• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-Newton-type optimized iterative learning control for discrete linear time invariant systems

    2015-12-05 06:23:49YanGENGXiaoeRUAN
    Control Theory and Technology 2015年3期

    Yan GENG,Xiaoe RUAN

    School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an Shaanxi 710049,China

    Quasi-Newton-type optimized iterative learning control for discrete linear time invariant systems

    Yan GENG,Xiaoe RUAN?

    School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an Shaanxi 710049,China

    In this paper,a quasi-Newton-type optimized iterative learning control(ILC)algorithm is investigated for a class of discrete linear time-invariant systems.The proposed learning algorithm is to update the learning gain matrix by a quasi-Newton-type matrix instead of the inversion of the plant.By means of the mathematical inductive method,the monotone convergence of the proposed algorithm is analyzed,which shows that the tracking error monotonously converges to zero after a finite number of iterations.Compared with the existing optimized ILC algorithms,due to the super linear convergence of quasi-Newton method,the proposed learning law operates with a faster convergent rate and is robust to the ill-condition of the system model,and thus owns a wide range of applications.Numerical simulations demonstrate the validity and effectiveness.

    Iterative learning control,optimization,quasi-Newton method,inverse plant

    1 Introduction

    Iterative learning control(ILC)has been acknowledged as one of the effective techniques that achieves perfect trajectory tracking while the system implements the tracking task repetitively over a fixed time-interval,see,e.g.,[1-6].Arimoto et al.[1]firstly introduced ILC as an intelligent teaching mechanism called“betterment process”for robot manipulators.Numerous ILC contributions have come forth over the past three decades scoping from theoretical investigations to practical applications.As one of the important theoretical issues,the convergence analysis has been discussed by Amann et al.[2],Xu[3],and Meng et al.(2-D analysis approach)[5]and Ruan et al.[6,7].In addition,the robustness has been discussed from many aspects,such as stochastic noise in[8],iteration-varying disturbances in[9],model uncertainty in[10]and time-delay uncertainty in[11],etc.,stability and initial state learning have been researched in[12]and[13],respectively.Another significant contribution to ILC theory is optimal ILC algorithms in articles[14-19].In terms of the applications of ILC, the categories mainly include robotics in[20],rotary systems in[21],chemical batch processing in[22],etc.Ahn et al.[23]provided a summary and review of the recent trends in ILC research from both the application and the theoretical aspects.

    In optimization field,it is known that the gradient method,the conjugate direction method,the Newton method as well as the quasi-Newton method have been acknowledged as effective optimization techniques for their widely applications in the areas of industry,agriculture,military and medical treatment,see,e.g.,[24-26].Guided by the practicability and the validity of the optimization techniques,a number of investigations have been made which focus on embedding some of the above-mentioned optimization methods into the ILC algorithms[14-19].Referring to the scheme of optimization technique,the mode of such an optimized ILC up-dating law is to generate a sequence of optimized control inputs by minimizing performance index function.

    In this aspect,Amann et al.[2]firstly introduced the concept of optimal ILC algorithm for linear systems based on optimization theory and made a comprehensive analysis of norm-optimal ILC(NOILC).After that,Owens and Feng[15]proposed a parameter optimization ILC(POILC)for discrete linear time-invariant systems and derived its monotone convergence under the assumption that the system satisfies a positivity condition.Besides,Owens et al.[16]offered a gradient-type ILC algorithm and analyzed its convergence in a rigorous manner.The analogous work was to establish an inverse model ILC scheme named as a Newton-type ILC algorithm,and made a comprehensive analysis in term of the convergence and the robustness as shown in[17].It is noticed that the optimized ILC strategies in[15-17]are model-based,of which both the necessity and the sufficiency of the monotone convergence are involved.

    Theoretically,it is thus no doubt that the inverse model ILC scheme owns a one-step terminative performance for the case when the inversion of the model of the plant is precisely identified in prior and well conditioned.In reality,on the one hand,the inverse model algorithm is quite sensitive to the perturbation incurred by some measurement noise or slow changing of the system parameters.On the other hand,the inverse model technique may not work for the model imprecision.This implies that the inverse model ILC is hardly realizable in practical executions.In order to avoid the complexities of matrix inversion,Owens et al.[18]developed a polynomial approximation ILC(PAILC)algorithm which replaces the inverse model of the plant by a polynomial.However,the ILC algorithm requires plenty of computation to capture the inversions of the system matrices and thus is just implementable to a lower dimensional plant or a less operational processing.Besides,as the searching directory of the gradient type ILC mechanism,article[16]prevailed to a saw path with a very small learning step when the iteration-wise approximate optimum is close to the desired one,the convergent rate of the gradient-type ILC is to some extent not satisfactory,especially when the system is ill conditioned.In 2013,Yang and Ruan[19]developed a type of conjugate direction ILC scheme for linear discrete time-invariant systems to speed up the convergent rate.

    In spite of the above-mentioned executable limitation,the inverse mode ILC mechanism remains referable to develop an efficient learning law.As such,a quasi-Newton-type ILC updating law is a candidate,which adopts an approximate matrix to replace the inverse model of the plant.This motivates the paper to developa quasi-Newton-type ILC strategy for discrete linear time invariant systems and derives its convergence as well.

    The paper is organized as follows.Section2 presents two types of quasi-Newton ILC schemes abbreviated as SR1-ILC algorithm and SR2-ILC algorithm,respectively.Section3 exhibits the monotonic convergence.Numerical simulations are illustrated in Section4 and the conclusions are drawn in Section5.

    2 Quasi-Newton-type optimized ILC algorithm

    Consider a class of repetitive discrete linear time invariant single-input-single-output(SISO)systems described as follows:

    where t∈I represents the sampling time with I={0,1,...,N}denoting the set of the sampling times and N standing for the total number of the sampling times,respectively.Thevariablesx(t)∈Rn,u(t)∈Rand y(t)∈R are respectively an n-dimensional state vector,a scalar input and a scalar output at the sampling time t.A,B and C are matrices with appropriate dimensions,respectively,satisfying CB≠0.The model system(1)is reformulated in a lifted input-output form as follows:

    where

    It is obvious that G is an invertible Markov para meters based transfer matrix.

