• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal control of quantum systems with SU(1,1)dynamical symmetry

    2015-12-05 06:23:38WenbinDONGRebingWUJianwuWUChunwenLITzyhJongTARN
    Control Theory and Technology 2015年3期

    Wenbin DONG,Rebing WU?,Jianwu WU,Chunwen LI,Tzyh-Jong TARN

    1.Department of Automation,Tsinghua University,Beijing 100084,China;

    2.Center for Quantum Information Science and Technology,Tsinghua National Laboratory for Information Science and Technology(TNlist),Beijing 100084,China;

    3.Beijing Aerospace Automatic Control Institute,Beijing 100854,China;

    4.Electrical and Systems Engineering Department,Washington University in St.Louis,St.Louis,Missouri 63130,U.S.A.

    Optimal control of quantum systems with SU(1,1)dynamical symmetry

    Wenbin DONG1,2,Rebing WU1,2?,Jianwu WU3,Chunwen LI1,2,Tzyh-Jong TARN2,4

    1.Department of Automation,Tsinghua University,Beijing 100084,China;

    2.Center for Quantum Information Science and Technology,Tsinghua National Laboratory for Information Science and Technology(TNlist),Beijing 100084,China;

    3.Beijing Aerospace Automatic Control Institute,Beijing 100854,China;

    4.Electrical and Systems Engineering Department,Washington University in St.Louis,St.Louis,Missouri 63130,U.S.A.

    SU(1,1)dynamical symmetry is of fundamental importance in analyzing unbounded quantum systems in theoretical and applied physics.In this paper,we study the control of generalized coherent states associated with quantum systems with SU(1,1)dynamical symmetry.Based on a pseudo Riemannian metric on the SU(1,1)group,we obtain necessary conditions for minimizing the field fluence of controls that steer the system to the desired final state.Further analyses show that the candidate optimal control solutions can be classified into normal and abnormal extremals.The abnormal extremals can only be constant functions when the control Hamiltonian is non-parabolic,while the normal extremals can be expressed by Weierstrass elliptic functions according to the parabolicity of the control Hamiltonian.As a special case,the optimal control solution that maximally squeezes a generalized coherent state is a sinusoidal field,which is consistent with what is used in the laboratory.

    Quantum control,optimal control,dynamical symmetry DOI10.1007/s11768-015-4128-0

    1 Introduction

    In theoretical physics,the SU(1,1)dynamical symmetry is of fundamental importance in algebraically solving Schr¨odinger equations with various potential functions(e.g.,Morse potential,P¨oschl-Teller potential,and Coulomb potential)[1-5],as well as in solid-state[6]and optical systems[7].As one of the simplest Lie groups,SU(1,1)group can be taken as an analytic continuation of SU(2)group and the Heisenberg group H(1)[8],but its noncompactness makes it more useful in generating unbounded and continuous energy spectrum in infinite-dimensional quantum mechanical systems[8-10].

    Analogous of the role of SU(2)dynamical symmetry in quantum information science,quantum systems with SU(1,1)dynamical symmetry are basic building blocks in advanced quantum technologies[11],e.g.,quantum squeezed lights and nanoscale mechanical resonators[12,13],molecular disassociation/association control[14],high harmonic generation and continuous-variable quantum information[15,16].These applications lead to many control problems in engineering desired state or gate operations[14],which are generally realized by manipulating an electromagnetic field that directly or indirectly interacts with the system.Incorporated with the underlying physical disciplines,modern control theory[17]was recently introduced to design controls used in quantum chemistry[14,18]and quantum information[16,19].In particular,the optimal control theory based on variational analysis(later extended to the so-called Maximum Principle to treat more general constraints)have been widely explored in quantum systems with both numerical and experimental applications.

    In this paper,we study the minimum-fluence control problem for systems with SU(1,1)dynamical symmetry,which is motivated by the common limitations on available control resources.For example,dynamical processes in nonlinear optical systems can only experience a very short period of time for effective interaction(e.g.,in an optical crystal or an optical fiber),within which the control field has to be sufficiently strong to achieve the control goals.However,the power of realistic control resources is often limited;even if this is not a severe restriction,strong controls may introduce unwanted noises via excitation of environmental modes.Therefore,it is demanding to efficiently exploit the limited control bandwidth(jointly determined by available control power and pulse length) to achieve control goals.When the interaction time is fixed (e.g., in an optical fiber with fixed length),the use of control bandwidth can be optimized by minimizing the control fluence.To the authors’knowledge,there are some relevant studies on classical mechanical systems evolving on the SU(1,1)group(e.g.,non-Euclidean elastica[20-24]),but the applications to quantum systems have been rarely seen in the literature.

    The balance of this paper is organized as follows.In Section 2,we introduce the model of quantum control systems with SU(1,1)dynamical symmetry.In Sections 3 and 4,we derive the conditions for minimum-fluence control for systems with one or two controls,based on which the properties of the candidate optimal control solutions are discussed.Finally,conclusions are drawn in Section 5.

    2 Quantum control systems with SU(1,1)dynamical symmetry

    Consider a quantum control system whose state is in a Hilbert space H.When the field can be approximated as a classical field(e.g.,an optical pulse that contains a sufficient large number of photons),we can describe the system with the following semiclassical model[25]:

    where the time-dependent state|Ψ(t)? ∈ H is governed by the Hamiltonian involving the control field ε(t).

    The quantum control system(1)is said to possess SU(1,1)dynamical symmetry if the Lie algebra generated by the set of controlled Hamiltonians?H[ε(t)]for all ε(t)is isomorphic to su(1,1)(see the following discussion for details),thereby generate a Lie semigroup of unitary propagators contained in SU(1,1).Next,we will provide definitions of SU(1,1)group,its Lie algebra and the corresponding generalized SU(1,1)coherent states.To facilitate the following optimal control studies,the two control systems will be introduced in the context of quantum optics.

