• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Error quantification of the normalized right graph symbol for an errors-in-variables system

    2015-12-05 06:23:45LihuiGENGShigangCUIZeyuXIA
    Control Theory and Technology 2015年3期

    Lihui GENG,Shigang CUI,Zeyu XIA

    Tianjin Key Laboratory of Information Sensing and Intelligent Control,School of Automation and Electrical Engineering,

    Tianjin University of Technology and Education,Tianjin 300222,China

    Error quantification of the normalized right graph symbol for an errors-in-variables system

    Lihui GENG?,Shigang CUI,Zeyu XIA

    Tianjin Key Laboratory of Information Sensing and Intelligent Control,School of Automation and Electrical Engineering,

    Tianjin University of Technology and Education,Tianjin 300222,China

    This paper proposes a novel method to quantify the error of a nominal normalized right graph symbol(NRGS)for an errorsin-variables(EIV)system corrupted with bounded noise.Following an identification framework for estimation of a perturbation model set,a worst-case v-gap error bound for the estimated nominal NRGS can be first determined from a priori and a posteriori information on the underlying EIV system.Then,an NRGS perturbation model set can be derived from a close relation between the v-gap metric of two models and H∞-norm of their NRGSs’difference.The obtained NRGS perturbation model set paves the way for robust controller design using an H∞loop-shaping method because it is a standard form of the well-known NCF(normalized coprime factor)perturbation model set.Finally,a numerical simulation is used to demonstrate the effectiveness of the proposed identification method.

    Error quantification,errors-in-variables,normalized right graph symbol

    DOI10.1007/s11768-015-4183-6

    1 Introduction

    Normalized coprime factors(NCFs)with their respective additive perturbations play an important role in the robust control area since McFarlane and Glover[1,2]presented a robust controller design method using NCF plant descriptions via open-loop shaping.A nominal NCF model can not only characterize possible unstable systems,but also reduce fragility in the robust controller design[3].As a result,such robust controller synthesis method using NCF representations attracts more and more attention in the subsequent years.As for an underlying system characterized by a NCF perturbation model set,various methods capable of synthesizing robustly stabilizing controllers are presented[4-13].For the purpose of achieving robust controller design,the available nominal model should be a NCF representation for the concerned system.Even more importantly,a worst-case error bound for the NCF perturbations should also be determined before the controller design.As a result,identification of a NCF perturbation model set for the concerned system is a particularly significant stage prior to its robust controller synthesis.Although quite a few estimation methods are able to provide users with a nominal NCF model,few of them can also give its worst-case error bound necessary to design a robust controller[14,15].This is due to the reason that such a specific mathematical description makes it difficult to quantify a worst-case error for the obtained nominal NCF model.Therefore,it is of particular necessity to study quantification methods for the NCF perturbations.

    The major contribution of this paper is to propose a novel error quantification method,which can provide users with a kind of NCF perturbation model set suitable to robust controller design.In order to retain our research continuity,we also name it as normalized right graph symbol(NRGS)perturbation model set.The idea of the proposed error quantification method derives from some previous researches,in which Geng et al.put forward an identification method for obtaining a perturbation model set characterized by the v-gap metric.In a matter of fact,the v-gap metric describes a deterministic geometrical relation between the NRGSs of two concerned systems and thus is much related to the error quantification of the nominal NRGS addressed in this paper.In an identification framework similar to those in[16]and[17],a much less conservative error bound for nominal NRGS perturbations can be derived from the determined v-gap metric bound.The resultant NRGS perturbation model set can thus be represented as the nominal NRGS and its worst-case error bound.In addition,the identified model set has the same form as the NCF perturbation model set[18,19]and thus is beneficial to the subsequent application of an H∞loopshaping design method.

    The remainder of this paper is organized as follows.Section 2 formulates an errors-in-variables system framework for identification of an NRGS perturbation model set.A deterministic relation between the NRGS perturbation bound and the v-gap perturbation bound and thus a worst-case error for the nominal NRGS are both derived in Section 3.In addition,an identification procedure to obtain such NRGS perturbation model set is also summarized.Section 4 gives a simulation example to demonstrate how to apply the proposed identification procedure.Some concluding remarks about the proposed identification method are drawn in Section 5.

