distilled water for 3–4 times to remove NaF, and dried at 150 °C for 3 h. The obtained powders were uniaxially cold pressed into pellets with 190 MPa and pressurelessly sintered at 1400 °C for 6 h. The bulk samples were cut and polished into cuboids or disks for the measurement of thermophysical properties.

    Powder X-ray diffraction (XRD) patterns were recorded on a Rigaku D/max-2000 diffractometer with graphite monochromatized Cu-Kαradiation on 40 kV, 100 mA at a scanning rate of 4 (°)min–1.

    Thermal expansion coefficients (TECs) of the specimens (6 mm × 4 mm × 25 mm) were measured with a high-temperature dilatometer (Model NETSCH DIL 402EP, Germany). The data were recorded continuously at a scanning rate of 5 °Cmin–1in the range of ambient temperature to 1000 °C in N2atmosphere.

    Thermal diffusivities (λ) and the specific heat capacities (Cp) of the specimens with 12.7 mm in diameter and 2 mm in thickness were measured with laser-flash method (Anter(TA)FL4010, USA) from ambient temperature to 1000 °C with every 250 °C as an interval. Densities (ρ) of the specimens were measured on a densimeter (QL-120C, MatsuHaku, Taiwan). Thermal conductivities (k) were calculated by Eq.(1) with λ, Cp, and ρ:

    3 Results and discussion

    3.1 Syntheses and phase identification

    In our previous work, it proved that (Gd1–xCex)2Zr2O7+xcould be synthesized at relatively low temperature by using nitrate as active raw materials and NaF as a flux, compared with traditional high-temperature solid-state reaction.24As for many A2B2O7compounds, if the ratio of cation ionic radii lies in the range rA/rB= 1.46–1.78, they prefer pyrochlore structure withLa2Zr2O7as a typical example which crystallizes in Fd3m space group (S.G.) and a = 1.079 nm; for a lower radius ratio, the defect fluorite structure is stabilized, such as Yb2Zr2O7which crystallizes in Fm3m space group and a = 0.517 nm. In general, Gd2Zr2O7(rA/rB= 1.46) crystallizes in weakly ordered pyrochore structure (S.G.: Fd3m, a = 1.052 nm) which is closed related to fluorite structure (S.G.: Fm3m, a = 0.526 nm). The main lattice of the two structures produces a set of identical diffraction peaks (2θ): 29.62°, 34.38°, 49.34°, 58.67°, 61.48°. In pyrochore structure, the arrangements of cations and anion vacancies are ordered, which constitutes a super lattice featured in a set of weak diffraction peaks at 2θ ≈ 14.65° (111), 28.52° (311), 37.51° (331), 44.89° (511). The decrease of rA/rBcaused by other cation doping will result in the structure transformation from pyrochlore to fluorite.

    Fig.1 XRD patterns of (Gd1–xCex)2Zr2O7+x

    XRD patterns of the as-synthesized (Gd1–xCex)2Zr2O7+xare shown in Fig.1. It can be seen that pure Gd2Zr2O7indeed exhibits weakly ordered pyrochore structure (JCPDS 79-1146). Partial Ce4+substitution for Gd3+leads to the structural transformation from pyrochlore to defect fluorite (JCPDS 80-0471) even if x is as low as 0.1. When x reaches 0.7, XRD peaks of the product widen obviously, indicating that high Ce4+substitution rate for Gd3+would lead to lattice distortion. When x = 1, that is, full substitution of Ce4+for Gd3+leads to the product into two phases, (Zr0.88Ce0.12)2O2(P42/nmc, JCPDS 82-1389) and (Ce0.75Zr0.25)2O2(Fm3m, JCPDS 28-0271).

    The XPS Ce(3d) spectrum of the (Gd1–xCex)2Zr2O7+x(x = 0.5) sample is shown in Fig.2. It can be seen that there are six peaks at 881.7, 888.1, 897.8, 900.4, 907.1, 916.1 eV respectively, which is almost identical to those of CeO2.25Among them, the three peaks of 881.7, 888.1, 897.8 eV arise from the terminal state of 3d94f1, 3d94f2, and 3d94f0. The corresponding spin-orbit splitting peaks occur at 900.4, 907.1, and 916.1 eV. The XPS Ce(3d) spectrum reveals that Ce specimen in (Gd1–xCex)2Zr2O7+xshould be in tetravalent.

    Fig.2 XPS Ce(3d) spectrum of the (Gd1–xCex)2Zr2O7+x(x = 0.5) splitting peaks occur at 900.4, 907.1 and 916.1eV.

    The coordination numbers of Gd3+and Zr4+in Gd2Zr2O7lattice were 8 and 6, respectively. The relevant ionic radii for 8-fold and 6-fold coordinations are: Gd3+0.105 and 0.094, Ce4+0.097 and 0.087, Zr4+0.084 and 0.072 nm, respectively. As a result, partial Ce4+substitution for Gd3+with smaller ion radius leads to the decrease of rA/rB, which in turn causes the structural transformation from pyrochlore (Gd2Zr2O7) to defect fluorite ((Gd1–xCex)2Zr2O7+x(0.1 ≤ x ≤ 0.7)).