    2.1 SU(1,1)Lie group and SU(1,1)coherent-state representation

    The real Lie groups SU(2)and SU(1,1)can be uniformly defined[20]as the set of all 2×2 matrices that satisfy X?PX=P,where

    with?=1 for SU(2)and?=-1 for SU(1,1),respectively.Correspondingly,the Lie algebras of these two groups consists of 2×2 skew P-Hermitian matrices AP=-A,where the P-adjoint of X is defined as XP=PX?P.Both Lie algebras of SU(1,1)and SU(2)are three dimensional[26],and the elements in the Lie algebra satisfy XP=-X,and the infinitesimal generators satisfy the following commutation relationships:

    A standard realization of the above basis is as follows:

    Although being defined in a unified manner,SU(2)and SU(1,1)are essentially distinct in that SU(2)is a compact group but SU(1,1)is noncompact.This can be seen from the associated quadratic form

    on C2induced by the P-adjoint.For the elements A and B in the Lie algebras su(1,1),we have

    The quadratic form for SU(2)is the same as the standard matrix inner products.However,the quadratic form for SU(1,1)is not positive definite and thus is not an inner product,which is due to the noncompac-tness of SU(1,1).Nevertheless,their invariance under the SU(1,1)transformations is very useful in the following studies.For convenience,we call them pseudo inner products,many of whose calculations are parallel with those for SU(2).For example,if X,Y and Z are skew P-Hermitian,then

    Based on the pseudo inner product defined on su(1,1),one can further classify its elements according to their geometry.A matrix M∈su(1,1)and its exponential eMare said to be elliptic(hyperbolic,parabolic)if?M,M?Pis positive(negative,zero).For examples,in the basis(4),K0is elliptic,while K1and K2are hyperbolic.

    For quantum systems possessing SU(1,1)dynamics symmetry,the evolution operator acting on the Hilbert space H forms a unitary representation of elements in su(1,1).Due to the noncompactness of SU(1,1),the Hilbert space H carrying such representations must be infinite dimensional.This feature makes essential distinctions between SU(1,1)and SU(2)in that SU(1,1)can serve to generate energy spectrum of an unbounded system but SU(2)can only be applied to bounded systems.

    The unitary representation also induces an isomorphic transformation,say R,from the Hamiltonian operator ?H to a skew P-Hermitian matrix in su(1,1).It is easy to verify that the following equalities hold for arbitrary X,Y∈su(1,1):

    In this paper,we are concerned with the control of an important class of quantum states,namely the SU(1,1)generalized coherent states(GCS),which are generalized from the coherent states of a quantum harmonic oscillator.According to the standard Perelomov’s definition[27],an SU(1,1)GCS is some quantum state that can be generated by some SU(1, 1) transformation in the following way:

    where?K±=R(K1±iK2)is a given unitary representation of su(1,1);and{|0?,|1?,...,|n?,...}are the orthonormal basis of H with|0?being an arbitrary state in the Hilbert space(e.g.,the vacuum state).The integer k is some constant that labels the specific Hilbert space.The set of GCSs generated from a fixed state|0?is invariant under SU(1,1)transformations,and they form a two-dimensional submanifold that is isomorphic to the coset space SU(1,1)/U(1),where U(1)is the one dimensional Lie group generated by K0.

    2.2 Quantum optical control systems with SU(1,1)dynamical symmetry

    The Hamiltonian of the control system(1)generally possesses the following form[28,29]:

    where?H0and?H1are the internal and control Hamiltonians.The classical control field is a scalar real time dependent function with tunable amplitude.In atomic or molecular control,?H1represents the electric(or magnetic)dipole that is coupled to an electric(or magnetic)field.Particularly,for the manipulation of quantum optical modes in a cavity or some dielectric medium,the control is realized by a pump field.

    For example,two-photon processes are used for single mode squeezing with free and control Hamiltonians being[30-32]:

    where the annihilation operator?a of the optical mode to be squeezed is defined on the Fock space spanned by photon number states{|0?,|1?,...}.Another circumstance is applying the degenerate parametric down conversion corresponding to the following two-mode squeezing:

    where?a1and?a2are the annihilation operators of the two created photons.In the two examples,the involved sets of operators satisfy the commutation relationship(3)when taking

    or

    Systems(15)and(16)describe optical systems coupled with a linearly polarized field.When the field is circularly polarized,the Hamiltonian has the following form:

    where the value of the control field parameter ε(t)is a complex number.Quantum control systems with one or two controls are to be studied in the following sections.

    3 Minimum-f l uence coherent state transfer with single control

    As mentioned above,quantum control systems with SU(1,1)dynamical symmetry evolve on a finite dimensional manifold of generalized coherent states in the(infinite-dimensional)Hilbert space.Using the unitary representation R defined above,we can map the quantum state|Ψ(t)?to a two-dimensional complex vector in C2:

    where[1 0]Tcorresponds to the root state|0?in(13).Correspondingly,the Hamiltonian H[ε(t)]is mapped to a 2×2 skew P-Hermitian matrix

    It is obvious that a control field ε(t)drives system(1)from|Ψ0?to|Ψf?if and only if the same control drives the following system:

    from x0=R-1(|Ψ0?)to xf=R-1(|Ψf?).Thus,it is more convenient to study optimal control problems with this finite-dimensional system.

    The field fluence to be minimized is defined by the following cost functional:

    over the set of controls that are L2-integrable over a fixed time period[0,T].The Schr¨odinger equation(or the isomorphic one(24))forms a dynamical constraint for the optimization.

    Next,we apply the famous Pontrygin Maximum Principle[33,34]to study the minimum-fluence control problem for systems with SU(1,1)dynamical symmetry.Consider a quantum system controlled by a single field,which by the isomorphic transformation R defined above,is translated to a two-dimensional optimal control system problem as follows:

    where both A0and A1are skew P-Hermitian.The initial x(0)=x0and boundary condition x(T)=xfare fixed,whereas T is not fixed.

    First,we define the following pseudo Hamiltonian:

    whereλ0=0or1.The first term corresponds to the cost functional to be minimized,and the second term to the dynamical constraint(26)with a Lagrangian multiplier ?λ(t).By defining λ(t)=P?λ(t),we have

    The evolution of the Lagrangian multiplier is derived as follows:

    whose boundary conditions are to be determined by the initial and boundary conditions in equation(28).

    According to the Maximum Principle[34,35],any optimal control ε(t)that minimizes the cost functional(25)must be an extremal curve that is defined as a control function satisfying

    where the extremal trajectory(ˉx(t),ˉλ(t))is generated by the candidate optimal control ε(t).The extremals corresponding to λ0=1 are called normal,otherwise the extremals corresponding to λ=0 are called abnormal[19].

