• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    酪氨酸猝滅Eosin Y的熒光

    2015-12-05 06:30:11王經(jīng)東于安池
    物理化學(xué)學(xué)報(bào) 2015年9期
    關(guān)鍵詞:單光子基態(tài)飛秒

    王經(jīng)東 李 爽 呂 榮 于安池

    (中國人民大學(xué)化學(xué)系, 北京 100872)

    酪氨酸猝滅Eosin Y的熒光

    王經(jīng)東 李 爽 呂 榮 于安池*

    (中國人民大學(xué)化學(xué)系, 北京 100872)

    氨基酸殘基對探針分子的熒光猝滅行為可以為生物大分子的結(jié)構(gòu)及構(gòu)象動(dòng)力學(xué)研究提供重要的信息.本文運(yùn)用飛秒瞬態(tài)吸收光譜和時(shí)間相關(guān)單光子計(jì)數(shù)實(shí)驗(yàn)系統(tǒng)研究了在水(H2O)和氘代水(D2O)溶液中乙?;〈野彼?AcTyr)對Eosin Y的超快熒光猝滅動(dòng)力學(xué)過程. 發(fā)現(xiàn)導(dǎo)致AcTyr對Eosin Y熒光猝滅的主要原因是由于它們之間形成了短壽命的基態(tài)復(fù)合物. 我們還發(fā)現(xiàn)Eosin Y與AcTyr形成的基態(tài)復(fù)合物的激發(fā)態(tài)壽命具有明顯的動(dòng)力學(xué)同位素效應(yīng), 表明AcTyr對Eosin Y的熒光猝滅是通過質(zhì)子耦合電子轉(zhuǎn)移過程發(fā)生的.

    飛秒瞬態(tài)吸收光譜; 時(shí)間相關(guān)單光子計(jì)數(shù); 基態(tài)復(fù)合物; 酪氨酸猝滅; 質(zhì)子耦合電子轉(zhuǎn)移

    1 Introduction

    Quenching of a fluorescent probe by amino acid residues can provide valuable information about structures and conformational dynamics of peptides and proteins.1–11It is known that many processes such as fluorescence resonance energy transfer (FRET), Dexter electron exchange, exciplex or ground-state complex formation, and photoinduced electron transfer (PET), can lead to the fluorescence quenching of a fluorophore.12Unlike FRET and Dexter transfer processes, PET does not require the spectral overlap between a donor and an acceptor and is only governed by the redox chemistry of the donor and acceptor. Besides, PET requires a contact formation between a donor and an acceptor at a sub-nanometer scale and makes it an elegant method to probe subtle structural or conformational changes in biopolymers.13

    Among amino acids, tryptophan and tyrosine are the two that can cause the most obvious fluorescence quenching of a fluorophore in aqueous solution or in protein.1–11,13–30Up to date, thefluorescence quenching of a fluorophore by tryptophan has been extensively studied and it is generally reported that tryptophan quenches the fluorescence of the fluorophore via a PET interaction.4–7,10,11,14–26However for the fluorescence quenching of a fluorophore by tyrosine, its mechanism still debates.14–17,28–30Some studies suggest that tyrosine quenches the fluorescence of a fluorophore via a PET process,14–17while some other studies suggest that tyrosine quenches the fluorescence of a fluorophore via a photoinduced proton-coupled electron transfer (PCET) process.28–30It is known that both PET and PCET are important elementary steps in biochemical reactions.31–33

    Recently, we studied the ultrafast fluorescence quenching dynamics of Atto655 in N-acetyl-tyrosine (AcTyr) solution with femtosecond transient absorption spectroscopy and found that AcTyr quenched the fluorescence of Atto655 in aqueous solution via a PCET interaction.34To search another PCET system, we studied the fluorescence quenching dynamics of Eosin Y by AcTyr in aqueous solution in this work. The reason that we selected Eosin Y is due to that the photophysics and photochemistry of Eosin Y have been of widespread interest and it is frequently used as a fluorescent probe and biological stain.35Due to the low solubility of tyrosine in water, we selected AcTyr instead of tyrosine. In this work, we first obtained the transient absorption spectra of Eosin Y in the absence and presence of 200 mmolL–1AcTyr solution at various delay times with a femtosecond transient absorption spectrometer. Then, we measured the first electronic excited-state decays of Eosin Y in the presence of different concentration of AcTyr in H2O and D2O solutions. We found that the decay time of the first electronic excited-state of Eosin Y in the presence of AcTyr in D2O solution was different with that in H2O solution. The molecular structures of both Eosin Y and N-acetyl-tyrosine are displayed in Scheme 1.

    2 Materials and methods

    Eosin Y (> 99%) and N-acetyl-tyrosine (> 99%) were purchased from Sigma-Aldrich and used as received. 1 × TE (Tris-HCl EDTA) buffer (10 mmolL–1Tris-HCl + 1 mmolL–1EDTA, pH = 8.0) was diluted from 100 × TE buffer (Sigma-Aldrich). Ultrapure H2O (18.2 MΩcm) was obtained through a Millipore Milli-Q water purification system. Ultra-D D2O (> 99.9%) was purchased from Sigma-Aldrich and used as received.

    Steady-state absorption spectra were recorded on a Varian Cary 50 UV-Vis spectrometer. Steady-state fluorescence spectra were recorded on a Perkin-Elmer LS-55 luminescence spectrometer. Fluorescence lifetimes were obtained on a homemade time-correlated single-photon counting (TCSPC) apparatus.36Briefly, the output of an optical parametric amplifier (OPA) pumped by a Spectra Physics 1 kHz amplified Ti:Sapphire laser was used as the excitation light. The emission was collected and sent into a Princeton Instruments SP2358 monochromator and detected with a PDM-50CT single photon avalanche diode. The NIM-output of the PDM 50CT and the output of a fast TDA 200 photodiode were respectively connected to a PicoQuant GmbH TimeHarp 200 correlator as the start and stop pulses. Magic-angle detection was used. The instrumental response function of this equipment was about 180 ps.

    The femtosecond transient absorption setup was described elsewhere.37Briefly, the outputs of a Spectra Physics 1 kHz amplified Ti:sapphire laser were used to pump an OPA and to generate the white light continuum, respectively. The outputs of the OPA were used as the pump pulses, and the white light continuum generated by a spinning fused silica disk were used as the probe pulses. The timing between the pump and probe pulses was controlled using a Newport M-ILS250CC motorized translation stage. The time resolution of this apparatus was about 150 fs.