    Fig.3 Temperature dependence of the thermal expansion coefficient of (Gd1–xCex)2Zr2O7+x

    3.2 Thermal expansion

    The dependence of linear TECs of (Gd1–xCex)2Zr2O7+x(0 ≤x ≤ 0.7) on temperature is shown in Fig.3. It can be seen that the TECs of the samples with any composition increase with the increasing temperature in general trend, which is attributed to the increasing atomic distance with the increase of temperature. The TECs of the Ce-doping sample are all lower than that of pure Gd2Zr2O7in the range of 200–750 °C. When the temperature is higher than 750 °C, the TECs of the samples with high Ce-doping rate (x = 0.5, 0.7) are slightly higher than those of pure Gd2Zr2O7. Composition dependence of the thermal expansion coefficient of (Gd1–xCex)2Zr2O7+xat the same temperature, such as 1000 °C is presented in Fig.4. It can be seen that the TECs of (Gd1–xCex)2Zr2O7+xdecrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7. The influences of Ce4+substitution for Gd3+on Gd2Zr2O7lattice mainly reflect in two aspects: ① In order to compensate the excess positive charges brought about by Ce4+substitution for Gd3+, the amount of oxygen vacancies in Gd2Zr2O7lattice decreases, which in turn increases the amount of Zr―O bonds. ② On the other hand, partial Ce4+may migrate to Zr4+nearby, which in turn weakensZr―O bonds. The former effect would decrease the TECs of (Gd1–xCex)2Zr2O7+x, whereas the latter effect on TECs is opposite because normal Zr―O bond is short and strong, which is negatively correlated with the TECs. Experimental results on the TECs of (Gd1–xCex)2Zr2O7+xshow that the former effect plays a dominant role at low temperature and low Ce4+substitution rate and vice versa.

    3.3 Thermal conductivities

    The measured specific heat capacities, thermal diffusivities at different temperatures of (Gd1–xCex)2Zr2O7+xsample at ambient temperature are shown in Fig.5 and Fig.6. The bulk densities of (Gd1–xCex)2Zr2O7+xsamples are 5.79, 5.89, 5.88, 5.90, 5.76gcm–1for x = 0, 0.1, 0.3, 0.5, 0.7 samples. According to Eq.(1), the calculated thermal conductivities of (Gd1–xCex)2Zr2O7+xat different temperatures are plotted in Fig.7. It can be seen from Fig.7 that the TCs of most (Gd1–xCex)2Zr2O7+xsamples decrease with the increasing temperature up to 750 °C nearby, followed by a slight increase from 750 to 1000 °C. According to the thermal conduction theory, heat conduction in crystals is mainly carried out by means of phonons, and the lattice thermal conductivity is proportional to the mean free path of phonon. With temperature increasing, lattice vibrations become more intense, which would shorten the mean free path of phonon, and TC decreases as a result. However, with temperature further going up, the mean free path of phonon could not be shortened infinitely, and the contribution of photon conduction to heat conduction increases with temperature increasing and cannot be neglected, which results in a slight increase of TC.

    Fig.4 Composition dependence of the thermal expansion coefficient of (Gd1–xCex)2Zr2O7+xat 1000 °C

    Fig.5 Temperature dependence of the specific heat capacity of (Gd1–xCex)2Zr2O7+x

    Fig.6 Temperature dependence of the thermal diffusivities of (Gd1–xCex)2Zr2O7+x

    Fig.7 Temperature dependence of the thermal conductivities of (Gd1–xCex)2Zr2O7+x

    Fig.8 Composition dependence of the thermal conductivities of (Gd1–xCex)2Zr2O7+xat 500 °C

    At the same temperature, the variation trend TCs of (Gd1–xCex)2Zr2O7+xwith their composition, taking 500 °C as an example, is given in Fig.8. It can be found that the TCs of (Gd1–xCex)2Zr2O7+xalso decrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7. In real crystal structure, scattering of phonons occurs when they interact with lattice defects, such as vacancies, dislocations, grain boundaries, substitutionby other atoms, and so on.26Substation of Ce4+with higher charge and smaller ion radius for Gd3+will produce replacement defectand reduce the amount of oxygen vacancies simultaneously in Gd2Zr2O7lattice. The replacement defectwould enhance the scattering of phonons, which in turn decreases TC, and the influence of the decrease of oxygen vacancies on TC is opposite. It could be concluded from Fig.8 that the replacement defectdominates the TC variation when Ce-doping amount is less than 10%, then the influence of the decrease of oxygen vacancies on TC gets more and more obviously.

    4 Conclusions

    (1) Polycrystalline samples of (Gd1–xCex)2Zr2O7+xwere prepared by solid-state reaction using NaF as a flux at 1000 °C for 10 h. XRD results show that pure Gd2Zr2O7exhibits weakly ordered pyrochore structure. Ce4+substitution for Gd3+leads to the structural transformation from pyrochlore to defect fluorite even if x is as low as 0.1. When x reaches 0.7, XRD peaks of the products widen obviously.