    Let yd=[yd(1)yd(2) ···yd(N)]Tbe a given desired trajectory of system(2)and e=yd-y=[yd(1)-y(1)yd(2)-y(2) ···yd(N)-y(N)]T=yd-Gu denotes the tracking error of system(2).The ILC algorithm is to design a sequence of inputs{uk+1}so that it may drive system(2)to track the desired trajectory ydas precisely as possible as the iteration index approaches infinity.That is to say,

    where

    refers to the output of system(2)driven by uk+1=[uk+1(0)uk+1(1) ···uk+1(N-1)]T.Such an ILC sequence uk+1can be produced by solving an optimization problem for system(2)as follows:

    Recall that the Newton-type ILC updating law of the optimization(3)developed in article[17]takes a form of

    where k=1,2,...is the iterative number.ek=yd-ykis the tracking error between the desired trajectory ydand the output yk,and β is termed as a learning step length.

    Obviously,the above Newton-type ILC is an inversion-model scheme,which requires amounts of computation for inversion and is usually fit for a well conditioned system.

    For the purpose of avoiding the computational complexity of matrix inversion and enriching the fitness of the system mode,a feasible manner is to replace the learning gain matrix G-1of the scheme(4)by a matrix with less computation or generally conditioned. As such,an iteration-relevant matrix HkGTis adopted for the substitution and the corresponding ILC scheme named as the quasi-Newton-type optimized ILC algorithm is as follows:

    Here,Hkis the kth approximation of(GTG)-1and is updated in accordance with the quasi-Newton condition.βkis termed as the kth learning step length that obtained by exact linear search method.

    The quasi-Newton ILC algorithm(5)is specified as follows.

    u1and H1are given arbitrarily,

    when k≥1,

    where ΔHkis a correction term which can be constructed in various forms so that the matrix Hk+1satisfies the quasi-Newton condition

    where

    is assigned as the searching direction and

    is termed as the gradient difference vector and the expression(12)is called as a secant equation.

    Two typical correction forms are symmetrical-rank-1 and symmetrical-rank-2 expressed as follows:

    I)Symmetrical-Rank-1(SR1)correction formula is

    The above(6)-(11)together with the SR1 correction form(15)compose an SR1-ILC algorithm.

    II)Symmetrical-Rank-2(SR2)correction formula is

    The symmetric-rank-2 form is induced by DFP correction in[27].The above(6)-(11)plus the correction form(16)is called an SR2-ILC algorithm.

    3 Convergence analysis

    The monotonicity of the tracking error and the termination at the finite iteration of the quasi-Newton-type optimized ILC algorithm can be concluded in the following theorem.In order to derive convergence property,some properties of the searching directions are exhibited as Lemmas 1-3 as follows.

    Lemma 1 Suppose that the sequence of the gradient difference vectorsand the searching direction vectorsare generated by the SR1-ILC algorithm(6)-(11)and(15)satisfying≠0.Then,the following secant equations are true:

    Proof Since the assumption that(Δuk+1-Hk?ek+1)T×?ek+1≠0,the SR1-ILC updating law is well-defined.The secant equations are derived by mathematical inductive method as follows.

    Step 1(For the case when k=1) From the quasi-Newton condition(12),the SR1-ILC updating law satisfies the secant equation,that is,H2?e1=Δu1is true.

    Assume that the secant equations(17)are true for the the case when k=m and m=1,2,...,that is,

    Step 2 Induce that for the case when k=m+1 the conclusion is true.

    From(10)and(15),we have

    From the assumption(18),we have

    Substituting(18)and(20)into(19),we have

    This means that(17)holds when k=m+1. □

    Remark 1 From Lemma 1,it is observed that the secant equation is guaranteed to depend on not only the current tracking error but also all previous tracking errors.The SR1-ILC algorithm has the hereditary property Hk+1?ej=Δujfor j=1,2,...,k,where Hk+1?ej=Δujis named as the secant equation for?ej=?F(uj+1)-?F(uj)and Δuj=uj+1-uj.

    Lemma 2 Suppose that the searching direction vectors Δu1,Δu2,...,Δukare GTG-conjugate and k ≤ N.Then,the searching direction vectors Δu1,Δu2,...,Δukare linearly independent.

    Proof Suppose that there exists such a set of numbers α1,α2,...,αkthat the equality

    holds.Then,(22)yields

    Remark 2 A set of nonzero searching direction vectors{Δu1,...,Δuk}is said to be conjugate with respect to the symmetric positive definite matrix GTG if

    Lemma 3 Suppose that the sequence of the gradient difference vectors{?ej}and the searching direction vectors{Δuk}are generated by SR2-ILC algorithm(6)-(11)and(16).Then,the searching direction vectors Δu1,Δu2,...,Δukare conjugate for all k ≤ N,and the following secant equations are true

    ProofBy using the mathematical inductive method,we can prove(23)and(24)to be true.

    For the case when k=1,from the quasi-Newton condition(12),we have=Δu1,it shows that(23)is true.

    For the case when k=2,from the property of exact line search=0,we obtain

    From(14)and(25),we have

    Thus,

    In addition,from the quasi-Newton condition(12),we have

    Equalities(29)and(28)show that(23)is true and(26)shows that(24)is true for the case when k=2.

    Assume that the secant equations(23)and(24)are true for the index k=m and m=1,2,...,that is

    For the case k=m+1,sinceeˉm+1≠0,the property of exactline search=0and inductive assumption(31)for all j≤m,we have

    By(13),(14),(30)and(32),we have

    It shows that(24)holds for the case when k=m+1.