    Scheme 1 Molecular structures of Eosin Y and N-acetyl-tyrosine

    In the TCSPC measurements, the concentrations of the samples were kept at about 1 × 10–6molL–1. In the femtosecond transient absorption measurements, the concentrations of the samples were kept at about 1 × 10–5molL–1. A homemade magnet stirring bar was placed inside a 1 mm path length sample cell and rotated by an external magnet motor to keep the sample solution fresh.

    3 Results and discussion

    The formation of a ground-state complex between a fluorophore and a quencher can be revealed through its ensemble steady-state absorption spectra.16–18Fig.1 displays the steadystate absorption spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer. The inset in Fig.1 is the expended view of the steady-state absorption spectra of Eosin Y with different concentrations of AcTyr. Clearly, the absorbance of Eosin Y decreases slightly and its absorption maximum shifts bathochromically upon addition of AcTyr. Furthermore, titration of Eosin Y with AcTyr solution shows an isosbestic point at around 522 nm in the absorption spectra of Eosin Y with different concentrations of AcTyr (inset of Fig.1). These findings demonstrate that a ground-state complex between Eosin Y and AcTyr was formed in aqueous solution.

    To explore the interaction between Eosin Y and AcTyr, we respectively recorded the fluorescence spectra of Eosin Y under different concentrations of AcTyr in aqueous solution. Fig.2 shows the absorbance-corrected fluorescence spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer. The fluorescence intensity of Eosin Y de-creases upon addition of AcTyr, indicating that AcTyr can quench the fluorescence of Eosin Y.

    Fig.1 Steady-state absorption spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer

    To quantitatively analyze the fluorescence quenching behavior of Eosin Y by AcTyr, we displayed the steady-state fluorescence intensity Stern-Volmer (SV) plot of Eosin Y in the presence of AcTyr in 1 × TE pH = 8.0 buffer in Fig.3. It is clear that the SV plot of Eosin Y in AcTyr solution has an upward curvature. Through a quadratic Stern-Volmer model F0/F = (1 + KS[Q])(1 + KD[Q])(F and F0are the fluorescence intensity of Eosin Y in the presence and absence of AcTyr, and [Q] is the concentration of AcTyr), which incorporated both static (KS) and dynamic (KD) components, we determined that AcTyr quenches the fluorescence of Eosin Y with a KSvalue of (14.5 ± 1.0) mol–1L and a KDvalue of (3.0 ± 0.6) mol–1L in 1 × TE pH = 8.0 buffer solution. The KSvalue is about 5 times larger than the KDvalue, indicating that the static fluorescence quenching between Eosin Y and AcTyr through a ground-state complex formation is dominant in the fluorescence quenching of Eosin Y by AcTyr, which is in agreement with our steadystate absorption observation (Fig.1).

    Fig.2 Absorbance-corrected steady-state fluorescence spectra of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer

    Fig.3 Steady-state Stern-Volmer plot of Eosin Y in the presence of AcTyr in 1 × TE pH = 8.0 buffer

    To confirm that the dynamic quenching process between Eosin Y and AcTyr is minimal, we also recorded the fluorescence decay kinetics of Eosin Y in the presence of different concentrations of AcTyr in aqueous solution by means of TCSPC experiments (The time resolution of our TCSPC setup is low and it can only catch the dynamic quenching process). Fig.4 shows the magic-angle fluorescence decay curves of Eosin Y under different concentrations of AcTyr in 1 × TE pH = 8.0 buffer solution. The fluorescence decay of Eosin Y becomes slightly faster upon increasing AcTyr concentration. The fluorescence decay of Eosin Y without AcTyr can be fitted by a single exponential decay function, while the fluorescence decays of Eosin Y with AcTyr need either a single exponential decay function or a summation of two exponential decay functions to be fitted. Table 1 summarizes all fitting parameters for the magic-angle fluorescence decays of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0buffer solution. escence quenching modelτ and τ0are the fluorescence lifetime of Eosin Y in the presence and absence of AcTyr), we derived that AcTyr quenches dynamically the fluorescence of Eosin Y with amol–1L in 1 × TE pH = 8.0 buffer. The obtainedvalue ((2.2 ± 0.4) mol–1L) with time-resolved data shown in Fig.5 is quite similar as the obtained KDvalue ((3.0 ± 0.6) mol–1L) with steadystate data shown in Fig.3. With the obtainedvalue ((2.2 ± 0.4) mol–1L) and fluorescence lifetime of Eosin Y (1.10 ns), we derived a collision quenching rate constant, kD= (2.0 ± 0.3) × 109mol–1Ls–1, for the bimolecular fluorescence quenching

    With the averaged lifetime (< τ >) listed in Table 1, we obtained the time-resolved Stern-Volmer plot of Eosin Y in the presence of AcTyr in aqueous solution (Fig.5). Obviously, the obtained quenching efficiency of Eosin Y by AcTyr at each AcTyr concentration with the time-resolved fluorescence measurement (Fig.5) is extremely smaller than that with the steadystate fluorescence measurement (Fig.3). Through a linear fluor-process between Eosin Y and AcTyr. The obtained kDvalue is about 4 times smaller than the bimolecular collision rate constant predicted by the Smoluchowski equation for a diffusionlimited process,38indicating that not all collisions between Eosin Y and AcTyr are efficient to quench the fluorescence of Eosin Y.

    Fig.4 Magic-angle fluorescence decays of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer

    Tabl1 Fluorescence decay parameters for Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer, obtained from magic-angle time-correlated single-photon counting measurements

    Fig.5 Time-resolved Stern-Volmer plot of Eosin Y in the presence ofAcTyr in 1 × TE pH = 8.0 buffer

    Fig.6 Femtosecond transient absorption spectra of Eosin Y in the absence (A) and presence (B) of 200 mmolL–1AcTyr solution in 1 × TE pH = 8.0 buffer at various time delays

    To investigate the ultrafast fluorescence quenching dynamics of Eosin Y by AcTyr, we measured the transient absorption spectra of Eosin Y in the absence and presence of 200 mmolL–1AcTyr solution at various time delays by using a femtosecond transient absorption spectrometer, as shown in Fig.6. The obtained transient absorption spectra of eosin Y in aqueous solution at various delays (Fig.6A) are in agreement with the previous report.39The transient absorption spectra of Eosin Y mainly consists of two bands: one absorption band located in the wavelength range of 390–470 nm due to its singlet excited-state absorption and one bleaching band located in the wavelength range of 470–650 nm where is coinciding with its ground-state absorption and excited-state stimulated emission. Due to the limitation scanning range of our femtosecond transient absorption spectrometer and the relatively low absorption extinction coefficient of the triplet electronic state of Eosin Y, we only observed a tiny absorption band in the wavelength range of 600–700 nm arising from its triplet electronic state at the longer delay time (i.e., 1400 ps). Besides, it is also found that the time evolution of the transient absorption spectra of Eosin Y in 200 mmolL–1AcTyr solution is faster than that in aqueous solution.