    The notations in this paper are standard[16,17,19-21].Let Rm×ndenote the set of m × n real matrices and let C stand for the set of complex numbers.L2(D),H∞(D)and H2(D)are the subspaces of specified functions in the Hardy space.ˉσ(X)symbolizes the maximum singular value of a complex matrix X.l∞denotes the space of bounded sequences.A ball in l∞is defined as:={v:v∈and δv(P1,P2)are the L2-gap and the v-gap metric between P1(λ)and P2(λ),respectively[21].X?denotes the complex conjugate of a complex matrix X.

    2 Problem formulation

    We only consider robust identification of an NRGS model for a SISO errors-in-variables(EIV)system shown in Fig.1,which describes the following signal relation

    where wm(λ)? [ym(λ)um(λ)]Tis the input and output measurement variable vector,w0(λ) ? [y0(λ)u0(λ)]Tthe noise-free input and output variable vector,and ?w(λ)?[ny0(λ)nu0(λ)]Tthe input and output disturbing noise variable vector.In the block diagram,P0(λ)∈ H∞(D)is an open-loop discrete-time system,whose NRGS is G0(λ)=[N0(λ)D0(λ)]T∈ H∞(D)[16,17,20,21].

    Fig.1 Block diagram of an EIV system.

    For the purpose of the EIV system identification,the following necessary assumptions are given.

    Assumption 1wm(λ)and?w(λ)belong to L2(D).

    Assumption 2The disturbing noise?w(λ)belongs to the following noise set

    where Pm(λ)=ym(λ)/um(λ)is a perturbed model resulting from?w(λ).

    Assumption 1 is a more general condition for openloop EIV system identification[16,17,22].From As-sumption 2,a Pm(λ)belonging to H∞(D)can be ensured to exist[17].Moreover,an NRGS of Pm(λ)can be described as Gm(λ)=[Nm(λ)Dm(λ)]T∈ H∞(D).

    We make use of Gm(λ)to define a a priori model set for the NRGS G0(λ)of the underlying EIV system P0(λ)as follows[16,17]:

    where C denotes the space of functions with continuous derivatives on the unit circle?D and˙G0means a derivative of G0(λ)with respect to the complex variable λ.

    Remark1 The model set S(β)ofG0(λ)definedin(3)is one whose element derivative is continuous and constrained to be less than the a priori bound β. In effect, any G0(λ)contained in this model set needs to have some certain smoothness and thus its components N0(λ)and D0(λ)should also have the similar property.

    However,in an identification experiment,only a finite number of input and output measurement sequences,k ∈ N ? {1,2,...,N}}are available.Suppose that the angular frequencies,collected from[0,2π]as a set W ? {ω1,ω2,...,ωN},are nonuniform samples which satisfy

    where ωN+1is an artificial angular frequency not used for identification.Then,the maximum frequency gap between adjacent angular frequencies can be determined as

    To sum up,our main objective is to estimate an(n-1)th order nominal NRGS G(λ)of an approximate model P(λ)for P0(λ)using the recorded data setin the first place and then quantify its worst-case error in terms of a priori and a posteriori information on the underlying EIV system.

    3 Worst-case identification

    3.1 Optimization criterion

    By the same token,the identification method proposed in[17]is employed here to obtain the nominal NRGS G(λ).To this end,a coprime factor model F(λ)=[NF(λ)DF(λ)]T∈ H∞(D)of P(λ)should be first optimized from the following optimization criterion[16,17,21]:

    where Gm(ejωk)is the point wise frequency response of Gm(λ)and can be generated from the input and output measurements as follows:

    with Pm(ejωk)=ym(ejωk)/um(ejωk)for ωk∈ W;F(ejωk)is the pointwise frequency response of the following parametric coprime factor model

    with

    being the parameters for the numerator and denominator factors,respectively and V(λ)=[1 λ ···λn-1]T∈a set of orthonormal basis for linear dynamical models;qkis a complex variable to be optimized at ωk;μ is a user-chosen weighting coefficient for H∞-norm of the derivative of F(λ)with respect to λ.