    By the quasi-Newton condition,when j=m+1,we have

    For all j≤m,from(14)and(33),we have

    By(35)and(36),we have Expressions(34)and(37)indicate that H(m+1)+1?ej=Δujholds,for all j=1,2,...,m+1. □

    Theorem 1 Assume that the tracking errors{ek}are generated by SR1-ILC algorithm(6)-(11)and(15),then the following conclusions hold.

    i)If the searching direction vectorsare linearly independent,then the tracking error ekconverges to zero at the(N+1)th iteration,which means that eN+2=0 if(N+1)th iteration is performed.

    ii)If the searching direction vectors Δu1,Δu2,...,Δukare linearly dependent,Δu1,Δu2,...,Δuk-1are linearly independent,k ≤ N and(11)is replaced by βk=1,then ek+1=-?F(uk+1)=0,which means that the input signal uk+1is the solution and the tracking error ek+1=0.

    Proof From Lemma 1 we have

    If the search direction vectors{Δuj}Nj=1are linearly inde-pendent,then HN+1GTG=I,which implies that HN+1=(GTG)-1.Thus,

    Consider the case when the searching direction vectors Δu1,Δu2,...,Δukbecome linearly dependent.Let Δukbe a linear combination of the previous iterations,we have

    For some scalar ξi,from(14),(17)and(38)we obtain that

    which,by then on-singularity of Hk,implies thatˉek+1=0,that is?F(uk+1)=0.Thus,the input signal uk+1is the solution.Sinceˉek+1=GTek+1=0 and G is nonsingular,then we have ek+1=0. □

    Theorem 2 Assume that the tracking errors{ek}are generated by the SR2-ILC algorithm(6)-(11)and(16).Then,the tracking error ekis reduced to zero at the most(N+1)th iteration.This implies that eN+2=0 if the(N+1)th iteration is performed.

    Proof If the(N+1)th iteration is performed,it follows from(24)in Lemma 3 that the vectors of search directions Δu1,Δu2,...,ΔuNare conjugate with respect to the matrix GTG.Thus,the searching direction vectors Δu1,Δu2,...,ΔuNare linearly independent by Lemma2.From(23)in Lemma 3,it yields

    that is,

    Therefore,HN+1=(GTG)-1.

    Additionally,

    Theorem 3 Assume that the tracking errors{ek}are generated by quasi-Newton-type optimized ILC algorithm(6)-(11)for both the correction forms(15)and(16)for all k,then the norm of tracking error is monotone decreasing,that is,‖ek+1‖2≤ ‖ek‖2.

    Proof

    Hence,the result‖ek+1‖2≤ ‖ek‖2is proven.

    Remark3 From Theorems1-3,itis clarified that the SR1(SR2)ILC has the property of quadratic termination,that is,the tracking error ekconverges monotonically to zero at the most(N+1)th iteration.While as the NOILC in[2],Gradient-ILC in[16]and PA-ILC in[18]are convergent with nonzero quotient convergence factors.This implies that the proposed quasi-Newton ILC may guarantee zero-tracking error at a finite iteration whilst the NOILCin[2],Gradient-ILC in[16]and the PA-ILCin[18]only guarantee the tracking error is at most very small.

    4 Numerical simulations

    In order to manifest the feasibility and practicality of the proposed SR1-ILC(SR2-ILC)scheme to a wide range of systems,this section gives simulation results for three examples,of which Example 1 is a well-conditioned system whilst Example 2 is an ill-conditioned system and Example3 is a real system.For the same initial input u1,SR1-ILC and SR2-ILC can generate the same sequence of inputs uk,the details can be referred to the articles[27]and[28].

    Example 1 Consider the following discrete time invariant SISO system,which was adopted in[29].

    The desired trajectory is predetermined as

    The initial state is set xk(1)=[0 0]Tand the beginning input u1(t)=0.It is calculated that the condition number of the matrix GTG is 1.6145 and the largest singular value of GTG is 0.3524.This means that the exampled system(39)is well-conditioned.

    The comparative tracking errors in 2-norm of the SR1-ILC(SR2-ILC)algorithm with that of the norm optimal ILC(NOILC)[2]and gradient-based ILC(Gradient-ILC)[16]are presented in Fig.1.The tracking outputs of the SR1-ILC(SR2-ILC)at the 5th iteration and that of the NOILC and Gradient-ILC are exhibited in Fig.2.Itis seen from Figs.1 and 2 that the tracking error of the SR1-ILC(SR2-ILC)algorithm converges faster than the others.

    Fig.1 Tracking errors of SR1(SR2)-ILC,Gradient-ILC and NOILC.

    Fig.2 Tracking outputs of SR1(SR2)-ILC,Gradient-ILC and NOILC at the 5th iteration.

    Example 2 Consider the following discrete timeinvariant SISO systems that was used in[30].

    From Fig.3,it is found that the tracking error of the SR1-ILC(SR2-ILC)converges to zero at the 10th itera-tion and Fig.4 illustrates that the tracking error of the SR1-ILC(SR2-ILC)converges faster than that of NOILC algorithm.Additionally,Fig.5 gives a comparable tracking errors of natural logarithm form of2-norm ofSR1-ILC(SR2-ILC)with those produced by the PA-ILC[18]with polynomial degree being L=1,2,...,7,respectively.It shows that the convergence of tracking error of SR1-ILC(SR2-ILC)is faster than the PA-ILC after the 15th iteration.As system(40)is extremely ill-conditioned,its convergent assumption with respect to the Gradient-ILC algorithm is not guaranteed.

    Fig.3 Tracking error of SR1(SR2)-ILC.

    Fig.4 Tracking errors of SR1(SR2)-ILC and NOILC.

    Fig.5 Tracking errors of SR1(SR2)-ILC and PA-ILC.