    To further determine the optimal control from the condition(32),we introduce the following auxiliary variables:

    where A2=[A0A1].By differentiating these variables in time,we obtain(a.e.)

    where the structural constants a00,a01and a11are defined as

    Equations(34)-(36)have a first integral

    which is constant during the evolution and thereby restricts the trajectory(ν0(t),ν1(t),ν2(t))on a two dimensional surface C=const.This surface can be an ellipsoid,a hyperboloid,a paraboloid or a cone,which corresponds to the cases that A2is elliptic,hyperbolic,parabolic or conic,respectively.Next,we will use equations(34)-(36)to analyze the properties of abnormal and normal extremals.

    3.1 Abnormal extremals

    Abnormal extremals are defined as control solutions that satisfy(32)for λ0=0,which correspond to the case that the cost is overwhelmed by the dynamical constraint.We have the following conclusions.

    Theorem 1 If A1is non-parabolic,then there exists a unique abnormal extremal ε(t)=

    Proof By the definition of abnormal extremals,i.e.,λ0=0,condition(32)becomes

    which also implies that ν0(t)is constant because the pseudo Hamiltonian H(t)= ν0(t)+ ε(t)ν1(t)is timeinvariant during the evolution.Further,equation(41)can be differentiated to yield ν2(t)≡ 0.

    Differentiating again ν2(t)≡ 0,we have from which it is easy to see that,when a11≠0(i.e.,A1is non-parabolic),the abnormal control is a constant ε(t)=-□

    3.2 Normal extremals

    The normal extremals correspond to λ0=1.With respect to such extremals,the second-order derivative of the pseudo Hamiltonian reads

    which implies that the corresponding control is always a local minimum.The necessary condition for candidate optimal controls can be expressed as ε(t)= ν1(t),and thus we have(a.e.)

    In addition to the first integral(40),we have found that these equations possess another first integral E=.This quantity is called the elastic energy in[20].

    The properties of normal extremals are essentially determined by the geometry of the parabolicity of A1.

    1)When the control Hamiltonian is non-parabolic,i.e.,andε?(t)=ε(t)with which equation(26)is transformed to be

    where one can examine that?a01=??A0,?A1?P=0.Thus,without loss of generality,we can always assume that a01=0,under which the first integrals becomes

    Then equations(44)-(46)can be reduced to a first-order differential equation

    which,under the variable replacement zleads to the following equation:

    where g2and g3are functions of the constants E and C.

    2)When the control Hamiltonian is parabolic,i.e.,a11=0,we find that under the following transformation:

    Similarly,let ν1=equations(44)-(46)can be reduced to the same first-order differential equation

    The above analysis shows that the normal extremals can be solved from the same differential equation(50),whose solution belongs to the class of Weierstrass elliptic functions[36],and the parameters g2and g3can be determined by the boundary conditions x(0)=x0,x(T)=xfand the final time pseudo Hamiltonian condition H(T)=0.In particular,we can get more explicit solutions for the case that A2is parabolic.In[25],it was proven that A2is parabolic if and only if=0.Moreover,in this case,A2must be a linear combination of A0and A1,causing that the Lie algebra generated by A0and A1is a proper Lie subalgebra of su(1,1).When A1is non-parabolic,the reduced differential equation of ν1becomes

    where the parameters E and γ are parameters to be determined from the boundary conditions.When A2is parabolic,the solution is simpler,i.e.,ε(t)= γe-t.

    4 Optimal control of quantum squeezed states with two controls

    Given a generalized SU(1,1)coherent state written as|α = θe-iφ?,the parameter ξ =tanh θe-iφcharacterizes a squeezed optical state in quantum optics.The value of|ξ|=tanhθ ∈ [0,1]represents the ratio of squeezing.For standard coherent states(e.g.,those of a harmonic oscillator),|ξ|=0,while the limit|ξ|→ 1correspondsto a highly squeezed state.In the representation(24),one can verify that ξ =x2/x1where x=[x1x2]T=R-1(|α?).

    Consider the quantum system controlled by a circularly polarized field,which is mapped as in equations(26)-(28)to the following optimal control system:

    where T is not fixed.ξ0is the target squeezing ratio and(T),x2(T)]in equation(60)is the constraints of the system final state.

    More specifically,we consider the often encountered case(e.g.,the two examples discussed in Section 2)that A0= ω0K0and A1=(K1+iK2)/2,where ω0is the frequency of the optical mode and the basis matrices K0,K1and K2are defined in(4).Denote ε(t)=u1(t)+iu2(t),where u1(t)and u2(t)are the real and imaginary parts of ε(t).Then we have the pseudo Hamiltonian with respect to the minimum-fluence control as

    where λ0=0 or 1,and the evolution of the Lagrangian multiplier λ(t)obeys the same differential equation of x(t)because

    Let νi(t)=-?λ(t),Kix(t)?P,i=0,1,2.Their evolution obeys the following equations:

    Similarly,one can prove that the abnormal extremals(i.e.,λ0=0)can only be zero control ε(t)≡ 0,which is trivial in practice.

    For normal extremals(i.e.,λ0=1),the Pontryagin Maximum Principle reads

    Combined with equation(63),it can be seen that

    implying that ν0(t)≡ δ is constant.Thus,equations(64)and(65)become

    Therefore,both ν1(t)=u1(t)and ν2(t)=u2(t)are sinusoidal functions of time,where δ is the detuning frequency from the resonating frequency ω0.The resulting control field can be written as ε(t)= ν1(t)+iν2(t)=Mei[(ω0+δ)t+ψ].M and ψ can be determined from the boundary conditions

    and the final time pseudo Hamiltonian condition H(T)=0.

    The Sch¨odinger equation(24)under such sinusoidal control functions is analytically solvable.Using the rotating-frame transformationˉx(t)=,which leads to

    where t∈[0,T]and x(0)=(1,0)?is the vacuum state.Therefore,for a normal extremal,the field fluence isand the corresponding squeezing parameter can be computed as

    The dependence of M on the detuning parameter δ is depicted in Fig.1,where the minimum value of the field amplitude(for fixed final time T)can be seen to be reached at δ=0(i.e.,on resonance),where

    or equivalently,

    corresponding to

    The phase parameter ψ can be determined by matching the phase of ξ0,i.e.,

    Fig.1 The minimal amplitude M of the control field required for state squeezing at the ratio of ξ0under various detuning frequency δ,where T is the final time.The required field becomes stronger when the detuning is greater or the final state is more squeezed.