    (2) The TECs of (Gd1–xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) with any composition increase with the temperature increasing in general trend. The TECs of the Ce-doping samples are all lower than that of pure Gd2Zr2O7in the range of 200–750 °C. When the temperature is higher than 750 °C, the TECs of the samples with high Ce-doping rate (x = 0.5, 0.7) are higher than that of pure Gd2Zr2O7. At the same temperature, the TECs of (Gd1–xCex)2Zr2O7+xdecrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7.

    (3) The TCs of most (Gd1–xCex)2Zr2O7+xsamples decrease with the increasing temperature up to 750 °C nearby, followed by a slight increase from 750 to 1000 °C. At the same temperature, the TCs of (Gd1–xCex)2Zr2O7+xalso decrease from x = 0 to 0.1, then increase constantly from x = 0.1 to 0.7.

    (1)Stefanovsky, S. V.; Yudintsev, S. V.; Livshits, T. S. IOP Conf. Series: Mater. Sci. Eng. 2010, 9, 012001-1. doi: 10.1088/1757-899X/9/1/012001

    (2)Yudintsev, S. V.; Stefanovsky, S. V.; Ewing, R. C. Actinide Host Phases as Radioactive Waste Forms. In Structural Chemistry of Inorganic Actinide Compounds; Krivovichev, S. V., Burns, P. C., Tananaev, I. G. Eds.; Elsevier: Amsterdam, 2007; pp 457–490.

    (3)Donald, I. W.; Metcalfe, B. L.; Taylor, R. N. J. J. Mater. Sci. 1997, 32, 5851. doi: 10.1023/A:1018646507438

    (4)Lutze, W.; Ewing, R. C. Radioactive Waste Forms for the Future; Lutze, W., Ewing, R. C. Eds.; Elsevier: Amsterdam, 1988; pp 1–159.

    (5)Kumar, B.; Lin, S. J. Am. Ceram. Soc. 1991, 74, 226. doi: 10.1111/jace.1991.74.issue-1

    (6)Stefanovsky, S. V.; Ivanov, I. A.; Gulin, A. N. Scientific Basis for Nuclear Waste Management XVIII; Murakami, T., Ewing, R. C. Eds.; Materials Research Society: Pittsburgh, PA, 1995; pp 101–106.

    (7)Sickafus, K. E.; Minervini, L.; Grimes, R. W.; Valdez, J. A.; Ishimaru, M.; Li, F.; McClellan, K. J.; Hartmann, T. Science 2000, 289, 748. doi: 10.1126/science.289.5480.748

    (8)Weber, W. J.; Ewing, R. C. Science 2000, 289, 2051. doi: 10.1126/science.289.5487.2051

    (9)Lu, X. R.; Dong, F. Q.; Hu, S.; Wang, X. L.; Wu, Y. L. Acta Phys. Sin. 2012, 61, 152401-1. [盧喜瑞, 董發(fā)勤, 胡 淞, 王曉麗, 吳彥霖. 物理學(xué)報, 2012, 61, 152401-1.]

    本研究中2例患者分別在使用唑來膦酸72、60 h后出現(xiàn)雙眼急性葡萄膜炎,在第二次使用唑來膦酸前,先給予地塞米松及潑尼松龍滴眼液共預(yù)處理6 d,患者再次啟動唑來膦酸治療后,未出現(xiàn)任何眼部癥狀[5]。PATEL等[22]的回顧性調(diào)查中,有3例患者在初次發(fā)病18個月后在未給予任何預(yù)處理的情況下再次給予唑來膦酸靜脈輸注,未出現(xiàn)急性葡萄膜炎的癥狀或體征。這些研究提示急性葡萄膜炎不應(yīng)成為再次使用唑來膦酸的臨床禁忌,但應(yīng)做好臨床監(jiān)測和預(yù)防工作。

    (10)Zhang, F. X.; Wang, J. W.; Lian, J.; Lang, M. K.; Becker, U.; Ewing, R. C. Phys. Rev. Lett. 2008, 100, 045503-1. doi: 10.1103/PhysRevLett.100.045503

    (11)Mandal, B. P.; Pandey, M.; Tyagi, A. K. J. Nucl. Mater. 2010, 406, 238. doi: 10.1016/j.jnucmat.2010.08.042

    (12)Kutty, K. V. G.; Asuvathraman, R.; Madhavan, R. R.; Jena, H. J. Phys. Chem. Solids 2005, 66, 596. doi: 10.1016/j.jpcs.2004.06.066

    (13)Weber, W. J.; Wald, J. W.; Matzke, H. J. Nucl. Mater. 1986, 138, 196. doi: 10.1016/0022-3115(86)90006-1

    (14)Kerdaniel, E. D. F.; Clavier, N.; Dacheux, N.; Terra, O.; Podor, R. J. Nucl. Mater. 2007, 362, 451. doi: 10.1016/j.jnucmat. 2007.01.132

    (15)Metcalfe, B. L.; Donald, I. W.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D. J. Nucl. Mater. 2009, 385, 485. doi: 10.1016/j.jnucmat.2008.12.035

    (16)Ringwood, A. E.; Kesson, S. E.; Ware, N. G.; Hibberson, W.; Major, A. Nature 1979, 278, 219. doi: 10.1038/278219a0

    (17)Patwe, S. J.; Ambekar, B. R.; Tyagi, A. K. J. Alloy. Compd. 2005, 389, 243. doi: 10.1016/j.jallcom.2004.06.094