    Example 3 In microelectronics manufacturing,in order to guarantee the rapid thermal processing to work at the designed set-point,the temperature of the mono-crystal reactor must be tuned to follow an operating trajectory[6].As the rapid thermal processing is usually scheduled as a repetitive batch process,the ILC scheme is adequately to be utilized so that transient temperature of the reactor to follow a desired trajectory.Suppose that the transfer function of the reactor is identified aswhere K is the process gain,τWdenotes the heating time constant of the crystal and τLthe heating time constant of the crystal light.Conventionally,the power ratio of the crystal light is tuned by a proportional-derivative-integral(PID)controller.Given that the transfer function of the PID controller iswhere KC,τIand τDare proportional,integral and derivative gains,respectively[6].By converting the dynamics of frequency domain into that of time domain and then discretizing the PID-controller-tuned closed-loop control system with the 0.05s sampling step,the discrete time system is described as follows:

    where

    By setting a group of parameters as K=0.9,τW=5,τL=1,KC=1.51,τI=15 and τD=3.33.Set the initial state xk(0)=[0 0 0]Tand the initial u1(t)=0,where t∈[0,100].The desired trajectory is defined as yd(t)=1-exp(-0.4t).The comparative tracking error of the proposed quasi-Newton ILC scheme with that of the Gradient-type ILC and the NOILC is exhibited in Fig.6,whilst the outputs at the 12th iteration of the the pro-posed quasi-Newton ILC scheme,the Gradient-type ILC and the NOILC are displayed in Fig.7.

    It is seen from Figs.6 and 7 that the proposed quasi-Newton SR1(SR2)-ILC owns better tracking performance.

    Fig.6 Comparative tracking errors.

    Fig.7 Comparative tracking performance at the 12th iteration.

    5 Conclusions

    In this paper,a quasi-Newton-type optimized ILC is proposed for a class of discrete linear time-invariant SISO systems.The idea is to use an approximation ma-trix to replace the inverse model of the plant.The conver-gence analysis indicates that the proposed ILC algorithm performs well with the tracking error vanishing within finite iterations.Numerical simulations testify that the proposed quasi-Newton-type optimized ILC scheme is effective though the system is ill-conditioned.However,the proposed scheme requires a precise knowledge of the system.In reality,the system is unavoidably perturbed by noise and sometimes the system is nonlinear.How to solve the perturbation and the nonlinearity is challenging in the future.

    [1]S.Arimoto,S.Kawamura,F.Miyazaki.Bettering operation of robots by learning.Journal of Robotic Systems,1984,1(2):123-140.

    [2]N.Amann,D.H.Owens,E.Rogers.Iterative learning control for discrete-time systems with exponential rate of convergence.IEE Proceedings-Control Theory and Applications,1996,143(2):217-224.

    [3] J.Xu.Analysis of iterative learning control for a class of nonlinear discrete-time systems.Automatica,1997,33(10):1905-1907.

    [4]J.H.Lee,K.S.Lee,W.C.Kim.Model-based iterative learning control with quadratic criterion for time-varying linear systems.Automatica,2000,36(5):641-657.

    [5] D.Meng,Y.Jia,J.Du,et al.Feedback iterative learning control for time-delay systems based on 2D analysis approach.Journal of Control Theory and Applications,2010,8(4):457-463.

    [6] X.Ruan,Z.Li.Convergence characteristics of PD-type iterative learning control in discrete frequency domain.Journal of Process Control,2014,24(12):86-94.

    [7]X.Ruan,Z.Z.Bien,Q.Wang.Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue-p norm.IET Control Theory and Applications,2012,6(5):707-714.

    [8] S.S.Saab.A discrete-time stochastic learning control algorithm.IEEE Transactions on Automatic and Control,2001,46(6):877-887.

    [9]C.Yin,J.Xu,Z.Hou.A high-order internal model based iterative learning control scheme for nonlinear systems with time iteration-varying parameters.IEEE Transactions on Automatic Control,2010,55(11):2665-2670.

    [10]A. Tayebi,M. B. Zaremba.Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition.IEEE Transactions on Automatic Control,2003,48(1):101-106.

    [11]T.Liu,X.Wang,J.Chen.Robust PID based indirect-type iterative learning control for batch processes with time-varying uncertainties.Journal of Process Control,2014,24(12):95-106.

    [12]H.S.Ahn,K.L.Moore,Y.Chen.Stability analysis of discrete time iterative learning control systems with interval uncertainty.Automatica,2007,43(5):892-902.

    [13]Y.Chen,C.Wen,Z.Gong,et al.An iterative learning controller with initial state learning.IEEE Transactions on Automatic Control,1999,44(2):371-376.

    [14]J.H.Lee,K.S.Lee,W.C.Kim.Model-based iterative learning control with a quadratic criterion control with a quadratic criterion for time-varying linear systems.Automatica,2000,36(5):641-657.

    [15]D.H.Owens,K.Feng.Parameter optimization in iterative learning control.International Journal of Control,2003,76(11):1059-1069.

    [16]D.H.Owens,J.H¨at¨onen,S.Daley.Robust monotone gradient-based discrete-time iterative learning control,time and frequency domain conditions.International Journal of Robust Nonlinear Control,2009,19(6):634-661.

    [17]T.J.Harte,J.H¨at¨onen,D.H.Owens.Discrete-time inverse model-based iterative learning control,stability,monotonicity and robustness.International Journal of Control,2006,78(8):577-586.

    [18]D.H.Owens,B.Chu,M.Songjun.Parameter-optimal iterative learning control using polynomial representations of the inverse plant.International Journal of Control,2012,85(5):533-544.

    [19]X.Yang,X.Ruan.Conjugate direction method of iterative learning control for linear discrete time-invariant systems.Dynamics of Continuous,Discrete and Impulsive Systems-Series B:Applicationsamp;Algorithms,2013,20(5):543-554.

    [20]M.Norrl¨of.An adaptive iterative learning control algorithm with experiments on an industrial robot.IEEE Transactions on Robotics and Automation,2002,18(2):245-251.