    From the above derivation, one can also solve the dual problem of maximizing the squeezing ratio ξ(T)under given control fluence F=.Note that the restrictionon the fluence implies that M=

    From the above results,the state can be squeezed with a higher degree when increasing the quantity FT,which can be done by either increasing the fluence of the field or extending the time of interaction of the pump field with the medium.

    5 Conclusions

    The optimal control for quantum system has obtained many fruitful results[37,38].In this paper,we used the optimal control method to study the minimum-fluence control of quantum generalized coherent states in systems with SU(1,1)dynamical symmetry.It was found that,according to the geometry of the system control Hamiltonian(i.e.,its parabolicity),the optimal control solutions with a single control field can be expressed in terms of Weierstrass elliptic functions.Different from the related work on the group SU(2)[19],the properties of extremal controls are much more complicated due to the noncompactness of SU(1,1)group.For systems with two controls,we proved that the optimal control is a monochromatic field that is resonant with the frequency of the mode to be controlled,which is exactly what is used in laboratory from physical intuition.These results reflect the complexity in controlling unbounded quantum systems even on a finite dimensional submanifold.In the future,the optimal control theory will be applied to quantum systems with more general dynamical symmetries.We will also make use of optimal control theory to study other issues,e.g.,the decoherence problems[39,40]inopenSU(1,1)dynamicalsymmetry.

    [1] C.Lan,T.-J.Tarn,Q.-S.Chi,et al.Analytic controllability of timedependent quantum control systems.Journal of Mathematical Physics,2005,46(5):DOI 10.1063/1.1867979.

    [2]M.Berrondo,A.Palma.Group theory of the morse potential.Group Theoretical Methods in Physics.Berlin:Springer,1980:3-7.

    [3]F.El-Orany,S.Hassan,M.Abdalla.Squeezing evolution with non-dissipative SU(1,1)systems.Journal of Optics B:Quantum and Semiclassical Optics,2003,5(5):396-404.

    [4]S.-H.Dong,F.Lara-Rosano,G.-H.Sun.The controllability of the pure states for the Morse potential with a dynamical group SU(1,1).Physics Letters A,2004,325(3):218-225.

    [5]R.P.Mart’?nez-y-Romero,H.N.N’u?nez-Y’epez,A.L.Salas-Brito.An su(1,1)algebraic method for the hydrogen atom.Journal of Physics A:Mathematical and General,2005,38(40):8579-8588.

    [6]A.Thilagam,M.A.Lohe.Coherent state polarons in quantum wells.Physica E,2005,25(4):625-635.

    [7]K.W’odkiewicz,J.H.Eberly.Coherentstates,squeezed fluctuations,and the SU(2)and SU(1,1)groups in quantumoptics applications.Journal of the Optical Society of America B:Optical Physics,1985,2(3):458-466.

    [8]Y.Alhassid,F.G¨ursey,F.Iachello.Group theory approach to scattering.Annals of Physics,1983,148(2):346-380.

    [9]Y.Dothan.Finite-dimensional spectrum-generating algebras.Physical Review D,1970,2(12):2944-2954.

    [10]J.Dukelsky,G.G.Dussel,C.Esebbag,et al.Exactly solvable models for atom-molecule hamiltonians.Physical Review Letters,2004,93(5):DOI 10.1103/PhysRevLett.93.050403.

    [11]I.Buluta,S.Ashhab,F.Nori.Natural and artificial atoms for quantum computation.Reports on Progress in Physics,2011,74(10):DOI 10.1088/0034-4885/74/10/104401.

    [12]C.M.Caves.Quantum-mechanical noise in an interferometer.Physical Review D,1981,23(8):1693-1708.

    [13]A.F.Pace,M.J.Collett,D.F.Walls.Quantum limits in interferometric detection of gravitational radiation.Physical Review A,1993,47(4):3173-3189.

    [14]C.Brif,R.Chakrabarti,H.Rabitz.Control of quantum phenomena:Past,present,and future.New Journal of Physics,2010,12(7):DOI 10.1088/1367-2630/12/7/075008075008.

    [15]Z.Shaterzadeh-Yazdi,P.S.Turner,B.C.Sanders.SU(1,1)symmetry of multi mode squeezed states.Journal of Physics A:Mathematical and Theoretical,2008,41(5):DOI 10.1088/1751-8113/41/5/055309.

    [16]R.Wu,R.Chakrabarti,H.Rabitz.Optimal control theory for continuous variable quantum gates.Physical Review A,2008,77(5):DOI 10.1103/PhysRevA.77.052303.

    [17]D.Dong,I.Petersen.Quantum control theory and applications:a survey.IET Control Theoryamp;Applications,2010,4(12):2651-2671.

    [18]A. P. Peirce, M. A. Dahleh, H. Rabitz. Optimal control of quantum-mechanical systems:Existence,numerical approximation,and applications.Physical Review A,1988,37(12):4950-4964.

    [19]D.D’Alessandro,M.Dahleh.Optimal control of two-level quantum systems.IEEE Transactions on Automatic Control,2001,46(6):866-876.

    [20]V.Jurdjevic.Non-Euclidean elastica.American Journal of Mathematics,1995,117(1):93-124.

    [21]V.Jurdjevic.Hamiltonian point of view of non-Euclidean geometry and elliptic functions.Systemsamp;Control Letters,2001,43(1):25-41.

    [22]U.Boscain,G.Charlot,J.-P.Gauthier,et al.Optimal control in laser-induced population transfer for two-and three-level quantum systems.Journal of Mathematical Physics,2002,43(5):2107-2132.

    [23]Y.Sachkov.Conjugate points in euler’s elastic problem.Journal of Dynamical and Control Systems,2008,14(3):409-439.

    [24]Y. Sachkov. Control theory on Lie groups. Journal of Mathematical Sciences, 2009, 156(3): 381 - 439.

    [25]J.Wu,C.Li,R.Wu,et al.Quantum control by decomposition of SU(1,1).Journal of Physics A:Mathematical and General,2006,39(43):13531-13551.

    [26]N.Ja.Vilenkin,A.U.Klimyk.Representation of Lie Groups and Special Functions.Boston:Kluwer Academic Publishers,1991.