    (19)Lu, X. R.; Ding, Y.; Dan, H.; Yuan, S. B.; Mao, X. L.; Fan, L.; Wu, Y. L. Ceram. Int. 2014, 40, 13191. doi: 10.1016/j.ceramint.2014.05.024

    (20)Mandal, B. P.; Garg, N.; Sharma, S. M.; Tyagi, A. K. J. Nucl. Mater. 2009, 392, 95. doi: 10.1016/j.jnucmat.2009.03.050

    (21)Reid, D. P.; Stennettn, M. C.; Hyatt, N. C. J. Solid State Chem. 2012, 191, 2. doi: 10.1016/j.jssc.2011.12.039

    (22)Dickson, C. L.; Glasser, F. P. Cem. Concr. Res. 2000, 30, 1619. doi: 10.1016/S0008-8846(00)00362-8

    (23)Lu, X. R.; Fan, L.; Shu, X. Y.; Su, S. J.; Ding, Y.; Yi, F. C. Ceram. Int. 2015, 41, 6344. doi: 10.1016/j.ceramint.2015.01.068

    (24)Zhao, P. Z.; Li, L.Y.; Xu, S. M.; Zhang, Q. Acta Phys. -Chim. Sin. 2013, 29, 1168. [趙培柱, 李林艷, 徐盛明, 張 覃. 物理化學(xué)學(xué)報, 2013, 29, 1168.] doi: 10.3866/PKU.WHXB201304013

    (25)Zhao, L. Z. Acta Phys. Sin. 1989, 38, 987. [趙良仲. 物理學(xué)報, 989, 38, 987.]

    (26)Zhang, H. S.; Chen, X. G.; Li, G.; Wang, X. L.; Dang, X. D. J. Eur. Ceram. Soc. 2012, 32, 3693. doi: 10.1016/j.jeurceramsoc. 2012.06.003

    Simulation of the Immobilization of Pu in the Gd2Zr2O7Matrix by Investigating the Thermophysical Properties of (Gd1?xCex)2Zr2O7+x

    XIA Xiang-Lai1,2LI Lin-Yan2,*GUO Fang1,*SU Wei3LIU Yan3CHEN Xiao-Mou3PAN She-Qi3
    (1College of Chemistry, Liaoning University, Shenyang 110036, P. R. China;2Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, P. R. China;3China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China)

    Polycrystalline samples of (Gd1?xCex)2Zr2O7+x(0 ≤ x ≤ 0.7) were synthesized by solid-state reaction using NaF as a flux at 1000 °C to simulate Pu-immobilization in the Gd2Zr2O7matrix. Phase transformation and variation of the thermal expansion coefficients (TECs) and thermal conductivities (TCs) of the samples with temperature and composition were investigated. Powder X-ray diffraction (XRD) patterns show that pure Gd2Zr2O7has a weakly ordered pyrochlore structure, whereas Ce-containing samples (i.e., the Pu-simulated solidified samples) exhibit a defect fluorite structure even if x is as low as 0.1. When x reaches 0.7, the XRD peaks of these samples widen. In the Ce 3d X-ray photoelectron spectrum (XPS) of (Gd1?xCex)2Zr2O7+xthere are six peaks located at binding energies of 881.7, 888.1, 897.8, 900.4, 907.1, and 916.1 eV, which are almost the same as the peaks of CeO2. The Ce 3d XPSreveals that the Ce species in (Gd1?xCex)2Zr2O7+xare tetravalent. The TECs of (Gd1?xCex)2Zr2O7+x(0 ≤ x ≤0.7) generally increase with increasing temperature. At the same temperature, the TECs and TCs exhibit the same variation trend with the composition of the simulated solidified forms: they decrease from x = 0 to 0.1 and then linearly increase from x = 0.1 to 0.7.

    Immobilization of nuclear waste; Pyrochlore structure; Defect fluorite structure; Thermal expansion coefficient; Thermal conductivity

    O642

    10.3866/PKU.WHXB201507203

    Received: March 26, 2015; Revised: July 16, 2015; Published on Web: July 20, 2015.

    *Corresponding authors. LI Lin-Yan, Email: lilinyan@tsinghua.edu.cn; Tel: +86-10-89796097. GUO Fang, Email: fguo@lnu.edu.cn.

    The project was supported by NSAF (11176014) and National Natural Science Foundation of China (21471088).