    Remark 2 In minimization criterion(6),not only the aperture betweenbut also the smoothness of F(λ)is minimized and this minimization problem can be solved by a two-step iterative algorithm[20].The complex variable qkis bounded by h,which can be determined as a posteriori information from q=at the end of the two-step iterative algorithm.The weighting coefficient μ can be chosen asμ?δˉrwithμ?∈(0,∞)and r∈(0.5,1)from[20].

    Then,an estimation of G(λ)can be obtained as=by applying a normalization procedure toP?(λ)?withN?F(λ)andD?F(λ)being the optimized models from(6).

    3.2 Worst-case error quantification

    According to a priori and a posteriori information on the underlying EIV system,a worst-case error for?G(λ)is defined as

    1N2(?)and N3(?)are defined as follows:

    with γbbeing a possible upper bound for the optimal value of optimization criterion(6)and?D(ejω)being the frequency response of the denominator factor in?G(λ).It is noteworthy that N2(?)and N3(?)are used to further constrain the noise bound?and will be beneficial for the quantification of a worst-case error bound for ewc.In addition,the constraint inequality in N3(?)is a sufficient condition for the existence of δv(?P,P0)[17],which will be later used in a robust convergent theorem.

    In order to quantify the worst-case error ewc,the following pivotal theorem ought to be addressed in advance.

    Theorem 1If the v-gap metric δv(?P,P0)between ?P(λ)and P0(λ)exists and?G(λ)and G0(λ)are their respective NRGSs,then the following inequality holds:

    Proof This theorem can be readily concluded from the statements in Appendix A in[16]and further consideration of the existence of δv(?P,P0).□

    From Theorem 1,a useful corollary can be obtained in a straightforward manner.

    Corollary1 The following NRGS perturbation model can be derived:where Δ(λ) ? [Δn(λ) Δd(λ)]T∈ H∞(D)is the numerator and denominator perturbations for G0(λ)and can be determined.

    In order to quantify the worst-case error in(9)and prove the relevant robust convergence of the employed identification algorithm,we recall the following lemma[17,21].

    Lemma 1 For the a priori informationW}∈S(β)and the a posteriori information as in(7),there exist two(n-1)th order polynomialssuch that the following inequalities hold

    and

    which are used to ensure the coprimeness betweenˉNF(λ)andˉDF(λ)[17].

    Remark3 The constraint condition in(15)is applied to ensure the existence of a δv(Pm,ˉPF),which is helpful in the quantification of δv(?P,P0).Inequality(16)is used to guarantee thatˉNF(λ)andˉDF(λ)are coprime in H∞(D).In a matter of fact,a sufficient large n can be determined to make(15)and(16)hold simultaneously(See Remark 3 in[16]).

    Similar to the proof of the robust convergent Theorem3.4 in[17],the following important lemma can thus be obtained.

    In light of Lemma 2,one is able to derive a robust convergent theorem as follows.

    Theorem 2 Under the same condition as in Lemma 2,the worst-case error for?G(λ)can then be quantified as

    In addition,

    with

    Proof Combining Theorem 1 and Lemma 2 yields the relevant conclusions for this theorem. □

    From Theorem 2,it can be known that the proposed algorithm has robust convergence and the worst-case error for the nominal NRGS?G(λ)can be quantified according to(18).

    3.3 Identification procedure

    The identification of an NRGS perturbation model set for an EIV system using frequency-domain measurements can be summarized as the following steps.

    Step 1 Generate the point wise frequency responseaccording to the input and output measurements

    Step 2 Build the point wise frequency responseofbased on equation(7).

    Step 3 Parameterize the coprime factor model F(λ)by referring to equation(8).

    Step 4 Optimize an(n-1)th order coprime factor model?F(λ)from the optimization criterion in(6)and then normalize it as?G(λ)by means of the relevant procedure addressed in[19].