    Since the time evolution of the transient absorption spectra of Eosin Y in the wavelength range of 390–470 nm (first electronic excited-state absorption) is much simpler than that in the wavelength range of 470–700 nm, we monitor the first electronic excited-state decay kinetics of Eosin Y to catch its fluores-cence quenching dynamics by AcTyr in aqueous solution. Fig.7 displays the first electronic excited-state decay kinetics of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 buffer solution. Clearly, the decay of the first electronic excited-state of Eosin Y becomes faster upon addition of AcTyr. The decay of the first electronic excited-state of Eosin Y without AcTyr can be fitted by a single exponential decay function, while the decays of the first electronic excited-state of Eosin Y with AcTyr need a summation of two exponential decay functions to be fitted. All fitting parameters are summarized in Table 2. From the data listed in Table 2, it is found that the time constant of the fast component (τ1) of Eosin Y in the presence of AcTyr does not vary with the increase of AcTyr concentration, but its amplitude (a1) does. This is a well-known behavior40and indicates the formation of a ground-state complex between Eosin Y and AcTyr in aqueous solution, which is also consistent with our steady-state absorption and fluorescence spectroscopy measurements. Besides, the slower time constant of Eosin Y in different AcTyr concentrations (τ2listed in Table 2) also agrees well with the obtained averaged time constant from our TCSPC measurement (< τ > listed in Table 1), which reflects the dynamic fluorescence quenching process between Eosin Y and AcTyr.

    Fig.7 Magic-angle femtosecond pump-probe transients of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 H2O buffer

    Researchers generally use so-called “static” and “dynamic”quenching to account for the deactivation of excited fluorophores.18,41However, Zewail et al.40pointed out that this distinction depends on the actual timescale of the utilized experimental methods. Herein, we measured the fluorescence quenching kinetics of Eosin Y by AcTyr with a femtosecond transient absorption spectrometer. The time resolution of the femtosecond transient absorption spectrometer (150 fs ) is far higher than that of typical time correlated single photon counting setup (100 ps). Thus, the ~35 ps component listed in the Table 2 should be the excited-state lifetime of the ground-state complex formed between Eosin Y and AcTyr in 1 × TE H2O buffer solution.

    Tabl2 Excited-state decay parameters for Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 H2O buffer, obtained from femtosecond transient absorption measurements

    Fig.8 Magic-angle femtosecond pump-probe transients of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE pH = 8.0 D2O buffer

    Recently, it is found that AcTyr quenches the fluorescence of Atto655 via a PCET process in aqueous solution.34Moreover, it is reported that the observation of a kinetic isotope effect (KIE) is the hallmark of a PCET reaction.33,42,43To confirm whether the fluorescence quenching of Eosin Y by AcTyr in aqueous solution undergoes a PCET process or not, we also measured the first electronic excited-state decays of Eosin Y in the presence of different concentrations of AcTyr in 1 × TE D2O buffer solution, as shown in Fig.8. Table 3 listed the fitting parameters for the excited-state decays of Eosin Y in the presence of different concentrations of AcTyr in 1×TE D2O buffer solution. Similarly, the time constant of the fast component (~54 ps) of Eosin Y in the presence of AcTyr in 1 × TE D2O buffer solution also does not vary with the increase of AcTyr concentration, but its amplitude does. Thus, the ~54 ps component listed in the Table 3 is also the excited-state lifetime of the ground-state complexformed between Eosin Y and AcTyr in 1 × TE D2O buffer solution. The excited-state lifetime of the ground-state complex formed between Eosin Y and AcTyr in 1 × TE D2O buffer solution is different with that in 1 × TE H2O buffer solution and it shows an obvious KIE effect (~54 ps in 1 × TE D2O buffer solution vs ~35 ps in 1 × TE H2O buffer solution), indicating that AcTyr also quenches the fluorescence of Eosin Y via a PCET process.

    Tabl3 Excited-state decay parameters for Eosin Y in the presence of different concentrations of AcTyr in 1×TE D2O buffer, obtained from femtosecond transient absorption measurements

    In this work, we studied the fluorescence quenching dynamics of Eosin Y by AcTyr in aqueous solution and found that the excited-state lifetime of the ground-state complex formed between Eosin Y and AcTyr in 1 × TE H2O buffer solution is about 35 ps. With the kinetic scheme shown in our previous reports,26we derived that the PCET rate from AcTyr to Eosin Y is about 2.8 × 1010s–1. For a PCET process, various levels of theory have been employed.32,33However in the recent, Mayer and coworkers44,45proved that the PCET reaction can be well described by the semiclassical Marcus electron transfer equation31

    where ΔG is the driving force for the electron transfer reaction, J is the electronic coupling matrix element between donor and acceptor, λ is the reorganization energy, ?is the Planck constant, k is the Boltzman constant, and T is the temperature. The driving force ΔG can be estimated by using Weller’s equation46

    where Eoxis the first one-electron oxidation peak potential of the donor, Eredis the first one-electron reduction peak potential of the acceptor, ESis the energy of the zero-zero transition to the lowest excited singlet state, and C is the solvent dependent Coulombic interaction energy, which can be neglected in moderately polar environment.

    From literature, it is found that the peak potential for oneelectron reduction of Eosin Y is around –0.79 V (vs normal hydrogen electrode, NHE)47and the first one-electron oxidation peak potential of AcTyr in aqueous solution is around 0.89 V (vs NHE)29,48. Besides, from the steady-state absorption and fluorescence spectra shown in Figs.1 and 2, it is found that the zero-zero transition energy (ES) of Eosin Y in aqueous solution to be 2.35 eV (~527 nm). Substituting these values into equation (2), we derived that ΔG = –0.67 eV for the PCET reaction between Eosin Y and AcTyr. Assuming a typical reorganization energy of λ = 1.2 eV for aqueous solution40,45,49and substituting the PCET rate (2.8 × 1010s–1) from AcTyr to Eosin Y into equation (1), we derive that the electronic coupling constant for the PCET reaction between Eosin Y and AcTyr is about 35 cm–1. Gotz et al.15reported that the electronic coupling constant for the reaction between labeled fluorescein and Tyr residue in FluA-Fl complex is 140 cm–1, which is quite different with our obtained electronic coupling constant for the reaction between Eosin Y and AcTyr. Interestingly, Mayer and coworkers45studied the PCET reactions of a series of hydrogen-bonded phenols and found that the electronic coupling constants for the reactions of hydrogen-bonded phenols are in the range of 20–30 cm–1, which is quite similar to our obtained electronic coupling constant for the reaction between Eosin Y and AcTyr.