    [21]W.Li,P.Maisse,H.Enge.Self-learning control applied to vibration control of a rotating spindle by piezopusher bearings.Proceedings of the Institution of Mechanical Engineers-Part I:Journal of Systems and Control Engineering,2004,218(13):185-196.

    [22]K.S.Lee,J.H.Lee.Convergence of constrained model-based predictive control for batch processes.IEEE Transactions on Automatic Control,2000,45(10):1928-1932.

    [23]H.S.Ahn,Y.Chen,K.L.Moore.Iterative learning control:brief survey and categorization.IEEE Transactions on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2007,37(6):1099-1121.

    [24]P.Hennig,M.Kiefel.Quasi-Newton methods:a new direction.Proceedings of the 29th International Conference on Machine Learning,Edinburgh,Scotland,2012:http://icml.cc/2012/papers/25.pdf.

    [25]L.Dumas, V.Herbert, F. Muyl. Comparison of global optimization methods for drag reduction in the auto motive industry.International Conference on Computational Science and Its Applications,Berlin:Springer,2005:948-957.

    [26]Y.S.Ong,P.B.Nair,A.J.Keane.Evolutionary optimization of computationally expensive problems via surrogate modeling.AIAA Journal,2003,41(4):687-696.

    [27]Y.Yuan,W.Sun.Theory and Methods of Optimization.Beijing:Science Press,1997.

    [28]J.Nocedal,S.J.Wright.Numerical Optimization.New York:Springer,2006.

    [29]Y. Fang, T.W. S. Chow. Iterative learning control of linear discrete-time multi variable systems. Automatica, 1998, 34(11): 1459 - 1462.

    [30]A.Madady.PID type iterative learning control with optimal gains.International Journal of Control Automation and Systems,2008,6(2):194-203.

    5 November 2014;revised 4 July 2015;accepted 6 July 2015

    DOI10.1007/s11768-015-4161-z

    ?Corresponding author.

    E-mail:wruanxe@mail.xjtu.edu.cn.Tel.:+86-13279321898.

    This work was supported by the National Natural Science Foundation of China(Nos.F010114-60974140,61273135).

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Yan GENG received the B.Sc.degree in Mathematics from Changzhi University,China in 2009.She received the M.Sc.degree in Mathematics from Hebei University,China,in 2012.Currently,she is a Ph.D.candidate of Xi’anJiaotong University,China.Her research interests are iterative learning control and optimization.E-mail:gengyan104@stu.xjtu.edu.cn.

    Xiaoe RUAN received the B.Sc.and M.Sc.degrees in Pure Mathematics Education from Shaanxi Normal University,China,in 1988 and 1995,respectively.She received the Ph.D.degree in Control Science and Engineering from Xi’an Jiaotong University,China,in 2002.From March 2003 to August 2004,she worked as a postdoctoral fellow at the Department of Electrical Engineering,Korea Advance Institute of Science and Technology,Korea.From September2009to August 2010,she worked as a visiting scholar at Ulsan National Institute of Science and Technology,Korea.Since 1995,she joined in Xi’an Jiaotong University.Currently,she is a full professor in School of Mathematics and Statistics.She has published more than 40 academic papers.Her research interests include iterative learning control and optimized control for large-scale systems.E-mail:wruanxe@xjtu.edu.cn.