    Step 5 Quantify the worst-case error ewcdefined in(9)by use of Theorem 2 with a priori and a posteriori information on the underlying EIV system.

    Remark 4 The identified NRGS perturbation model set is characterized by a nominal NRGS and its wors-tcase error bound. Also, this model set has the same form as that of the NCF perturbation model set addressed in[2].Thus,the H∞loop-shaping controller synthesis method therein can be used to design a robust controller for the estimated NRGS perturbation model set.The detailed study on a robustly stabilizing controller tailored to the model set given in this paper will be discussed elsewhere.

    4 Simulation

    In this section,the proposed worst-case identification method is tested on a SISO EIV system, in which the true system can be described by the following discrete-time transfer function of a complex variable z[17]:

    In an identification experiment,the frequency response of P0(z)is corrupted by a zero-mean Gaussian measurement noise whose variance is frequency-dependent and taken as the following form

    Frequency-response measurements with the data length N=80 are collected from an angular frequency interval[0.001,π-0.001]for identification.In the above simulation environment,the maximum frequency gap is computed as

    and a priori bound?is 0.0978.By simple computation,Assumption 2 holds since?is less than0.9692.By use of inequality constraint(16),the model order n can be chosen as 4.The a priori information on β is 0.3453.During the minimization of optimization criterion(6),the following selection for the weighting coefficient μ can be determined as[20]

    After the implementation of the proposed identification procedure,the optimal solution for?F(λ)is obtained as

    Meanwhile,the corresponding optimal value can be calculated as γopt=0.0847.Then an estimated nominal NRGS?G(λ)can be normalized as

    The estimated denominator and nominator factors are compared with their respective true ones in Figs.2 and 3.A comparison between the estimated and the true system models is also given in Fig.4.The worst-case error bound for the identified NRGS model can be determined as κ=0.4383.

    Fig.2 Comparison of denominator factors.

    Fig.3 Comparison of numerator factors.

    Fig.4 Comparison of system models.

    Hence,an NRGS perturbation model set for the underlying EIV system P0(z)can be represented as the nominal model?G(λ)and its worst-case error bound κ,which pave the way for its H∞controller design.

    5 Conclusions

    It is a thorny problem to quantify a worst-case error for the NCF perturbations using a priori and a posteriori information on an underlying system.By exploitation of a geometrical interpretation of the v-gap metric,a novel quantification method for the worst-case error of an NRGS model for an EIV system is proposed in this paper.The obtained NRGS perturbation model set consisting of a nominal NRGS and its worst-case error bound is tailored to an H∞loop-shaping controller design method.

    [1]K.Glover,D.C.McFarlane.Robust stabilization of normalized coprime factor plant descriptions with H∞-bounded uncertainty.IEEE Transactions on Automatic Control,1989,34(8):821-830.

    [2]D.C.McFarlane,K.Glover.Robust Controller Design Using Normalized Coprime Factor Plant Descriptions.Lecture Notes in Control and Information Sciences.Heidelberg:Springer,1990.

    [3]J.Paattilammi,P.M.Makila.Fragility and robustness:a case study on paper machine head box control.IEEE Control Systems Magazine,2000,20(1):13-22.

    [4]P.P.Khargonekar.Maximally robust state-feedback controllers for stabilization of plants with normalized right coprime factor uncertainty.Systemsamp;Control Letters,1994,22(1):1-4.

    [5]R.Majumder,B.C.Pal,C.Dufour,et al.Design and real-time implementation of robust FACTS controller for damping interarea oscillation.IEEE Transactions on Power Systems,2006,21(2):809-816.

    [6]T.Oomen,O.Bosgra.Robust-control-relevant coprime factor identification:a numerically reliable frequency domain approach.Proceedings of the American Control Conference,Seattle:IEEE,2008:625-631.

    [7]J.C.Oostveen,R.F.Curtain.Robustly stabilizing controllers for dissipative infinite-dimensional systems with collocated actuators and sensors. Automatica,2000,36(3):337-348.