    The fluorophore-tryptophan pairs have been widely used to monitor the conformational dynamics of peptides and proteins.4–8,13The current study demonstrates that the fluorophore-tyrosine pairs could also be employed to study the conformational dynamics of peptides and proteins. Fluorescence correlation spectroscopy (FCS)50has proved to be one of important experimental methods to study the conformational dynamics of a biopolymer. Under the assumption that the brightness (Q) of the dark species is zero, researchers could extract both the forward and reverse rate constants from a single FCS experimental curve,18which are important parameters to understand the conformational dynamics of a biopolymer. However, our recent study shows that the assumption of Q = 0 would introduce noticeable errors in its equilibrium constant for the systems with Q ≥ 0.01.34The value of Q for the dark species has to be determined with an additional experiment so as to obtain the correct forward and reverse rate constants. With the data listed in Table 2, we derived that the relative brightness of the groundstate complex formed between Eosin Y and AcTyr (Q = τ1/τF, where τFis the fluorescence lifetime of free dye) is 0.032 ± 0.004. Suppose a reaction (K = 1) involving Eosin Y and tyrosine in biopolymers, it will introduce about –12% deviation of its equilibrium constant under the assumption of Q = 0. The femtosecond study on the ultrafast fluorescence quenching dynamics of a fluorophore by amino acid residue in aqueous solution or in protein can provide valuable parameter (Q) for the study of the conformational dynamics of a biopolymer with the FCS method.

    4 Conclusions

    We studied the ultrafast fluorescence quenching dynamics of Eosin Y in the presence of AcTyr in H2O and D2O solutions with steady-state absorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, and femtosecond transient absorption spectroscopy. Both the steady-state and time-resolved studies demonstrate that the formation of a ground-state complex between Eosin Y and AcTyr is the major process to cause the fluorescence quenching of Eosin Y by AcTyr in aqueous solution. The kinetic isotope effect on the first electronic excited-state decay kinetics of Eosin Y in the presence of AcTyr reveals that AcTyr quenches the fluorescence of Eosin Y in aqueous solution via a PCET process. With the version of the semiclassical Marcus electron transfer theory,we derived that the electronic coupling constant for the PCET reaction between Eosin Y and AcTyr in aqueous solution is around 35 cm–1. The obtained electronic coupling constant for the reaction between Eosin Y and AcTyr does not agree with the repoted electronic coupling constant for the reaction between labeled fluorescein and Tyr residue in FluA-Fl complex by Gotz et al.,15but it agrees well with the electronic coupling constants for the reactions of hydrogen-bonded phenols by Mayer and coworkers.45With the obtained kinetic data, we derived that the relative brightness of the formed ground-state complex between Eosin Y and AcTyr is 0.032 ± 0.004, which is an important parameter to understand the conformational dynamics of a biopolymer.

    (1)Michalet, X.; Weiss, S.; Jager, M. Chem. Rev. 2006, 106, 1785. doi: 10.1021/cr0404343

    (2)Royer, C. A. Chem. Rev. 2006, 106, 1769. doi: 10.1021/cr0404390

    (3)Edman, L.; Mets, U.; Rigler, R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 6710. doi: 10.1073/pnas.93.13.6710

    (4)Neuweiler, H.; Banachewicz, W.; Fersht, A. R. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 22106. doi: 10.1073/pnas.1011666107

    (5)Neuweiler, H.; Doose, S.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 16650. doi: 10.1073/pnas.0507351102

    (6)Rogers, J. M. G.; Poishchuk, A. L.; Guo, L.; Wang, J.; DeGrado, W. F.; Gai, F. Langmuir 2011, 27, 3815. doi: 10.1021/la200480d

    (7)Chen, H.; Rhoades, E.; Butler, J. S.; Loh, S. N.; Webb, W. W. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 10459. doi: 10.1073/pnas.0704073104

    (8)Doose, S.; Neuweiler, H.; Barsch, H.; Sauer, M. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 17400. doi: 10.1073/pnas.0705605104

    (9)Yang, H.; Luo, G. B.; Karnchanaphanurach, P.; Louie, T. M.; Rech, I.; Cova, S.; Xun, L. Y.; Xie, X. S. Science 2003, 302, 262. doi: 10.1126/science.1086911

    (10)Hudgins, R. R.; Huang, F.; Gramlich, G.; Nau, W. M. J. Am. Chem. Soc. 2002, 124, 556. doi: 10.1021/ja010493n

    (11)Marme, N.; Knemeyer, J. P.; Wolfrum, J.; Sauer, M. Angew. Chem. Int. Edit. 2004, 43, 3798.

    (12)Goldberg, J. M.; Batjargal, S.; Chen, B. S.; Petersson, E. J. J. Am. Chem. Soc. 2013, 135, 18651. doi: 10.1021/ja409709x

    (13)Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2009, 10, 1389. doi: 10.1002/cphc.v10:9/10

    (14)Chen, H.; Ahsan, S. S.; Santiago-Berrios, M. E. B.; Abruna, H. D.; Webb, W. W. J. Am. Chem. Soc. 2010, 132, 7244. doi: 10.1021/ja100500k

    (15)Gotz, M.; Hess, S.; Beste, G.; Skerra, A.; Michel-Beyerle, M. E. Biochemistry 2002, 41, 4156. doi: 10.1021/bi015888y

    (16)Buschmann, V.; Weston, K. D.; Sauer, M. Bioconjugate Chem. 2003, 14, 195. doi: 10.1021/bc025600x

    (17)Marme, N.; Knemeyer, J. P.; Sauer, M.; Wolfrum, J. Bioconjugate Chem. 2003, 14, 1133. doi: 10.1021/bc0341324

    (18)Doose, S.; Neuweiler, H.; Sauer, M. ChemPhysChem 2005, 6, 2277.

    (19)Luo, G. B.; Andricioaei, I.; Xie, X. S.; Karplus, M. J. Phys. Chem. B 2006, 110, 9363. doi: 10.1021/jp057497p

    (20)Mataga, N.; Chosrowjan, H.; Shibata, Y.; Tanaka, F. J. Phys. Chem. B 1998, 102, 7081.

    (21)Mataga, N.; Chosrowjan, H.; Shibata, Y.; Tanaka, F.; Nishina, Y.; Shiga, K. J. Phys. Chem. B 2000, 104, 10667. doi: 10.1021/jp002145y

    (22)Mataga, N.; Chosrowjan, H.; Taniguchi, S.; Tanaka, F.; Kido, N.; Kitamura, M. J. Phys. Chem. B 2002, 106, 8917.