    國家自然科學(xué)基金委員會和中國工程物理研究院聯(lián)合基金(11176014)和國家自然科學(xué)基金(21471088)資助項目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    中國工程物理研究院遼寧大學(xué)葡萄膜
    基于目標航跡的引導(dǎo)誤差校正方法研究
    中國工程物理研究院
    軍工文化(2023年3期)2023-04-28 08:39:41
    葡萄膜炎繼發(fā)高眼壓的臨床特征分析
    CeAuGa3的力學(xué)性質(zhì)及磁性的第一性原理計算
    非感染性葡萄膜炎343例患者的分型、臨床表現(xiàn)及并發(fā)癥
    眼科新進展(2021年7期)2021-07-22 07:18:44
    臨床常用中藥提取物在葡萄膜炎治療中的新進展
    An Analysis of Deviation in Oliver Twist
    新生代(2019年4期)2019-11-13 21:46:34
    基于四傳感器的弱信號源定位方法
    傳感器世界(2019年9期)2019-03-17 18:52:46
    《遼寧大學(xué)學(xué)報》(自然科學(xué)版)征稿細則
    慢性葡萄膜炎患者生存質(zhì)量量表的驗證
    久久天躁狠狠躁夜夜2o2o| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 日韩免费av在线播放| 少妇的逼水好多| 99riav亚洲国产免费| 久久久水蜜桃国产精品网| 免费在线观看影片大全网站| 精品一区二区三区av网在线观看| 午夜激情欧美在线| 亚洲欧美一区二区三区黑人| 欧美日韩中文字幕国产精品一区二区三区| 久久国产精品影院| 精品久久久久久成人av| 亚洲国产精品成人综合色| 男人舔女人下体高潮全视频| 国产精品久久久久久久电影 | 久久这里只有精品中国| 免费无遮挡裸体视频| 午夜久久久久精精品| 狂野欧美白嫩少妇大欣赏| 搡老妇女老女人老熟妇| 久久婷婷人人爽人人干人人爱| 欧美3d第一页| 啪啪无遮挡十八禁网站| 久久精品91蜜桃| av女优亚洲男人天堂 | 嫁个100分男人电影在线观看| 男人舔女人的私密视频| 中文在线观看免费www的网站| 欧美黑人巨大hd| 男女做爰动态图高潮gif福利片| 免费无遮挡裸体视频| 看免费av毛片| 亚洲成人久久爱视频| 听说在线观看完整版免费高清| 精华霜和精华液先用哪个| 日本黄大片高清| 国产精品亚洲美女久久久| 国产精品电影一区二区三区| 国产成人欧美在线观看| 国产成人精品无人区| 色在线成人网| 啦啦啦观看免费观看视频高清| 后天国语完整版免费观看| 亚洲国产欧洲综合997久久,| 日本黄色视频三级网站网址| 欧洲精品卡2卡3卡4卡5卡区| 国产高清有码在线观看视频| 中文字幕人成人乱码亚洲影| 欧美日韩精品网址| 99热这里只有是精品50| 非洲黑人性xxxx精品又粗又长| 在线观看美女被高潮喷水网站 | 欧美日本亚洲视频在线播放| 99久久99久久久精品蜜桃| 在线看三级毛片| 性色avwww在线观看| 露出奶头的视频| 亚洲,欧美精品.| 精华霜和精华液先用哪个| 在线a可以看的网站| 亚洲av成人精品一区久久| 久久久国产成人精品二区| 一边摸一边抽搐一进一小说| 叶爱在线成人免费视频播放| 国产精品98久久久久久宅男小说| 午夜激情福利司机影院| 性色avwww在线观看| 夜夜爽天天搞| 一边摸一边抽搐一进一小说| 国产三级黄色录像| 国产一区二区在线观看日韩 | 无人区码免费观看不卡| 日本一二三区视频观看| 日韩欧美精品v在线| 老司机深夜福利视频在线观看| 99热6这里只有精品| 欧美午夜高清在线| 精品福利观看| www.熟女人妻精品国产| 在线观看免费午夜福利视频| 香蕉av资源在线| 在线视频色国产色| 老熟妇仑乱视频hdxx| 欧美日韩综合久久久久久 | 免费搜索国产男女视频| 精品久久久久久久毛片微露脸| 美女高潮喷水抽搐中文字幕| www.自偷自拍.com| 伊人久久大香线蕉亚洲五| 黄色 视频免费看| 中文资源天堂在线| 国产成人aa在线观看| 变态另类丝袜制服| av天堂在线播放| 久久久久国产精品人妻aⅴ院| 国产成人啪精品午夜网站| 成人无遮挡网站| 亚洲av成人av| 又粗又爽又猛毛片免费看| 无限看片的www在线观看| 国产精品 欧美亚洲| 国产美女午夜福利| 欧美性猛交╳xxx乱大交人| 啦啦啦免费观看视频1| 在线十欧美十亚洲十日本专区| www.精华液| 日韩高清综合在线| 亚洲欧美日韩卡通动漫| 亚洲中文av在线| 久久精品国产清高在天天线| 午夜福利欧美成人| 久久国产乱子伦精品免费另类| 男女午夜视频在线观看| 精品不卡国产一区二区三区| 看片在线看免费视频| 亚洲av电影不卡..