    五月玫瑰六月丁香| 丝袜人妻中文字幕| 母亲3免费完整高清在线观看| 99久久99久久久精品蜜桃| 国产精品一区二区免费欧美| 国产激情偷乱视频一区二区| av在线天堂中文字幕| 久久天堂一区二区三区四区| 国语自产精品视频在线第100页| 日韩大尺度精品在线看网址| 免费在线观看成人毛片| 欧美日韩精品网址| 99国产精品99久久久久| 成人国语在线视频| 高清毛片免费观看视频网站| 我要搜黄色片| 搡老岳熟女国产| 麻豆成人av在线观看| 一卡2卡三卡四卡精品乱码亚洲| 麻豆av在线久日| 亚洲中文av在线| 好看av亚洲va欧美ⅴa在| 国产熟女午夜一区二区三区| 草草在线视频免费看| 两个人的视频大全免费| 久久久久免费精品人妻一区二区| 亚洲男人的天堂狠狠| 精品一区二区三区av网在线观看| 成熟少妇高潮喷水视频| 首页视频小说图片口味搜索| 亚洲欧美日韩高清专用| 国产91精品成人一区二区三区| 可以在线观看的亚洲视频| 一边摸一边抽搐一进一小说| 一个人观看的视频www高清免费观看 | 少妇熟女aⅴ在线视频| 国产精品久久电影中文字幕| 免费人成视频x8x8入口观看| 少妇粗大呻吟视频| 亚洲电影在线观看av| 国语自产精品视频在线第100页| 熟妇人妻久久中文字幕3abv| 黑人欧美特级aaaaaa片| 亚洲欧美一区二区三区黑人| 免费电影在线观看免费观看| 88av欧美| 色综合亚洲欧美另类图片| 亚洲片人在线观看| 久久这里只有精品中国| 身体一侧抽搐| 亚洲国产精品合色在线| 亚洲午夜理论影院| 熟妇人妻久久中文字幕3abv| 久久精品国产综合久久久| 成人亚洲精品av一区二区| 69av精品久久久久久| 亚洲国产中文字幕在线视频| 亚洲av成人av| 久久国产精品影院| 91老司机精品| 久久久精品大字幕| 美女 人体艺术 gogo| 天堂√8在线中文| 久久久久久久久久黄片| 1024香蕉在线观看| 精品一区二区三区视频在线观看免费| 欧美黄色片欧美黄色片| 亚洲真实伦在线观看| 啦啦啦韩国在线观看视频| 一进一出抽搐动态| 国产亚洲av嫩草精品影院| 久久精品影院6| 国产一区二区三区视频了| 99久久久亚洲精品蜜臀av| 亚洲国产精品sss在线观看| 欧美日韩精品网址| 天堂av国产一区二区熟女人妻 | 91av网站免费观看| 国产精品久久久久久亚洲av鲁大| 亚洲国产高清在线一区二区三| 成人精品一区二区免费| 国产精品 欧美亚洲| 99在线视频只有这里精品首页| cao死你这个sao货| 日韩大码丰满熟妇| 国产成人精品无人区| 嫁个100分男人电影在线观看| 国产真人三级小视频在线观看| 日本黄大片高清| 欧美日韩瑟瑟在线播放| 国产亚洲精品av在线| 三级国产精品欧美在线观看 | 麻豆久久精品国产亚洲av| 天天躁夜夜躁狠狠躁躁| 女同久久另类99精品国产91| 国产精品国产三级国产av玫瑰| 亚洲精品国产av成人精品| 99久国产av精品| 观看免费一级毛片| 天天躁夜夜躁狠狠久久av| 欧美又色又爽又黄视频| 在线观看一区二区三区| 美女cb高潮喷水在线观看| 秋霞在线观看毛片| 老师上课跳d突然被开到最大视频| 欧洲精品卡2卡3卡4卡5卡区| 国产一级毛片七仙女欲春2| 亚洲欧美精品专区久久| 一级毛片电影观看 | 欧美精品一区二区大全| 色5月婷婷丁香| www日本黄色视频网| 国产一区二区在线av高清观看| 乱系列少妇在线播放| 在线播放国产精品三级| 麻豆成人av视频| 久久国产乱子免费精品| 听说在线观看完整版免费高清| 久久精品国产亚洲网站| 欧美潮喷喷水| 久久99蜜桃精品久久| 国产亚洲91精品色在线| 亚洲人与动物交配视频| 亚洲人成网站在线播| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 欧美+亚洲+日韩+国产| 青春草亚洲视频在线观看| 精品欧美国产一区二区三| 国内精品久久久久精免费| 网址你懂的国产日韩在线| 国产亚洲5aaaaa淫片| 91aial.com中文字幕在线观看| a级一级毛片免费在线观看| 午夜亚洲福利在线播放| 欧美日韩在线观看h| 日韩人妻高清精品专区| 国产av在哪里看| 日韩人妻高清精品专区| 国产精品久久久久久久电影| 蜜臀久久99精品久久宅男| 亚洲成人av在线免费| 国产一区二区三区av在线 | 人体艺术视频欧美日本| www.av在线官网国产| 黄片无遮挡物在线观看| 色噜噜av男人的天堂激情| 丰满人妻一区二区三区视频av| 久久综合国产亚洲精品| 久久这里只有精品中国| 国产精品一及| 菩萨蛮人人尽说江南好唐韦庄 | 国内精品美女久久久久久| 在线观看一区二区三区| 我要搜黄色片| 女同久久另类99精品国产91| 国产成人福利小说| 久久久国产成人精品二区| 搞女人的毛片| АⅤ资源中文在线天堂| 国产日本99.免费观看| 天堂av国产一区二区熟女人妻| 日韩欧美精品v在线| 天天躁日日操中文字幕| 亚洲丝袜综合中文字幕| 亚洲精品日韩在线中文字幕 | 成熟少妇高潮喷水视频| .国产精品久久| 亚洲真实伦在线观看| 亚洲欧美日韩卡通动漫| 麻豆精品久久久久久蜜桃| 非洲黑人性xxxx精品又粗又长| 老女人水多毛片| 欧美一级a爱片免费观看看| 国产极品天堂在线| АⅤ资源中文在线天堂| 国产视频内射| 不卡视频在线观看欧美| 日韩欧美 国产精品| 成人毛片60女人毛片免费| 日韩欧美精品v在线| 一级毛片我不卡| 亚洲图色成人| 久久久久国产网址| 亚洲精品国产成人久久av| 久久九九热精品免费| 欧美高清成人免费视频www| 99久久久亚洲精品蜜臀av| 国产黄色小视频在线观看| 久久精品国产99精品国产亚洲性色| 亚洲色图av天堂| 97人妻精品一区二区三区麻豆| 男人的好看免费观看在线视频| 欧美丝袜亚洲另类| 精品久久久久久久久久免费视频| 亚洲精品久久久久久婷婷小说 | 最近的中文字幕免费完整| 成人亚洲精品av一区二区| 一级毛片aaaaaa免费看小| АⅤ资源中文在线天堂| 亚洲自拍偷在线| 两个人的视频大全免费| 在线观看av片永久免费下载| 国产成人精品一,二区 | 亚洲自偷自拍三级| 九九久久精品国产亚洲av麻豆| 九九热线精品视视频播放| 