    (23)Sun, Q. F.; Lu, R.; Yu, A. C. J. Phys. Chem. B 2012, 116, 660. doi: 10.1021/jp2100304

    (24)Vaiana, A. C.; Neuweiler, H.; Schulz, A.; Wolfrum, J.; Sauer, M.; Smith, J. C. J. Am. Chem. Soc. 2003, 125, 14564. doi: 10.1021/ja036082j

    (25)Zhong, D. P.; Zewail, A. H. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 11867. doi: 10.1073/pnas.211440398

    (26)Zhu, R. X.; Li, X.; Zhao, X. S.; Yu, A. C. J. Phys. Chem. B 2011, 115, 5001. doi: 10.1021/jp200876d

    (27)Visser, A.; van den Berg, P. A. W.; Visser, N. V.; van Hoek, A.; van den Burg, H. A.; Parsonage, D.; Claiborne, A. J. Phys. Chem. B 1998, 102, 10431. doi: 10.1021/jp982141h

    (28)Laan, W.; Gauden, M.; Yeremenko, S.; van Grondelle, R.; Kennis, J. T. M.; Hellingwerf, K. J. Biochemistry 2006, 45, 51. doi: 10.1021/bi051367p

    (29)Sjodin, M.; Ghanem, R.; Polivka, T.; Pan, J.; Styring, S.; Sun, L. C.; Sundstrom, V.; Hammarstrom, L. Phys. Chem. Chem. Phys. 2004, 6, 4851. doi: 10.1039/b407383e

    (30)Mathes, T.; Zhu, J. Y.; van Stokkum, I. H. M.; Groot, M. L.; Hegemann, P.; Kennis, J. T. M. J. Phys. Chem. Lett. 2012, 3, 203. doi: 10.1021/jz201579y

    (31)Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265. doi: 10.1016/0304-4173(85)90014-X

    (32)Weinberg, D. R.; Gagliardi, C. J.; Hull, J. F.; Murphy, C. F.; Kent, C. A.; Westlake, B. C.; Paul, A.; Ess, D. H.; McCafferty, D. G.; Meyer, T. J. Chem. Rev. 2012, 112, 4016. doi: 10.1021/cr200177j

    (33)Hammes-Schiffer, S.; Stuchebrukhov, A. A. Chem. Rev. 2010, 110, 6939. doi: 10.1021/cr1001436

    (34)Zhang, Y.; Yuan, S. W.; Lu, R.; Yu, A. C. J. Phys. Chem. B 2013, 117, 7308.

    (35)Arbeloa, E. M.; Porcal, G. V.; Bertolotti, S. G.; Previtali, C. M. J. Photochem. Photobiol. A: Chem. 2013, 252, 31. doi: 10.1016/j.jphotochem.2012.11.003

    (36)Yuan, S. W.; Lu, R.; Yu, A. C. Acta Phys. -Chim. Sin. 2014, 30, 987. [袁樹威, 呂 榮, 于安池. 物理化學(xué)學(xué)報(bào), 2014, 30, 987.] doi: 10.3866/PKU.WHXB201403112

    (37)Zhong, R. B.; Lu, R.; Yu, A. C. Sci. China Chem. 2013, 56, 230. doi: 10.1007/s11426-012-4788-2

    (38)Lakowicz, J. R. Principles of Fluorescence Spectroscopy;Plenum Press, New York, 1999.

    (39)Fita, P.; Fedoseeva, M.; Vauthey, E. J. Phys. Chem. A 2011, 115, 2465.

    (40)Fiebig, T.; Wan, C. Z.; Zewail, A. H. ChemPhysChem 2002, 3, 781. doi: 10.1002/1439-7641(20020916)3:9<781::AIDCPHC781>3.0.CO;2-U

    (41)Rachofsky, E. L.; Osman, R.; Ross, J. B. A. Biochemistry 2001, 40, 946. doi: 10.1021/bi001664o

    (42)Hazra, A.; Soudackov, A. V.; Hammes-Schiffer, S. J. Phys. Chem. Lett. 2011, 2, 36. doi: 10.1021/jz101532g

    (43)Hammes-Schiffer, S. Energy Environ. Sci. 2012, 5, 7696. doi: 10.1039/c2ee03361e

    (44)Mayer, J. M. J. Phys. Chem. Lett. 2011, 2, 1481. doi: 10.1021/jz200021y

    (45)Schrauben, J. N.; Cattaneo, M.; Day, T. C.; Tenderholt, A. L.; Mayer, J. M. J. Am. Chem. Soc. 2012, 134, 16635. doi: 10.1021/ja305668h

    (46)Weller, A. Z. Phys. Chem. 1982, 133, 93. doi: 10.1524/zpch. 1982.133.1.093

    (47)Zhang, J. B.; Sun, L. N.; Ichinose, K.; Funabiki, K.; Yoshida, T. Phys. Chem. Chem. Phys. 2010, 12, 10494. doi: 10.1039/c002831b

    (48)Irebo, T.; Zhang, M. T.; Markle, T. F.; Scott, A. M.; Hammarstrom, L. J. Am. Chem. Soc. 2012, 13, 16247.

    (49)Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541. doi: 10.1021/jp951507c

    (50)Krichevsky, O.; Bonnet, G. Report Prog. Phys. 2002, 65, 251. doi: 10.1088/0034-4885/65/2/203

    Fluorescence Quenching of Eosin Y by Tyrosine

    WANG Jing-Dong LI Shuang Lü Rong YU An-Chi*
    (Department of Chemistry, Renmin University of China, Beijing 100872, P. R. China)

    Quenching of a fluorescent probe by amino acid residues can provide valuable information about the structural and conformational dynamics of a biopolymer. Herein, we systematically investigated the ultrafast fluorescence quenching dynamics of Eosin Y in the presence of N-acetyl-tyrosine (AcTyr) in H2O and D2O solutions using both femtosecond transient absorption and time-correlated single-photon counting experiments. We found that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is mainly because of the formation of a ground-state complex between Eosin Y and AcTyr. We also found that the lifetime of the ground-state complex formed between Eosin Y and AcTyr showed a clear kinetic isotope effect, indicating that the quenching of the fluorescence of Eosin Y by AcTyr in aqueous solution is via a proton-coupled electron transfer process.

    Femtosecond transient absorption spectroscopy; Time-correlated single-photon counting; Ground-state complex; Tyrosine quenching; Proton-coupled electron transfer

    O643

    10.3866/PKU.WHXB201507241

    Received: April 17, 2015; Revised: July 24, 2015; Published on Web: July 24, 2015.