    [27]A.M.Perelomov.Coherent states for arbitrary Lie group.Communications in Mathematical Physics,1972,26(3):222-236.

    [28]T.-J. Tarn, G. Huang, J. W. Clark. Modelling of quantum mechanical control systems. Mathematical Modelling, 1980, 1(1):109 - 121.

    [29]R.Wu,T.-J.Tarn,C.Li.Smooth controllability of infinite-dimensional quantum-mechanical systems.Physical Review A,2006,73(1):DOI 10.1103/PhysRevA.73.012719.

    [30]C. Brif, A. Mann. Nonclassical interferometry with intelligent light.Physical Review A, 1996, 54(5): 4505 - 4518.

    [31]C.Brif.SU(2)and SU(1,1)algebra eigenstates:a unified analytic approach to coherent and intelligent states.International Journal of Theoretical Physics,1997,36(7):1651-1682.

    [32]A.B.Klimov,S.M.Chumakov.A Group-theoretical Approach to Quantum Optics:Models of Atom-field Interactions.Weinheim:John Wileyamp;Sons,2009.

    [33]S.Banks,M.Yew.On the optimal control of bilinear systems and its relation to Lie algebras.International Journal of Control,1986,43(3):891-900.

    [34]J.Baillieul.Geometric methods for nonlinear optimal control problems.Journal of Optimization Theory and Applications,1978,25(4):519-548.

    [35]V.Jurdjevic.Geometric Control Theory.New York:Cambridge University Press,1997.

    [36]D.F.Lawden.Elliptic Functions and Applications.New York:Springer,1989.

    [37]S.C.Hou,M.A.Khan,X.X.Yi,et al.Optimal lyapunov-based quantum control for quantum systems.Physical Review A,2012,86(2):DOI 10.1103/PhysRevA.86.022321.

    [38]W.Zhou,S.G.Schirmer,M.Zhang,et al.Bang-bang control design for quantum state transfer based on hyperspherical coordinates and optimal time-energy control.Journal of PhysicsA:Mathematical and Theoretical,2011,44(10):DOI 10.1088/1751-8113/44/10/105303.

    [39]W.Cui,Z.Xi,Y.Pan.Optimal decoherence control in non-markovian open dissipative quantum systems.Physical Review A,2008,77(3):DOI 10.1103/PhysRevA.77.032117.

    [40]J.Zhang,C.Li,R.Wu,et al.Maximal suppression of decoherence in markovian quantum systems.Journal of Physics A:Mathematical and General,2005,38(29):6587-6601.

    26 September 2014;revised 6 May 2015;accepted 7 May 2015

    ?Corresponding author.

    E-mail:rbwu@tsinghua.edu.cn.Tel.:+86-10-62797485;fax:+86-10-62786911.

    This work was supported by the National Natural Science Foundation of China(Nos.61374091,61134008).

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Wenbin DONG was born in Shenyang,China.He received his B.Sc.and M.Sc.degrees from Northeastern University,Shenyang,China,in2008and2010,respectively.Currently,he is a Ph.D.candidate at the Tsinghua University,Beijing.His main research interests are quantum control.E-mail:dongwenbin77@163.com.

    Rebing WU received the B.Sc.degree in Electrical Engineering,and the Ph.D.degree in Control Science and Engineering from Tsinghua University,Beijing,China,in 1998 and 2004,respectively.From 2005 to 2008,he was a Research Associate Fellow with the Department of Chemistry,Princeton University,Princeton,NJ.Since 2009,he has been an Associate Professor with the Department of Automation,Tsinghua University,Beijing,China.His research interests include quantum mechanical control theory and nonlinear control theory.E-mail:rbwu@tsinghua.edu.cn.

    Jianwu WU was born in Zhejiang,China.He received his B.Sc.degree from Beihang University(BUAA)in2003,and received his Ph.D.degree from Tsinghua University,Beijing,in 2008.His main research interest is quantum control.Currently,he is working in Beijing Aerospace Automatic Control Institute.E-mail:wujw03@mails.tsinghua.edu.cn.

    Chunwen LI received the B.Sc.and Ph.D.degrees from the Department of Automation,Tsinghua University,Beijing,China,in 1982and1989,respectively.Since1994,he has been a Professor with the Department of Automation,Tsinghua University.His research interests include nonlinear control systems,inverse systems,CAD and simulation of nonlinear systems,and robust control.Dr.Li received the National Youth Prize in 1991 and the Prize of the Chinese Outstanding Ph.D.Degree Recipient in 1992.E-mail:lcw@tsinghua.edu.cn.

    Tzyh-Jong TARN received the D.Sc degree in Control System Engineering from Washington University,St.Louis,MO.He is a Professor in the Department of Systems Science and Mathematics and the Director of the Center for Robotics and Automation,Washington University.Dr.Tarn received the Best Research Article Award from The Japan Foundation for the Promotion of Advanced Automation Technology in March 1994 and the Best Paper Award at the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems.He has served as the President of the IEEE Robotics and Automation Society(1992-1993).He currently serves as the Chairman of the Nomination Committee of the Robotics and Automation Society,a member of the IEEE TABRAB Transnational Committee,the Editor of the IEEE TABPress Book Series on Design and Applications,the Director of IEEE Division X(Systems and Control),and is a member of the IEEE Board of Directors.E-mail:tarn@seas.wustl.edu.