在线观看| 操出白浆在线播放| 最近在线观看免费完整版| 一夜夜www| 19禁男女啪啪无遮挡网站| 亚洲av成人av| 天堂动漫精品| 99热只有精品国产| 亚洲国产精品sss在线观看| 国产精品亚洲美女久久久| 国内久久婷婷六月综合欲色啪| 熟女人妻精品中文字幕| 一个人免费在线观看电影 | 欧美黑人巨大hd| 香蕉av资源在线| 亚洲色图av天堂| 亚洲国产中文字幕在线视频| 午夜精品在线福利| 亚洲精品美女久久久久99蜜臀| 亚洲成人免费电影在线观看| 日韩精品中文字幕看吧| 亚洲成av人片在线播放无| 99热这里只有是精品50| 啦啦啦观看免费观看视频高清| 亚洲av成人精品一区久久| 淫妇啪啪啪对白视频| 夜夜躁狠狠躁天天躁| 国产高清videossex| 国产高清videossex| 欧美中文综合在线视频| 国产麻豆成人av免费视频| а√天堂www在线а√下载| 亚洲精品国产精品久久久不卡| 99久久成人亚洲精品观看| 男人的好看免费观看在线视频| 我要搜黄色片| av女优亚洲男人天堂 | 男女那种视频在线观看| 国产单亲对白刺激| 操出白浆在线播放| 国产精华一区二区三区| 99久久无色码亚洲精品果冻| 欧美日韩乱码在线| 长腿黑丝高跟| 天堂动漫精品| 18禁国产床啪视频网站| 啦啦啦免费观看视频1| 亚洲欧美日韩无卡精品| 久久精品人妻少妇| 黄色 视频免费看| 一区二区三区激情视频| 国产精品一区二区精品视频观看| 亚洲欧美精品综合一区二区三区| 激情在线观看视频在线高清| 国产精品亚洲一级av第二区| 亚洲精品在线美女| 成年女人看的毛片在线观看| 免费在线观看影片大全网站| 中文亚洲av片在线观看爽| 国内精品一区二区在线观看| 99久久99久久久精品蜜桃| 国产欧美日韩精品一区二区| 怎么达到女性高潮| xxx96com| 黄色丝袜av网址大全| 欧美另类亚洲清纯唯美| 久久久久国产一级毛片高清牌| 很黄的视频免费| 最近在线观看免费完整版| 桃红色精品国产亚洲av| 亚洲精品久久国产高清桃花| 亚洲av熟女| 岛国在线免费视频观看| 男女之事视频高清在线观看| 夜夜爽天天搞| 日本一二三区视频观看| av女优亚洲男人天堂 | 可以在线观看毛片的网站| 日日摸夜夜添夜夜添小说| 丁香六月欧美| 看黄色毛片网站| 在线观看舔阴道视频| 国产伦在线观看视频一区| 又黄又粗又硬又大视频| 成年版毛片免费区| www.自偷自拍.com| 久久人人精品亚洲av| 欧美在线黄色| 少妇丰满av| 国产主播在线观看一区二区| 色吧在线观看| 国产一区二区激情短视频| 国产黄a三级三级三级人| 天天添夜夜摸| 日韩高清综合在线| 国产淫片久久久久久久久 | 欧美色欧美亚洲另类二区| 欧美黄色淫秽网站| 蜜桃久久精品国产亚洲av| 中文在线观看免费www的网站| 搡老熟女国产l中国老女人| 日本在线视频免费播放| 亚洲中文日韩欧美视频| 成人亚洲精品av一区二区| www.熟女人妻精品国产| 国产精华一区二区三区| 舔av片在线| 热99在线观看视频| 97碰自拍视频| 久久精品影院6| 男人舔女人下体高潮全视频| 在线视频色国产色| 亚洲,欧美精品.| 国产成年人精品一区二区| 亚洲片人在线观看| 国产精品久久久人人做人人爽| АⅤ资源中文在线天堂| 欧美性猛交╳xxx乱大交人| 一个人观看的视频www高清免费观看 | 成人精品一区二区免费| 两性午夜刺激爽爽歪歪视频在线观看| 精品国产亚洲在线| 国产爱豆传媒在线观看| 悠悠久久av| 巨乳人妻的诱惑在线观看| 国产高清视频在线观看网站| 亚洲精品美女久久av网站| 成人国产综合亚洲| 亚洲av五月六月丁香网| av福利片在线观看| ponron亚洲| 丰满人妻一区二区三区视频av | 小蜜桃在线观看免费完整版高清| 91在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品一卡2卡三卡4卡5卡| 成人av一区二区三区在线看| 丁香欧美五月| 国产欧美日韩一区二区三| 久久香蕉国产精品| 香蕉丝袜av| 后天国语完整版免费观看| 亚洲国产色片| 色综合欧美亚洲国产小说| 国产av一区在线观看免费| 国产成+人综合+亚洲专区| 99视频精品全部免费 在线 | 亚洲av熟女| 亚洲欧美日韩高清专用| 性欧美人与动物交配| 高潮久久久久久久久久久不卡| 国产亚洲精品综合一区在线观看| 少妇熟女aⅴ在线视频| 日本成人三级电影网站| 午夜福利在线在线| 男女下面进入的视频免费午夜| 国产成人福利小说| 国产成人精品无人区| 好男人在线观看高清免费视频| 午夜福利成人在线免费观看| 久久久精品大字幕| 欧美日韩瑟瑟在线播放| 老熟妇仑乱视频hdxx| 男人舔女人下体高潮全视频| 国产一区二区激情短视频| 日日干狠狠操夜夜爽| 嫁个100分男人电影在线观看| 操出白浆在线播放| 脱女人内裤的视频| 亚洲在线自拍视频| 精品福利观看| 老熟妇乱子伦视频在线观看| 欧美日韩黄片免| 国产激情偷乱视频一区二区| 免费在线观看亚洲国产| 色av中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲欧美精品综合一区二区三区| 