    *Corresponding author. Eamil: a.yu@chem.ruc.edu.cn; Tel: +86-10-62514601; Fax: +86-10-62516444. The project was supported by the National Natural Science Foundation of China (21373269).

    國家自然科學(xué)基金(21373269)資助項(xiàng)目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    單光子基態(tài)飛秒
    一類非線性Choquard方程基態(tài)解的存在性
    擬相對論薛定諤方程基態(tài)解的存在性與爆破行為
    全飛秒與半飛秒的區(qū)別
    人人健康(2021年16期)2021-12-01 07:08:33
    一類反應(yīng)擴(kuò)散方程的Nehari-Pankov型基態(tài)解
    非線性臨界Kirchhoff型問題的正基態(tài)解
    基于飛秒激光的固體危化品切割機(jī)床設(shè)計(jì)與開發(fā)
    溴丙烯在800nm和400nm飛秒激光強(qiáng)場下的解離電離
    基于單光子探測技術(shù)的拉曼光譜測量
    電子測試(2018年18期)2018-11-14 02:30:36
    我國單光子源國際綜合性能最優(yōu)
    基于飛秒脈沖相關(guān)法的高精度時(shí)間同步測量
    国产又色又爽无遮挡免| 美女高潮到喷水免费观看| 亚洲第一av免费看| 精品亚洲乱码少妇综合久久| 熟妇人妻不卡中文字幕| 国产亚洲精品第一综合不卡| 久久久久久人妻| 精品人妻一区二区三区麻豆| 欧美精品高潮呻吟av久久| 熟女av电影| 亚洲精品一二三| 热re99久久国产66热| av在线播放精品| 国产一区二区 视频在线| 一本—道久久a久久精品蜜桃钙片| √禁漫天堂资源中文www| 国产一区二区 视频在线| 啦啦啦在线免费观看视频4| 日本爱情动作片www.在线观看| 热re99久久国产66热| 久久精品国产综合久久久| a级毛片黄视频| 午夜福利影视在线免费观看| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 性高湖久久久久久久久免费观看| bbb黄色大片| 免费观看性生交大片5| 激情视频va一区二区三区| 一区福利在线观看| 亚洲精品视频女| 美女扒开内裤让男人捅视频| 国产 精品1| 久久狼人影院| 精品福利永久在线观看| 在线观看三级黄色| 水蜜桃什么品种好| 成年动漫av网址| 制服丝袜香蕉在线| 国产精品三级大全| 黄色视频在线播放观看不卡| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 精品久久久精品久久久| 乱人伦中国视频| 90打野战视频偷拍视频| e午夜精品久久久久久久| 中文字幕高清在线视频| 狠狠精品人妻久久久久久综合| 中文字幕人妻丝袜一区二区 | 亚洲成人一二三区av| 国产伦理片在线播放av一区| av福利片在线| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 国产伦人伦偷精品视频| 亚洲精品乱久久久久久| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 日本一区二区免费在线视频| 欧美乱码精品一区二区三区| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 国产99久久九九免费精品| 黄色 视频免费看| 亚洲在久久综合| 91aial.com中文字幕在线观看| 一本一本久久a久久精品综合妖精| 国产av码专区亚洲av| 午夜福利乱码中文字幕| 久久久国产精品麻豆| 国产国语露脸激情在线看| 美女福利国产在线| 午夜影院在线不卡| 最新的欧美精品一区二区| 欧美精品av麻豆av| 在线亚洲精品国产二区图片欧美| 人体艺术视频欧美日本| 熟女少妇亚洲综合色aaa.| 男人爽女人下面视频在线观看| 欧美在线黄色| 最新的欧美精品一区二区| 国产一区二区 视频在线| 国产精品久久久久久精品古装| 男女床上黄色一级片免费看| 日韩不卡一区二区三区视频在线| 亚洲自偷自拍图片 自拍| 一级爰片在线观看| 老鸭窝网址在线观看| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 欧美变态另类bdsm刘玥| 99香蕉大伊视频| 国精品久久久久久国模美| 国产深夜福利视频在线观看| 亚洲一码二码三码区别大吗| 我的亚洲天堂| 如何舔出高潮| 中文字幕人妻丝袜制服| 日本猛色少妇xxxxx猛交久久| 侵犯人妻中文字幕一二三四区| 久久亚洲国产成人精品v| 国产精品成人在线| 丝袜美足系列| 成年动漫av网址| 又大又爽又粗| 国产免费一区二区三区四区乱码| videos熟女内射| 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 免费看av在线观看网站| 午夜福利免费观看在线| 熟女少妇亚洲综合色aaa.| 亚洲五月色婷婷综合| 久久av网站| av福利片在线| 一边摸一边抽搐一进一出视频| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看 | 不卡视频在线观看欧美| 国产黄频视频在线观看| 免费黄频网站在线观看国产| 男女午夜视频在线观看| 精品人妻熟女毛片av久久网站| 麻豆av在线久日| 各种免费的搞黄视频| 一二三四中文在线观看免费高清| 9色porny在线观看| 亚洲成人一二三区av| 亚洲成av片中文字幕在线观看| 男女免费视频国产| 国产成人欧美在线观看 | 精品国产一区二区三区四区第35| 女人久久www免费人成看片| 色精品久久人妻99蜜桃| 极品人妻少妇av视频| 精品一区二区三区av网在线观看 | 婷婷色av中文字幕| 午夜福利乱码中文字幕| 久久人妻熟女aⅴ| 国产精品秋霞免费鲁丝片| 黄片播放在线免费| 少妇人妻精品综合一区二区| 亚洲欧美色中文字幕在线| 国产成人精品在线电影| 在线观看免费日韩欧美大片| 久久久精品94久久精品| www日本在线高清视频| 欧美日韩亚洲高清精品| kizo精华| 色网站视频免费| 日本午夜av视频| 91老司机精品| 麻豆精品久久久久久蜜桃| 久久久精品免费免费高清| 精品国产一区二区三区久久久樱花| 美女主播在线视频| 亚洲精品久久午夜乱码| 妹子高潮喷水视频| 亚洲视频免费观看视频| 一级,二级,三级黄色视频| 国产男人的电影天堂91| 女性被躁到高潮视频| 男人添女人高潮全过程视频| 亚洲一码二码三码区别大吗| 亚洲av福利一区| 一本久久精品| 中文字幕制服av| 高清视频免费观看一区二区| 男女床上黄色一级片免费看| 久久久久久久久久久久大奶| 亚洲美女视频黄频| 久久 成人 亚洲| 久久精品久久久久久久性| 极品少妇高潮喷水抽搐| 99re6热这里在线精品视频| 午夜福利网站1000一区二区三区| 99热网站在线观看| 亚洲国产最新在线播放| 亚洲成人免费av在线播放| 国产有黄有色有爽视频| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 午夜免费男女啪啪视频观看| 只有这里有精品99| 综合色丁香网| 成年av动漫网址| 国产精品.