    午夜福利在线免费观看网站| 我的亚洲天堂| 下体分泌物呈黄色| 秋霞在线观看毛片| 少妇 在线观看| 2021少妇久久久久久久久久久| 国产免费一区二区三区四区乱码| 观看美女的网站| 综合色丁香网| 99久久综合免费| 大片免费播放器 马上看| 国产精品熟女久久久久浪| 美女国产高潮福利片在线看| 午夜免费鲁丝| 亚洲色图综合在线观看| 国产精品秋霞免费鲁丝片| 男女免费视频国产| 欧美日本中文国产一区发布| 中文字幕人妻丝袜一区二区 | 久久久久精品国产欧美久久久 | 亚洲美女视频黄频| 久久韩国三级中文字幕| 熟妇人妻不卡中文字幕| 亚洲av日韩精品久久久久久密 | 少妇人妻久久综合中文| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 美女脱内裤让男人舔精品视频| 精品国产露脸久久av麻豆| 成人亚洲欧美一区二区av| 天天操日日干夜夜撸| 两性夫妻黄色片| 色婷婷av一区二区三区视频| 国产精品欧美亚洲77777| 日本爱情动作片www.在线观看| 久久 成人 亚洲| 午夜日韩欧美国产| 国产精品嫩草影院av在线观看| 在现免费观看毛片| 成年人午夜在线观看视频| 精品国产超薄肉色丝袜足j| 精品国产超薄肉色丝袜足j| 亚洲精品国产区一区二| 久久久欧美国产精品| videos熟女内射| 精品人妻在线不人妻| 亚洲,欧美,日韩| www.av在线官网国产| 亚洲成人av在线免费| 免费观看av网站的网址| 男女边摸边吃奶| 日韩伦理黄色片| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| 啦啦啦中文免费视频观看日本| 午夜日韩欧美国产| bbb黄色大片| 亚洲国产欧美在线一区| svipshipincom国产片| 色播在线永久视频| tube8黄色片| 国产一区二区三区综合在线观看| 免费女性裸体啪啪无遮挡网站| 51午夜福利影视在线观看| 日韩大码丰满熟妇| 午夜老司机福利片| 亚洲一级一片aⅴ在线观看| 亚洲国产精品一区三区| 韩国av在线不卡| 熟女av电影| 男女下面插进去视频免费观看| 2018国产大陆天天弄谢| 亚洲精品第二区| 久久亚洲国产成人精品v| 亚洲人成电影观看| 国产99久久九九免费精品| 婷婷色av中文字幕| 女人久久www免费人成看片| 精品国产乱码久久久久久小说| 亚洲 欧美一区二区三区| 晚上一个人看的免费电影| 国产精品二区激情视频| 欧美在线一区亚洲| 欧美精品一区二区免费开放| 色婷婷av一区二区三区视频| 国产男人的电影天堂91| 免费观看性生交大片5| 如何舔出高潮| 五月开心婷婷网| 国产麻豆69| 99九九在线精品视频| 国产野战对白在线观看| 亚洲av日韩在线播放| 色综合欧美亚洲国产小说| 亚洲自偷自拍图片 自拍| 欧美av亚洲av综合av国产av | 一级毛片我不卡| 一个人免费看片子| 母亲3免费完整高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 美女国产高潮福利片在线看| 一本一本久久a久久精品综合妖精| 91aial.com中文字幕在线观看| 天美传媒精品一区二区| 十八禁高潮呻吟视频| 国产有黄有色有爽视频| 男女高潮啪啪啪动态图| 在线观看www视频免费| 十八禁网站网址无遮挡| 亚洲一级一片aⅴ在线观看| 亚洲一区中文字幕在线| 日日啪夜夜爽| 国产一区二区三区综合在线观看| av电影中文网址| www日本在线高清视频| 亚洲av成人不卡在线观看播放网 | 国产精品三级大全| 女性被躁到高潮视频| 精品亚洲成a人片在线观看| 欧美激情极品国产一区二区三区| 黄色视频不卡| 美女大奶头黄色视频| 亚洲熟女精品中文字幕| 99热国产这里只有精品6| 高清av免费在线| 色婷婷久久久亚洲欧美| 国产精品久久久久成人av| 中文字幕制服av| 日韩欧美一区视频在线观看| 亚洲精华国产精华液的使用体验| 亚洲在久久综合| av.在线天堂| 波多野结衣一区麻豆| 国产一区亚洲一区在线观看| 卡戴珊不雅视频在线播放| 午夜激情av网站| 国产精品国产三级国产专区5o| 亚洲国产欧美日韩在线播放| 考比视频在线观看| 超色免费av| 一级片'在线观看视频| 亚洲精品久久午夜乱码| 久久久久精品性色| 国产亚洲一区二区精品| 在线观看人妻少妇| 人妻一区二区av| 美女脱内裤让男人舔精品视频| 亚洲熟女精品中文字幕| 黄片播放在线免费| 免费黄频网站在线观看国产| 久久性视频一级片| 一区二区三区乱码不卡18| 精品国产一区二区三区四区第35| 两性夫妻黄色片| 国产免费一区二区三区四区乱码| 免费看不卡的av| 少妇被粗大猛烈的视频| 亚洲精品日本国产第一区| 18禁国产床啪视频网站| 成人国产av品久久久| 看十八女毛片水多多多| 午夜久久久在线观看| 亚洲av综合色区一区| 天天添夜夜摸| 欧美久久黑人一区二区| 国产爽快片一区二区三区| 成年美女黄网站色视频大全免费| 国产精品女同一区二区软件| 在线观看人妻少妇| 国产黄频视频在线观看| 无限看片的www在线观看| 国产成人午夜福利电影在线观看| 性少妇av在线| 一级黄片播放器| 国产在线免费精品| 久久久精品94久久精品| 久久久国产欧美日韩av| 青草久久国产| 国语对白做爰xxxⅹ性视频网站| 国产精品香港三级国产av潘金莲 | 国产成人一区二区在线| 性少妇av在线| 久久久久久免费高清国产稀缺| 国产精品一区二区在线观看99| 一级片'在线观看视频| 亚洲精品国产区一区二| 亚洲精品aⅴ在线观看| 久久久久久久精品精品| 美女午夜性视频免费| 在线观看免费日韩欧美大片| 一级毛片我不卡| 亚洲视频免费观看视频| 一级毛片 在线播放| 亚洲精品第二区| 午夜福利免费观看在线| 日韩av免费高清视频| 国产精品久久久久久精品古装| 天天添夜夜摸| 中文字幕最新亚洲高清| 高清在线视频一区二区三区| 国产精品偷伦视频观看了| 精品久久久精品久久久| 久久天堂一区二区三区四区| 国产成人欧美在线观看 | 1024香蕉在线观看| 操美女的视频在线观看| 999精品在线视频| av.