人人妻,人人澡人人爽秒播| 岛国视频午夜一区免费看| 亚洲欧美日韩卡通动漫| 99热6这里只有精品| 黑人欧美特级aaaaaa片| 欧美绝顶高潮抽搐喷水| 精品国产超薄肉色丝袜足j| 宅男免费午夜| 一个人免费在线观看电影 | 在线观看66精品国产| 日本黄色视频三级网站网址| 午夜免费成人在线视频| 久久99热这里只有精品18| 琪琪午夜伦伦电影理论片6080| 日韩av在线大香蕉| 在线观看免费午夜福利视频| 欧美一级a爱片免费观看看| 国语自产精品视频在线第100页| 伊人久久大香线蕉亚洲五| 久久99热这里只有精品18| 18禁美女被吸乳视频| 最近在线观看免费完整版| 精品久久久久久久久久久久久| 757午夜福利合集在线观看| 国产99白浆流出| 午夜福利18| 亚洲18禁久久av| 真人做人爱边吃奶动态| 可以在线观看毛片的网站| 伊人久久大香线蕉亚洲五| 淫秽高清视频在线观看| 国产精品久久电影中文字幕| 亚洲午夜精品一区,二区,三区| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 久久欧美精品欧美久久欧美| 久久久精品欧美日韩精品| a在线观看视频网站| 亚洲欧美激情综合另类| 中文字幕久久专区| 每晚都被弄得嗷嗷叫到高潮| 女同久久另类99精品国产91| 97碰自拍视频| 精华霜和精华液先用哪个| 天堂√8在线中文| 亚洲av电影在线进入| 亚洲精品久久国产高清桃花| 1024手机看黄色片| 国产成人欧美在线观看| 亚洲国产精品久久男人天堂| 99热这里只有是精品50| 欧美日韩国产亚洲二区| 成人三级黄色视频| 国产精品精品国产色婷婷| 久久久久性生活片| 亚洲av中文字字幕乱码综合| 男人舔女人的私密视频| 国产精品日韩av在线免费观看| 在线观看免费午夜福利视频| 成人欧美大片| 国产高清视频在线播放一区| 国产欧美日韩精品亚洲av| 好男人在线观看高清免费视频| 天堂网av新在线| 国产一级毛片七仙女欲春2| 99re在线观看精品视频| 极品教师在线免费播放| 国产成人一区二区三区免费视频网站| 久久人妻av系列| 天天一区二区日本电影三级| 婷婷精品国产亚洲av在线| 丰满人妻一区二区三区视频av | 亚洲国产精品合色在线| 国产野战对白在线观看| 色综合站精品国产| 十八禁人妻一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产高清国产av| 日本与韩国留学比较| 综合色av麻豆| 国产麻豆成人av免费视频| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 九九热线精品视视频播放| 美女 人体艺术 gogo| 国内精品久久久久精免费| 久久久久久人人人人人| 波多野结衣高清作品| 操出白浆在线播放| 欧美日韩国产亚洲二区| 久久人人精品亚洲av| 国产精品av久久久久免费| 免费看日本二区| 搞女人的毛片| 国产不卡一卡二| 国产精品久久视频播放| 亚洲av成人精品一区久久| 99久久久亚洲精品蜜臀av| 国产精品九九99| 无人区码免费观看不卡| 757午夜福利合集在线观看| 亚洲国产精品999在线| 在线观看美女被高潮喷水网站 | 国产v大片淫在线免费观看| 亚洲国产日韩欧美精品在线观看 | 麻豆成人av在线观看| 亚洲国产精品sss在线观看| 男女之事视频高清在线观看| 午夜成年电影在线免费观看| 成人特级黄色片久久久久久久| 国产欧美日韩精品亚洲av| 很黄的视频免费| 免费在线观看视频国产中文字幕亚洲| 午夜福利在线在线| 制服丝袜大香蕉在线| 熟女少妇亚洲综合色aaa.| 九九在线视频观看精品| 国产91精品成人一区二区三区| www.www免费av| 国产97色在线日韩免费| 日韩欧美在线乱码| 12—13女人毛片做爰片一| 91麻豆精品激情在线观看国产| 亚洲av日韩精品久久久久久密| 最近在线观看免费完整版| 最新美女视频免费是黄的| h日本视频在线播放| 欧美在线黄色| 亚洲性夜色夜夜综合| 亚洲人成伊人成综合网2020| 可以在线观看毛片的网站| 一进一出抽搐gif免费好疼| 一个人免费在线观看的高清视频| 国产日本99.免费观看| 日韩精品中文字幕看吧| 亚洲av美国av| 在线观看免费午夜福利视频| 精品久久久久久久人妻蜜臀av| 国产精品99久久99久久久不卡| 精品国产美女av久久久久小说| 免费观看的影片在线观看| 少妇的逼水好多| 成年女人看的毛片在线观看| 欧美午夜高清在线| 我要搜黄色片| 欧美黄色淫秽网站| 小说图片视频综合网站| 中文字幕人妻丝袜一区二区| 日本一二三区视频观看| 国产真人三级小视频在线观看| 一个人免费在线观看电影 | 国产精品影院久久| 亚洲aⅴ乱码一区二区在线播放| 中文字幕最新亚洲高清| 好男人电影高清在线观看| 欧美激情在线99| 欧美最黄视频在线播放免费| av国产免费在线观看| 两性夫妻黄色片| 亚洲av片天天在线观看| 少妇丰满av| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 