久久久| 操美女的视频在线观看| 大码成人一级视频| 欧美人与性动交α欧美软件| 亚洲成人免费av在线播放| 中文天堂在线官网| 搡老乐熟女国产| 一级黄片播放器| 亚洲成人国产一区在线观看 | 国产黄色免费在线视频| 成人漫画全彩无遮挡| 秋霞在线观看毛片| 国产成人一区二区在线| 电影成人av| 久久久国产一区二区| 日韩欧美精品免费久久| 久久久国产欧美日韩av| 欧美激情极品国产一区二区三区| 亚洲精品自拍成人| 亚洲精品乱久久久久久| 午夜91福利影院| 伊人久久大香线蕉亚洲五| kizo精华| 美女大奶头黄色视频| 久久性视频一级片| 日日撸夜夜添| 久久久国产一区二区| 亚洲欧美中文字幕日韩二区| 欧美在线黄色| av.在线天堂| 最黄视频免费看| 成人漫画全彩无遮挡| 天堂俺去俺来也www色官网| 国产野战对白在线观看| 欧美av亚洲av综合av国产av | 精品一区二区免费观看| 国产99久久九九免费精品| 最近2019中文字幕mv第一页| 成人午夜精彩视频在线观看| 人人妻人人澡人人看| 亚洲精品国产av成人精品| 欧美人与善性xxx| 国产成人欧美在线观看 | 精品一品国产午夜福利视频| 亚洲av国产av综合av卡| 美女扒开内裤让男人捅视频| 麻豆乱淫一区二区| 亚洲国产精品999| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区国产| h视频一区二区三区| 日韩熟女老妇一区二区性免费视频| 免费在线观看黄色视频的| 国产免费视频播放在线视频| 高清欧美精品videossex| 国产亚洲午夜精品一区二区久久| 99九九在线精品视频| 欧美成人精品欧美一级黄| 国产伦理片在线播放av一区| 国产精品无大码| 日韩成人av中文字幕在线观看| 亚洲欧美精品综合一区二区三区| 丝袜喷水一区| 永久免费av网站大全| 中文字幕色久视频| 日韩免费高清中文字幕av| 亚洲国产看品久久| 这个男人来自地球电影免费观看 | 亚洲第一青青草原| 国产精品免费大片| 国产日韩欧美在线精品| 国产麻豆69| 欧美成人午夜精品| 亚洲av欧美aⅴ国产| 午夜日韩欧美国产| 大香蕉久久网| 日韩成人av中文字幕在线观看| 亚洲精品久久成人aⅴ小说| 亚洲美女视频黄频| 亚洲精品国产av蜜桃| 丝袜人妻中文字幕| 少妇人妻精品综合一区二区| av网站免费在线观看视频| 亚洲国产欧美网| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| 日日啪夜夜爽| a级毛片在线看网站| 无限看片的www在线观看| 国产一区二区三区综合在线观看| 成人漫画全彩无遮挡| 一区福利在线观看| 2018国产大陆天天弄谢| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻熟女乱码| 如何舔出高潮| 免费观看a级毛片全部| 国产黄色视频一区二区在线观看| 男女免费视频国产| 欧美国产精品va在线观看不卡| 国产精品.久久久| 黑人欧美特级aaaaaa片| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线 | 国产亚洲精品第一综合不卡| 日本vs欧美在线观看视频| 久久久久久久大尺度免费视频| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡 | 国产亚洲av高清不卡| 亚洲av日韩在线播放| 王馨瑶露胸无遮挡在线观看| 久久女婷五月综合色啪小说| 精品少妇内射三级| 女性生殖器流出的白浆| 校园人妻丝袜中文字幕| 老汉色av国产亚洲站长工具| 人人澡人人妻人| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 午夜av观看不卡| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 中文乱码字字幕精品一区二区三区| 国产男女超爽视频在线观看| 丰满少妇做爰视频| 国产有黄有色有爽视频| 又黄又粗又硬又大视频| 免费观看av网站的网址| 亚洲精品国产av成人精品| 久久女婷五月综合色啪小说| 王馨瑶露胸无遮挡在线观看| 色网站视频免费| 国产成人a∨麻豆精品| 国产在线视频一区二区| 日日爽夜夜爽网站| 久久久国产精品麻豆| 亚洲精品av麻豆狂野| 精品人妻熟女毛片av久久网站| 亚洲av电影在线观看一区二区三区| 亚洲精品久久成人aⅴ小说| 亚洲av福利一区| 国产日韩一区二区三区精品不卡| 考比视频在线观看| 国产精品一区二区在线不卡| 人妻一区二区av| 激情五月婷婷亚洲| 久久婷婷青草| av一本久久久久| 国产淫语在线视频| svipshipincom国产片| 国产精品香港三级国产av潘金莲 | 亚洲国产最新在线播放| 精品国产乱码久久久久久男人| 99久久99久久久精品蜜桃| 精品酒店卫生间| 中文字幕av电影在线播放| 在线精品无人区一区二区三| 国精品久久久久久国模美| 国产在线视频一区二区| 国产免费视频播放在线视频| 夫妻性生交免费视频一级片| 婷婷色综合www| 在线天堂最新版资源| 咕卡用的链子| 久久女婷五月综合色啪小说| 亚洲国产精品一区三区| av在线老鸭窝| 久久精品国产亚洲av涩爱| 久久久久久久久久久免费av| 久久久久人妻精品一区果冻| 久久久久久久大尺度免费视频| 精品酒店卫生间| 国产精品 欧美亚洲| 亚洲欧美激情在线| 成人免费观看视频高清| 精品午夜福利在线看| 中文字幕亚洲精品专区| 在线天堂最新版资源| 国产精品三级大全| 亚洲av在线观看美女高潮| 午夜老司机福利片| 97在线人人人人妻| 亚洲一级一片aⅴ在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品免费大片| 亚洲精品一二三| 两个人看的免费小视频| 精品人妻熟女毛片av久久网站| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 色播在线永久视频| 精品免费久久久久久久清纯 | 日韩中文字幕欧美一区二区 | 久久久久久久精品精品| 看十八女毛片水多多多| 婷婷色综合www| 国产成人精品久久久久久| 免费日韩欧美在线观看| 亚洲激情五月婷婷啪啪| 