在线天堂| 我的亚洲天堂| 成人午夜精彩视频在线观看| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 久久国产精品大桥未久av| 久久ye,这里只有精品| 久久久久久人人人人人| 国产成人精品久久二区二区91 | kizo精华| 成人国语在线视频| 女的被弄到高潮叫床怎么办| 亚洲国产欧美一区二区综合| 无限看片的www在线观看| 欧美人与善性xxx| 日韩中文字幕视频在线看片| 美女视频免费永久观看网站| a级毛片在线看网站| 亚洲婷婷狠狠爱综合网| 久久av网站| 中文字幕色久视频| 久久久久久人妻| 亚洲国产欧美一区二区综合| 夜夜骑夜夜射夜夜干| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 久久久久久人妻| 亚洲精品自拍成人| 亚洲国产最新在线播放| 国产在线免费精品| 青青草视频在线视频观看| 天天影视国产精品| 99香蕉大伊视频| 国产 精品1| 国产免费现黄频在线看| 精品一区二区三区av网在线观看 | 国产极品粉嫩免费观看在线| 国产日韩欧美视频二区| 男女下面插进去视频免费观看| 一二三四中文在线观看免费高清| 亚洲,欧美,日韩| 色综合欧美亚洲国产小说| 熟妇人妻不卡中文字幕| 波多野结衣一区麻豆| 午夜激情av网站| 最近中文字幕2019免费版| 亚洲国产精品一区三区| 天天影视国产精品| 国产97色在线日韩免费| 乱人伦中国视频| 国产极品天堂在线| 一边摸一边抽搐一进一出视频| 色94色欧美一区二区| 国产高清国产精品国产三级| 在线观看免费视频网站a站| 亚洲国产av新网站| 婷婷色av中文字幕| 国产一区二区三区综合在线观看| kizo精华| 国产成人午夜福利电影在线观看| 狠狠婷婷综合久久久久久88av| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 中文字幕亚洲精品专区| 人人妻人人澡人人爽人人夜夜| 亚洲免费av在线视频| 亚洲国产最新在线播放| 亚洲精华国产精华液的使用体验| 国产精品三级大全| 男女无遮挡免费网站观看| 日本一区二区免费在线视频| 欧美 日韩 精品 国产| 亚洲国产欧美一区二区综合| 啦啦啦在线免费观看视频4| 国产亚洲一区二区精品| 秋霞伦理黄片| 精品酒店卫生间| 欧美日韩视频精品一区| 久久久久久久久免费视频了| 18禁观看日本| 国产伦人伦偷精品视频| 黑人猛操日本美女一级片| 黄色 视频免费看| 亚洲成色77777| 青青草视频在线视频观看| 久久精品aⅴ一区二区三区四区| 看非洲黑人一级黄片| 国产1区2区3区精品| 三上悠亚av全集在线观看| 黄频高清免费视频| 国语对白做爰xxxⅹ性视频网站| 黄色视频不卡| 久久97久久精品| 国产av一区二区精品久久| 操美女的视频在线观看| 亚洲少妇的诱惑av| 精品一区二区免费观看| 韩国精品一区二区三区| 一区二区av电影网| 老熟女久久久| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 久久精品久久久久久噜噜老黄| 久久久久久免费高清国产稀缺| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 国产熟女欧美一区二区| 一本大道久久a久久精品| 久久女婷五月综合色啪小说| 美女福利国产在线| 欧美精品人与动牲交sv欧美| 丝袜脚勾引网站| av.在线天堂| 9191精品国产免费久久| 国产成人精品在线电影| 国产成人a∨麻豆精品| 国产在线视频一区二区| 久久99热这里只频精品6学生| 亚洲视频免费观看视频| 久久影院123| 欧美变态另类bdsm刘玥| 欧美另类一区| 蜜桃在线观看..| 亚洲精品国产一区二区精华液| 欧美av亚洲av综合av国产av | 免费看av在线观看网站| 只有这里有精品99| 九色亚洲精品在线播放| 久久ye,这里只有精品| 精品视频人人做人人爽| 日韩av免费高清视频| 国产精品久久久久久精品古装| 精品酒店卫生间| 午夜激情久久久久久久| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 成年女人毛片免费观看观看9 | 亚洲国产欧美一区二区综合| 美女扒开内裤让男人捅视频| 日韩一区二区三区影片| 日韩,欧美,国产一区二区三区| 色综合欧美亚洲国产小说| 波多野结衣av一区二区av| 极品人妻少妇av视频| 成年av动漫网址| 日本一区二区免费在线视频| 另类精品久久| 精品免费久久久久久久清纯 | 青草久久国产| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜一区二区 | 日韩视频在线欧美| 91国产中文字幕| 国产免费视频播放在线视频| 免费黄频网站在线观看国产| 亚洲精品视频女| netflix在线观看网站| 亚洲,欧美精品.| 国产成人免费观看mmmm| 青春草国产在线视频| 香蕉丝袜av| 国产av国产精品国产| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人看| 一级黄片播放器| 久久久久久久久久久免费av| www.精华液| 日韩制服丝袜自拍偷拍| 最新的欧美精品一区二区| netflix在线观看网站| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 另类精品久久| 永久免费av网站大全| 色视频在线一区二区三区| 国产精品蜜桃在线观看| 亚洲精品aⅴ在线观看| 99久久99久久久精品蜜桃| 亚洲精品久久成人aⅴ小说| 免费在线观看黄色视频的| 欧美人与性动交α欧美软件| 高清视频免费观看一区二区| 久久久久国产一级毛片高清牌| 国产成人欧美| 黄频高清免费视频| 中文字幕av电影在线播放| 国产色婷婷99| 男人操女人黄网站| 不卡av一区二区三区| 国产探花极品一区二区| 成年女人毛片免费观看观看9 | 亚洲欧洲国产日韩| 另类精品久久| av福利片在线| 黄网站色视频无遮挡免费观看| 免费观看av网站的网址| 丁香六月欧美| 18禁国产床啪视频网站| 桃花免费在线播放| 精品少妇一区二区三区视频日本电影 | 欧美国产精品va在线观看不卡| 亚洲视频免费观看视频| 女人精品久久久久毛片| 如何舔出高潮| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 国产精品香港三级国产av潘金莲 | a 毛片基地| 亚洲精品日韩在线中文字幕| 啦啦啦啦在线视频资源| 亚洲av成人精品一二三区| 十八禁高潮呻吟视频| 成年女人毛片免费观看观看9 | 精品人妻熟女毛片av久久网站| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 日韩免费高清中文字幕av| 亚洲一码二码三码区别大吗| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲国产毛片av蜜桃av| av一本久久久久| 欧美激情 高清一区二区三区| 校园人妻丝袜中文字幕| 90打野战视频偷拍视频| 我要看黄色一级片免费的| 免费观看人在逋| a 毛片基地| 一区二区三区精品91| 中文字幕亚洲精品专区| 一本—道久久a久久精品蜜桃钙片| 国产精品香港三级国产av潘金莲 | 韩国高清视频一区二区三区| 在线观看免费午夜福利视频| 亚洲国产毛片av蜜桃av| 亚洲精品国产色婷婷电影| 精品少妇黑人巨大在线播放| 欧美日韩国产mv在线观看视频| 最近最新中文字幕大全免费视频 | 久久天堂一区二区三区四区| 高清不卡的av网站| 90打野战视频偷拍视频| 国产片特级美女逼逼视频| 国产人伦9x9x在线观看| 妹子高潮喷水视频| 中文天堂在线官网| 又黄又粗又硬又大视频| 日韩av不卡免费在线播放| 妹子高潮喷水视频| 日本vs欧美在线观看视频| 日韩 欧美 亚洲 中文字幕| 久久久久人妻精品一区果冻| 久久久国产精品麻豆| 国产成人a∨麻豆精品| 精品少妇黑人巨大在线播放| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999| 日日爽夜夜爽网站| 国产免费福利视频在线观看| 一区二区三区激情视频| 人人妻人人澡人人看| 午夜影院在线不卡| 亚洲国产精品一区三区| 久久国产精品大桥未久av| 国产精品久久久久久精品电影小说| 欧美日韩成人在线一区二区| 亚洲精品一区蜜桃| 欧美少妇被猛烈插入视频| 国产一区二区三区综合在线观看| 夜夜骑夜夜射夜夜干| 精品免费久久久久久久清纯 | 亚洲av成人精品一二三区| 汤姆久久久久久久影院中文字幕| 王馨瑶露胸无遮挡在线观看| 久久亚洲国产成人精品v| 亚洲精品国产一区二区精华液| 国产精品麻豆人妻色哟哟久久| 精品国产一区二区久久| 麻豆精品久久久久久蜜桃| 国产女主播在线喷水免费视频网站| 日本欧美国产在线视频| 老司机影院毛片| 一区二区三区乱码不卡18| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 欧美日韩亚洲综合一区二区三区_| 中文字幕精品免费在线观看视频| 国产在线免费精品| 黄色怎么调成土黄色| 在线观看免费视频网站a站| 久久久久视频综合| www.自偷自拍.com| 视频区图区小说| 晚上一个人看的免费电影| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 黄色视频在线播放观看不卡| 大话2 男鬼变身卡| 精品国产国语对白av| 性高湖久久久久久久久免费观看| 天堂8中文在线网| 无遮挡黄片免费观看| 久久精品国产亚洲av涩爱| 国产精品一区二区在线不卡| 亚洲男人天堂网一区| 精品一区二区三区av网在线观看 | 在线亚洲精品国产二区图片欧美| 黄片无遮挡物在线观看| 一边摸一边做爽爽视频免费| 亚洲精品久久久久久婷婷小说| 欧美精品亚洲一区二区| 人成视频在线观看免费观看| 在线免费观看不下载黄p国产| 十八禁人妻一区二区| 悠悠久久av| 亚洲伊人久久精品综合| 国产一区有黄有色的免费视频| 日韩中文字幕视频在线看片| 精品视频人人做人人爽| 男女边吃奶边做爰视频| 欧美 日韩 精品 国产| 视频在线观看一区二区三区| 老司机亚洲免费影院| 天堂中文最新版在线下载| 最近手机中文字幕大全| 丝袜美腿诱惑在线| 五月天丁香电影| 男的添女的下面高潮视频| 免费黄色在线免费观看| av在线观看视频网站免费| 国产 精品1| 亚洲精品aⅴ在线观看| 国产精品免费视频内射| 欧美精品人与动牲交sv欧美| 少妇人妻精品综合一区二区| 黄片无遮挡物在线观看| 精品国产超薄肉色丝袜足j| 大香蕉久久成人网| 国产精品久久久久成人av| 亚洲av综合色区一区| 亚洲精品日韩在线中文字幕| 水蜜桃什么品种好| 免费人妻精品一区二区三区视频| 亚洲精品在线美女| 亚洲天堂av无毛| 国产爽快片一区二区三区| 亚洲国产av影院在线观看| 国产爽快片一区二区三区| 午夜老司机福利片| 日本91视频免费播放| 亚洲成国产人片在线观看| 精品人妻一区二区三区麻豆| 极品人妻少妇av视频| 亚洲精品一区蜜桃| 亚洲免费av在线视频| 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲伊人色综图| 中文精品一卡2卡3卡4更新| 日韩一区二区视频免费看| 9色porny在线观看| 久久精品国产亚洲av涩爱| 久久 成人 亚洲| 最近中文字幕2019免费版| 女人爽到高潮嗷嗷叫在线视频| 性高湖久久久久久久久免费观看| 亚洲成人手机| 国产有黄有色有爽视频| 老司机深夜福利视频在线观看 | 国产精品熟女久久久久浪| 亚洲精品aⅴ在线观看| 在线免费观看不下载黄p国产| 视频在线观看一区二区三区| 久久精品久久久久久久性| 婷婷色综合大香蕉| 女人被躁到高潮嗷嗷叫费观| 日韩精品有码人妻一区| 精品亚洲成国产av| 成年女人毛片免费观看观看9 | 性少妇av在线| 亚洲第一av免费看| 国产片内射在线| 中文字幕人妻丝袜一区二区 | 成人亚洲精品一区在线观看| 日本欧美国产在线视频| 又大又爽又粗| 国产爽快片一区二区三区| 国产成人欧美在线观看 | 最近手机中文字幕大全| 满18在线观看网站| 欧美成人午夜精品| 国产在线视频一区二区| av福利片在线| 天天躁狠狠躁夜夜躁狠狠躁| 丰满迷人的少妇在线观看| 国产午夜精品一二区理论片| 久久久久久久精品精品| 欧美日韩亚洲综合一区二区三区_| 欧美精品亚洲一区二区| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 亚洲综合色网址| av视频免费观看在线观看| 一区二区三区四区激情视频| 免费高清在线观看日韩|