    [8]S.Patra,S.Sen,G.Ray.Design of static H∞loop shaping controllerin four-block framework using LMI approach.Automatica,2008,44(8):2214-2220.

    [9]J.Reinschke,M.C.Smith.Designing robustly stabilising controllers for LTI spatially distributed systems using coprime factor synthesis.Automatica,2003,39(2):193-203.

    [10]J.F.Whidborne,I.Postlethwaite,D.-W.Gu.Robust controller design using H∞loop-shaping and the method of inequalities.IEEE Transactions on Control Systems Technology,1994,2(4):455-461.

    [11]K.K.Anaparthi,B.C.Pal,H.El-Zobaidi.Coprime factorisation approach in designing multi-input stabiliser for damping electromechanical oscillations in power systems.IEE Proceedings-Generation,Transmission and Distribution,2005,152(3):301-308.

    [12]B.D.O.Anderson,M.R.James,D.J.N.Limebeer.Robust stabilization of nonlinear systems via normalized coprime factor representations.Automatica,1998,34(12):1593-1599.

    [13]R.F.Curtain.Robustly stabilizing controllers with respect to left-coprime factor perturbations for infinite-dimensional linear systems.Systemsamp;Control Letters,2006,55(7):509-517.

    [14]M.R.Graham,R.A.de Callafon.Linear regression method for estimation approximate normalized coprime plant factors.Proceedings of the 14th IFAC Symposium on System Identification.Newcastle,Australia:IFAC,2006.

    [15]P.M.J.Van den H of,R.J.P.Schrama,O.H.Bosgra,et al.Identification of normalized coprime plant factors for iterative model and controller enhancement.Proceedings of the 32nd IEEE Conference on Decision and Control.San Antonio:IEEE,1993:2839-2844.

    [16]L.Geng,D.Xiao,T.Zhang,et al.Worst-case identification of errors-in-variables models in closed loop.IEEE Transactions on Automatic Control,2011,56(4):762-771.

    [17]L.Geng,D.Xiao,T.Zhang,et al.Robust control oriented identification of errors-in-variables models based on normalised coprime factors.International Journal of Systems Science,2012,43(9):1741-1752.

    [18]M.Vidyasagar.ControlSystem Synthesis:A Factorization Approach.Cambridge,MA:MIT Press,2002:261-262.

    [19]K.Zhou,J.C.Doyle,K.Glover.Robust and Optimal Control.Upper Saddle River:Prentice-Hall,1996.

    [20]P.Date,G.Vinnicombe.An algorithm for identification in the vgap metric.Proceedings of the 38th IEEE Conference on Decision and Control.Phoenix,Arizona:IEEE,1999:3230-3235.

    [21]P.Date,G.Vinnicombe.Algorithms for worst case identification in H∞and in the v-gap metric.Automatica,2004,40(6):995-1002.

    [22]L.Geng,D.Xiao,T.Zhang,et al.L2-optimal identification of errors-in-variables models based on normalised coprime factors.IET Control Theory and Applications,2011,5(11):1235-1242.

    [23]M.Glaum,L.Lin,G.Zames.Optimal H∞approximation by systems of prescribed order using frequency response data.Proceedings of the 35th IEEE Conference on Decision and Control.Kobe,Japan:IEEE,1996.

    24 December 2014;revised 10 July 2015;accepted 13 July 2015

    ?Corresponding author.

    E-mail:glh2010@tute.edu.cn.

    This work was supported in part by the National Natural Science Foundation of China(Nos.61203119,61304153),the Key Program of Tianjin Natural Science Foundation,China(No.14JCZDJC36300)and the Tianjin University of Technology and Education funded project(No.RC14-48).?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Lihui GENG received the B.E.,the M.E.and the Ph.D.degrees from Tianjin University of Commerce,Hebei University of Technology and Tsinghua University in 2000,2003 and 2011,respectively.Currently,he is an associate professor at the School of Automation and Electrical Engineering,Tianjin University of Technology and Education.His research interests include system identification and its engineering applications.E-mail:glh2010@tute.edu.cn.