亚洲av综合色区一区| 男人操女人黄网站| 自线自在国产av| 精品一区二区免费观看| 久久国产精品男人的天堂亚洲| 大片电影免费在线观看免费| 国产成人午夜福利电影在线观看| 校园人妻丝袜中文字幕| 夫妻性生交免费视频一级片| 热99国产精品久久久久久7| 纵有疾风起免费观看全集完整版| 亚洲欧美精品综合一区二区三区| 街头女战士在线观看网站| 另类精品久久| 亚洲欧美成人综合另类久久久| 成年av动漫网址| 精品久久久久久电影网| 国产免费又黄又爽又色| 黑人猛操日本美女一级片| 久久亚洲国产成人精品v| 精品一区二区三区av网在线观看 | 青青草视频在线视频观看| 欧美日本中文国产一区发布| 热re99久久国产66热| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 电影成人av| 国产日韩欧美视频二区| 亚洲色图 男人天堂 中文字幕| 999久久久国产精品视频| 99久久精品国产亚洲精品| 国产一区有黄有色的免费视频| xxx大片免费视频| 亚洲精品久久成人aⅴ小说| 久久午夜综合久久蜜桃| 美女高潮到喷水免费观看| 日韩欧美精品免费久久| 亚洲av欧美aⅴ国产| 一级毛片 在线播放| 91成人精品电影| 中文字幕色久视频| 亚洲视频免费观看视频| 久久97久久精品| 国产av精品麻豆| 老司机影院成人| 日韩av在线免费看完整版不卡| 久久久久久免费高清国产稀缺| 99热国产这里只有精品6| videos熟女内射| 亚洲精品国产一区二区精华液| 1024香蕉在线观看| 91精品国产国语对白视频| 黑丝袜美女国产一区| 亚洲精品日本国产第一区| 视频在线观看一区二区三区| 老汉色∧v一级毛片| 久久久久精品久久久久真实原创| 国产亚洲精品第一综合不卡| 黑人猛操日本美女一级片| 欧美人与善性xxx| 中文字幕高清在线视频| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 操出白浆在线播放| 国产成人系列免费观看| 久久午夜综合久久蜜桃| 午夜福利免费观看在线| 曰老女人黄片| 中文欧美无线码| 飞空精品影院首页| 国产成人欧美在线观看 | 国产精品 国内视频| 国产精品国产三级国产专区5o| 别揉我奶头~嗯~啊~动态视频 | 超碰97精品在线观看| 亚洲伊人久久精品综合| 两个人免费观看高清视频| 日本av手机在线免费观看| 欧美最新免费一区二区三区| 美女国产高潮福利片在线看| 制服诱惑二区| 一个人免费看片子| 成人影院久久| 亚洲中文av在线| 一本大道久久a久久精品| 色精品久久人妻99蜜桃| 18禁动态无遮挡网站| 成人国语在线视频| 久久久国产欧美日韩av| 国产极品粉嫩免费观看在线| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| 国产男女超爽视频在线观看| 性少妇av在线| 999久久久国产精品视频| 亚洲欧美成人综合另类久久久| 婷婷成人精品国产| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| av网站免费在线观看视频| 国产老妇伦熟女老妇高清| 国产男女超爽视频在线观看| 一区二区日韩欧美中文字幕| 十分钟在线观看高清视频www| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 久久久久久人人人人人| 亚洲精品,欧美精品| 欧美 亚洲 国产 日韩一| 夫妻性生交免费视频一级片| av卡一久久| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 亚洲国产日韩一区二区| 亚洲国产中文字幕在线视频| 秋霞伦理黄片| 伦理电影免费视频| 一本一本久久a久久精品综合妖精| 人人澡人人妻人| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| videosex国产| 好男人视频免费观看在线| 美女脱内裤让男人舔精品视频| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 亚洲综合精品二区| 最近最新中文字幕大全免费视频 | 中文字幕高清在线视频| 国产成人精品在线电影| 美国免费a级毛片| 成人亚洲欧美一区二区av| 亚洲综合精品二区| 久久99一区二区三区| 一级a爱视频在线免费观看| 婷婷色麻豆天堂久久| 性色av一级| 国产一区二区三区av在线| 欧美日韩亚洲高清精品| 精品久久久久久电影网| tube8黄色片| 国产成人啪精品午夜网站| 91成人精品电影| 熟女少妇亚洲综合色aaa.| 80岁老熟妇乱子伦牲交| 观看美女的网站| 五月开心婷婷网| 欧美乱码精品一区二区三区| 永久免费av网站大全| 国产亚洲av高清不卡| 久久亚洲国产成人精品v| 日韩大码丰满熟妇| 免费黄色在线免费观看| 亚洲精品自拍成人| 亚洲欧美日韩另类电影网站| 18在线观看网站| 韩国高清视频一区二区三区| 最新的欧美精品一区二区| 亚洲av综合色区一区| 少妇被粗大猛烈的视频| 韩国精品一区二区三区| 成人国语在线视频| 午夜福利乱码中文字幕| 男女边吃奶边做爰视频| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| 捣出白浆h1v1| av国产久精品久网站免费入址| 男女之事视频高清在线观看 | 国产亚洲午夜精品一区二区久久| 亚洲精华国产精华液的使用体验| 91老司机精品| 国产精品一区二区在线观看99| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 亚洲精品成人av观看孕妇| 亚洲色图 男人天堂 中文字幕| 亚洲欧美激情在线| 一区二区av电影网| 亚洲第一青青草原| 老司机影院成人| 成人国产麻豆网| 国产午夜精品一二区理论片| 国产在视频线精品| 如日韩欧美国产精品一区二区三区| 精品一区二区三卡| 99久久综合免费| 91国产中文字幕| 男女无遮挡免费网站观看| 丝袜美足系列| 中文欧美无线码| 日韩精品免费视频一区二区三区| 精品第一国产精品| 久久精品人人爽人人爽视色| 高清欧美精品videossex| av在线老鸭窝| 1024视频免费在线观看| 9热在线视频观看99| 国产精品 国内视频| 一级a爱视频在线免费观看| 街头女战士在线观看网站| 嫩草影视91久久| 一本—道久久a久久精品蜜桃钙片| 国产免费又黄又爽又色| 欧美另类一区| 国产一区二区三区综合在线观看| 亚洲成人手机| 亚洲欧美精品自产自拍| 最近的中文字幕免费完整| 波多野结衣一区麻豆| 极品少妇高潮喷水抽搐| 多毛熟女@视频| 欧美日本中文国产一区发布| av电影中文网址| 亚洲精品日韩在线中文字幕| 悠悠久久av| 各种免费的搞黄视频| 1024香蕉在线观看| 亚洲成人手机| 亚洲av欧美aⅴ国产| 老司机靠b影院| 日韩制服骚丝袜av|