欧美成人a在线观看| a级毛色黄片| 国产av一区在线观看免费| 色5月婷婷丁香| 最好的美女福利视频网| 色吧在线观看| 免费大片18禁| 日韩亚洲欧美综合| 高清毛片免费看| 18+在线观看网站| 三级经典国产精品| 日韩人妻高清精品专区| 国产一区亚洲一区在线观看| 欧美性猛交╳xxx乱大交人| 国国产精品蜜臀av免费| 国产精品一区www在线观看| 国产亚洲欧美98| 亚洲久久久久久中文字幕| 99久久精品一区二区三区| 国产乱人视频| 午夜a级毛片| 青春草亚洲视频在线观看| 国产69精品久久久久777片| 一本精品99久久精品77| 高清午夜精品一区二区三区 | 国产成人精品久久久久久| 国产精品,欧美在线| 淫秽高清视频在线观看| 91久久精品国产一区二区三区| 久久综合国产亚洲精品| 毛片一级片免费看久久久久| 中文字幕精品亚洲无线码一区| 18禁在线无遮挡免费观看视频| 人妻久久中文字幕网| 精品99又大又爽又粗少妇毛片| 久久精品国产亚洲av涩爱 | 成人高潮视频无遮挡免费网站| 免费人成在线观看视频色| 久久久久久九九精品二区国产| 成人国产麻豆网| av在线天堂中文字幕| 国产单亲对白刺激| 中文字幕久久专区| 中文字幕av成人在线电影| 男人舔奶头视频| 少妇人妻一区二区三区视频| 老熟妇乱子伦视频在线观看| 校园春色视频在线观看| 日韩三级伦理在线观看| 天堂影院成人在线观看| 非洲黑人性xxxx精品又粗又长| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区视频9| 亚洲精品日韩av片在线观看| 欧美日本亚洲视频在线播放| 免费人成在线观看视频色| 亚洲第一电影网av| 免费观看精品视频网站| 又粗又爽又猛毛片免费看| 少妇的逼好多水| 久99久视频精品免费| 亚洲av电影不卡..在线观看| 中文字幕久久专区| 免费观看精品视频网站| 天堂影院成人在线观看| 韩国av在线不卡| 免费电影在线观看免费观看| av在线播放精品| 久久久久久久久大av| 国产伦精品一区二区三区视频9| 麻豆一二三区av精品| 中文字幕熟女人妻在线| 听说在线观看完整版免费高清| a级毛色黄片| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 99热这里只有精品一区| av在线播放精品| 久久精品国产亚洲av天美| 美女黄网站色视频| 国产av在哪里看| 午夜亚洲福利在线播放| 99久国产av精品| 国产精品国产三级国产av玫瑰| 男人舔女人下体高潮全视频| 久久6这里有精品| eeuss影院久久| 男女下面进入的视频免费午夜| 色综合色国产| 国产成人a区在线观看| 精品久久久久久久久久久久久| 夫妻性生交免费视频一级片| 亚洲人成网站高清观看| 在线a可以看的网站| 欧美三级亚洲精品| 少妇丰满av| 高清毛片免费观看视频网站| 成人av在线播放网站| 精品久久久久久久久久免费视频| 午夜视频国产福利| 久久久久免费精品人妻一区二区| 成人性生交大片免费视频hd| 免费观看精品视频网站| 看十八女毛片水多多多| 亚洲欧美精品专区久久| 一级毛片电影观看 | 91久久精品国产一区二区成人| 搡老妇女老女人老熟妇| 深夜精品福利| 自拍偷自拍亚洲精品老妇| 日韩欧美在线乱码| 欧美高清成人免费视频www| 亚洲人成网站在线观看播放| 亚洲av成人av| 综合色丁香网| 婷婷色av中文字幕| 偷拍熟女少妇极品色| 九色成人免费人妻av| 99久国产av精品国产电影| 日韩制服骚丝袜av| 欧美又色又爽又黄视频| 综合色丁香网| 韩国av在线不卡| 简卡轻食公司| 亚洲av中文字字幕乱码综合| 亚洲成人av在线免费| 久久久精品94久久精品| 国产淫片久久久久久久久| 国产成人a区在线观看| 最好的美女福利视频网| 夜夜爽天天搞| 免费在线观看成人毛片| 亚洲人成网站在线播| 国产一级毛片七仙女欲春2| 国产精品电影一区二区三区| 综合色丁香网| 欧美zozozo另类| 偷拍熟女少妇极品色| 中文字幕制服av| 国产亚洲精品av在线| 夜夜看夜夜爽夜夜摸| 看非洲黑人一级黄片| 最近视频中文字幕2019在线8| 国产精品久久久久久精品电影小说 | 中文欧美无线码| 欧美一区二区国产精品久久精品| 91精品国产九色| 伦理电影大哥的女人| 国产成年人精品一区二区| 欧美xxxx黑人xx丫x性爽| 观看美女的网站| av卡一久久| 中文字幕免费在线视频6| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 久久久久久久久大av| 91久久精品国产一区二区三区| 天堂av国产一区二区熟女人妻| av天堂在线播放| 在线免费十八禁| 国产高潮美女av| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 久久久久久久久久久免费av| 99热网站在线观看| 别揉我奶头 嗯啊视频| 岛国毛片在线播放| 成年女人永久免费观看视频| 国产精品久久视频播放| 亚洲,欧美,日韩| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| 黄色一级大片看看| 成年版毛片免费区| 亚洲欧美成人精品一区二区| 男人舔奶头视频| 99riav亚洲国产免费| 赤兔流量卡办理| av免费在线看不卡| 非洲黑人性xxxx精品又粗又长| 在线观看免费视频日本深夜| 亚洲欧美日韩无卡精品| 少妇被粗大猛烈的视频| 欧美在线一区亚洲| 最近2019中文字幕mv第一页| 男人狂女人下面高潮的视频| 插逼视频在线观看| 国产午夜精品久久久久久一区二区三区| 国产高清有码在线观看视频| 免费看日本二区| 国产探花极品一区二区| 五月玫瑰六月丁香| 麻豆国产av国片精品| 热99re8久久精品国产| 老司机福利观看| 久久久久久久久久久丰满| 亚洲最大成人中文| 久久久精品94久久精品| 级片在线观看| 亚洲第一电影网av| 青春草视频在线免费观看| 成人特级黄色片久久久久久久| 人人妻人人澡欧美一区二区| 男女边吃奶边做爰视频| 国模一区二区三区四区视频| 天堂av国产一区二区熟女人妻| 日本黄大片高清| 