久久这里只有精品中国| 久久久色成人| 老司机深夜福利视频在线观看| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 久久亚洲真实| 天堂网av新在线| 日本与韩国留学比较| 精品久久久久久久末码| 看免费av毛片| 无遮挡黄片免费观看| 国产精品久久视频播放| 脱女人内裤的视频| 日韩欧美精品v在线| 精品久久久久久久末码| 国产激情欧美一区二区| 欧美av亚洲av综合av国产av| 欧美在线一区亚洲| 国产精品野战在线观看| 日韩 欧美 亚洲 中文字幕| 中亚洲国语对白在线视频| 国产av麻豆久久久久久久| 国产精品久久久av美女十八| 高清毛片免费观看视频网站| 日韩欧美在线乱码| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 欧美乱色亚洲激情| 国产精品九九99| www.熟女人妻精品国产| 丁香欧美五月| 国产淫片久久久久久久久 | 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 久久国产精品人妻蜜桃| 精品人妻1区二区| 麻豆国产av国片精品| 老司机在亚洲福利影院| 亚洲国产欧洲综合997久久,| 成年女人毛片免费观看观看9| 精品国产超薄肉色丝袜足j| 18禁美女被吸乳视频| 成人一区二区视频在线观看| 男人舔女人下体高潮全视频| 黄色片一级片一级黄色片| 一二三四在线观看免费中文在| 国产一区二区激情短视频| 亚洲第一电影网av| 97人妻精品一区二区三区麻豆| 香蕉国产在线看| 国产毛片a区久久久久| 精品久久久久久久毛片微露脸| 精品午夜福利视频在线观看一区| av在线蜜桃| 欧美日韩乱码在线| 啦啦啦观看免费观看视频高清| 日韩 欧美 亚洲 中文字幕| 可以在线观看的亚洲视频| 日本成人三级电影网站| 观看美女的网站| 人妻丰满熟妇av一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲人与动物交配视频| 在线a可以看的网站| 嫩草影院精品99| 久久久精品大字幕| 久久精品国产亚洲av香蕉五月| 国产亚洲欧美98| 成人av一区二区三区在线看| 中国美女看黄片| 日韩国内少妇激情av| 国产一区二区激情短视频| 伦理电影免费视频| 国产野战对白在线观看| 国产欧美日韩一区二区精品| 在线a可以看的网站| 色精品久久人妻99蜜桃| 国产精品亚洲美女久久久| 国产欧美日韩一区二区三| 日韩有码中文字幕| 欧美日韩综合久久久久久 | 亚洲精品456在线播放app | 亚洲成av人片在线播放无| 国产主播在线观看一区二区| 99久久综合精品五月天人人| 999精品在线视频| 岛国在线免费视频观看| 99国产精品99久久久久| 哪里可以看免费的av片| 欧美国产日韩亚洲一区| 国产精品久久久av美女十八| 午夜精品久久久久久毛片777| 三级男女做爰猛烈吃奶摸视频| 国产高清有码在线观看视频| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 黄色丝袜av网址大全| 国产不卡一卡二| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 亚洲精品一卡2卡三卡4卡5卡| 18禁美女被吸乳视频| 国产亚洲精品一区二区www| 综合色av麻豆| 亚洲无线观看免费| 久久中文字幕人妻熟女| 99久久精品一区二区三区| 国产精品一区二区三区四区久久| 国产高清三级在线| 久久精品国产综合久久久| 男女做爰动态图高潮gif福利片| 欧美中文日本在线观看视频| 又粗又爽又猛毛片免费看| 久久这里只有精品19| 大型黄色视频在线免费观看| 可以在线观看的亚洲视频| 亚洲av成人不卡在线观看播放网| 国产精品美女特级片免费视频播放器 | 99久久精品国产亚洲精品| 国产精品综合久久久久久久免费| 美女cb高潮喷水在线观看 | 叶爱在线成人免费视频播放| 波多野结衣巨乳人妻| 亚洲熟妇熟女久久| 夜夜躁狠狠躁天天躁| 岛国视频午夜一区免费看| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆 | 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三| av黄色大香蕉| 91麻豆精品激情在线观看国产| 在线播放国产精品三级| 国产免费av片在线观看野外av| 欧美极品一区二区三区四区| 精品久久久久久,| 国产69精品久久久久777片 | 禁无遮挡网站| 国产午夜福利久久久久久| 欧美成狂野欧美在线观看| 999精品在线视频| av女优亚洲男人天堂 | 18美女黄网站色大片免费观看| 成人国产综合亚洲| av视频在线观看入口| 亚洲色图av天堂| 亚洲精华国产精华精| 一级黄色大片毛片| 色播亚洲综合网| av天堂中文字幕网| 在线观看午夜福利视频| 全区人妻精品视频|