日本免费a在线| 国产成年人精品一区二区| 亚洲精品456在线播放app| 伦理电影大哥的女人| 变态另类成人亚洲欧美熟女| 五月玫瑰六月丁香| 男人和女人高潮做爰伦理| 真实男女啪啪啪动态图| 人妻系列 视频| 熟妇人妻久久中文字幕3abv| 亚洲人成网站在线播放欧美日韩| 亚州av有码| 可以在线观看的亚洲视频| 青春草视频在线免费观看| 少妇的逼水好多| 热99在线观看视频| 国产精品久久视频播放| 国产又黄又爽又无遮挡在线| 亚洲第一区二区三区不卡| 久久国产乱子免费精品| av又黄又爽大尺度在线免费看 | 99热全是精品| 日韩在线高清观看一区二区三区| 国产一区二区激情短视频| 国产精品电影一区二区三区| 91av网一区二区| 国产精品一区www在线观看| 变态另类成人亚洲欧美熟女| 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 哪里可以看免费的av片| 国产精品久久久久久久久免| 国产乱人视频| 国产精品一区www在线观看| 国产精品久久久久久久电影| 亚洲va在线va天堂va国产| 日韩欧美三级三区| 国产亚洲av嫩草精品影院| 欧美成人a在线观看| 久久久久久九九精品二区国产| 午夜a级毛片| 精品少妇黑人巨大在线播放 | 日韩av不卡免费在线播放| 好男人视频免费观看在线| 一级黄片播放器| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 熟女电影av网| 日韩精品有码人妻一区| 日韩三级伦理在线观看| 国产精品.久久久| 久久久久久久午夜电影| 国产不卡一卡二| 久久久久久伊人网av| 日本欧美国产在线视频| 看片在线看免费视频| 看片在线看免费视频| 亚洲人成网站在线播放欧美日韩| 最好的美女福利视频网| 一个人看视频在线观看www免费| 国产精品无大码| 亚洲欧美日韩高清专用| 亚洲国产精品成人综合色| 亚洲第一区二区三区不卡| 三级国产精品欧美在线观看| 日韩欧美 国产精品| 亚洲经典国产精华液单| 日本黄色片子视频| 丰满的人妻完整版| 色5月婷婷丁香| 久久人妻av系列| 亚洲av电影不卡..在线观看| 蜜桃亚洲精品一区二区三区| 国产av一区在线观看免费| av在线老鸭窝| 亚洲欧美日韩高清在线视频| 精品人妻一区二区三区麻豆| 又爽又黄a免费视频| 最近手机中文字幕大全| 亚洲久久久久久中文字幕| 女人被狂操c到高潮| 悠悠久久av| 亚洲av成人av| 国产黄色小视频在线观看| 日本与韩国留学比较| 精品久久国产蜜桃| 亚洲人与动物交配视频| 欧美激情在线99| 三级毛片av免费| 亚洲美女搞黄在线观看| 国产大屁股一区二区在线视频| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 免费电影在线观看免费观看| 亚洲aⅴ乱码一区二区在线播放| 桃色一区二区三区在线观看| 日本爱情动作片www.在线观看| 国产蜜桃级精品一区二区三区| 国内精品宾馆在线| 男人狂女人下面高潮的视频| 美女被艹到高潮喷水动态| 国产精品1区2区在线观看.| 成人三级黄色视频| 国产精品久久视频播放| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 久久人妻av系列| 亚洲精品乱码久久久久久按摩| 三级毛片av免费| 日韩欧美 国产精品| 亚洲五月天丁香| 伊人久久精品亚洲午夜| 国产私拍福利视频在线观看| 国产精品久久视频播放| 啦啦啦观看免费观看视频高清| 亚洲内射少妇av| 欧美激情久久久久久爽电影| 午夜精品在线福利| 亚洲中文字幕一区二区三区有码在线看| 久久人人爽人人片av| 久久久久久久久久成人| 国产一区二区亚洲精品在线观看| 美女被艹到高潮喷水动态| 26uuu在线亚洲综合色| 免费人成视频x8x8入口观看| 国产乱人视频| 禁无遮挡网站| 国产午夜精品久久久久久一区二区三区| 成人漫画全彩无遮挡| 国产又黄又爽又无遮挡在线| 亚洲精品乱码久久久久久按摩| 国产日本99.免费观看| 精品一区二区免费观看| 久久久久久久久久久丰满| 亚洲精品成人久久久久久| 欧美zozozo另类| 国产亚洲av嫩草精品影院| 日韩人妻高清精品专区| 免费观看a级毛片全部| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 人体艺术视频欧美日本| 日韩制服骚丝袜av| 能在线免费看毛片的网站| www.av在线官网国产| 久久久久久国产a免费观看| 国产视频内射| 亚洲av二区三区四区| 日本爱情动作片www.在线观看| 99久久人妻综合| 我的老师免费观看完整版| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站高清观看| 成人三级黄色视频| 色哟哟·www| 高清在线视频一区二区三区 | 十八禁国产超污无遮挡网站| .国产精品久久| 哪个播放器可以免费观看大片| 69av精品久久久久久| 久久草成人影院| 久久精品国产亚洲av涩爱 | 中文字幕av在线有码专区| 国产三级中文精品| 狠狠狠狠99中文字幕| 国产麻豆成人av免费视频| 国产精品电影一区二区三区| 日韩一本色道免费dvd| 国产精品一区二区性色av| 国产成人福利小说| 国产黄色小视频在线观看| 国产亚洲91精品色在线| 又粗又爽又猛毛片免费看| 亚洲中文字幕日韩| 亚洲精品日韩在线中文字幕 | 国产三级在线视频| 亚洲成人久久爱视频| 不卡视频在线观看欧美| 久久精品国产清高在天天线| 亚洲精品456在线播放app| 人体艺术视频欧美日本| 欧美zozozo另类| 国产成人a区在线观看| 成人毛片a级毛片在线播放| 国产精品无大码| 男人狂女人下面高潮的视频| 国产精品综合久久久久久久免费| 男女视频在线观看网站免费| 日韩大尺度精品在线看网址| 亚洲国产欧美在线一区| 成人亚洲精品av一区二区| 亚洲av熟女| www.av在线官网国产| 一级毛片我不卡| 三级国产精品欧美在线观看| 中文字幕熟女人妻在线| 国产成人freesex在线| 熟女人妻精品中文字幕| 久久99蜜桃精品久久| 中文字幕久久专区| 国产不卡一卡二|