    Shigang CUI received the M.E.and the Ph.D.degrees both from Tianjin University in 1991 and 2004,respectively.Currently,he is a professor at the School of Automation and Electrical Engineering,Tianjin University of Technology and Education.In addition to being a director of this school,he has also served as a director of Tianjin Key Laboratoryof Information Sensing and Intelligent Control.His research interests cover robot control and applications.E-mail:cuisg@163.com.

    Zeyu XIA received the B.E.degree from the Department of Computer Engineering,Anhui Economic Management Cadres’Institute in 2007.Currently,he is pursuing the M.E.degree at the School of Automation and Electrical Engineering,Tianjin University of Technology and Education.His research interests include system identification and its engineering applications.E-mail:798364309@qq.com.

    国产成人av教育| 黄色毛片三级朝国网站| 久久久久视频综合| 国产成人精品无人区| 亚洲久久久国产精品| 美女高潮喷水抽搐中文字幕| 免费黄频网站在线观看国产| 国产一区二区三区视频了| 亚洲熟女毛片儿| 天天躁日日躁夜夜躁夜夜| 国产1区2区3区精品| 精品久久久久久久久久免费视频 | 18禁国产床啪视频网站| 久久精品国产a三级三级三级| 亚洲专区国产一区二区| 黑人巨大精品欧美一区二区mp4| 咕卡用的链子| 亚洲成人手机| 国产人伦9x9x在线观看| 国产人伦9x9x在线观看| 国产人伦9x9x在线观看| 国产亚洲欧美精品永久| 成人国语在线视频| av片东京热男人的天堂| 精品国产一区二区久久| 在线看a的网站| 欧美av亚洲av综合av国产av| 久久精品熟女亚洲av麻豆精品| 日韩免费高清中文字幕av| 一区二区三区精品91| 亚洲视频免费观看视频| 咕卡用的链子| 大码成人一级视频| 精品久久久久久久毛片微露脸| 成人特级黄色片久久久久久久| 老司机午夜福利在线观看视频| 欧美av亚洲av综合av国产av| 国产视频一区二区在线看| 亚洲五月色婷婷综合| 又紧又爽又黄一区二区| 亚洲中文字幕日韩| 老司机靠b影院| 精品久久久久久,| 亚洲精品久久成人aⅴ小说| 80岁老熟妇乱子伦牲交| 欧美午夜高清在线| 久久久久精品人妻al黑| 国产免费现黄频在线看| 精品一区二区三区视频在线观看免费 | 激情在线观看视频在线高清 | 亚洲精品成人av观看孕妇| 亚洲在线自拍视频| 人成视频在线观看免费观看| 午夜福利乱码中文字幕| 亚洲片人在线观看| 精品视频人人做人人爽| 两个人免费观看高清视频| 亚洲成人国产一区在线观看| 天堂动漫精品| 亚洲av美国av| videosex国产| 露出奶头的视频| 国产伦人伦偷精品视频| 18禁美女被吸乳视频| a在线观看视频网站| 波多野结衣一区麻豆| 两人在一起打扑克的视频| 亚洲综合色网址| 9色porny在线观看| netflix在线观看网站| 亚洲国产精品合色在线| 国产精品一区二区精品视频观看| 老汉色∧v一级毛片| 无遮挡黄片免费观看| 一区二区日韩欧美中文字幕| 十八禁网站免费在线| 中文字幕另类日韩欧美亚洲嫩草| a级毛片在线看网站| 国产国语露脸激情在线看| 亚洲综合色网址| 国产精品电影一区二区三区 | 精品免费久久久久久久清纯 | 成年人午夜在线观看视频| 欧美一级毛片孕妇| 久久久久国产一级毛片高清牌| 久久这里只有精品19| 亚洲免费av在线视频| 亚洲成国产人片在线观看| 18禁黄网站禁片午夜丰满| 99久久综合精品五月天人人| 久久午夜综合久久蜜桃| 啦啦啦视频在线资源免费观看| 亚洲自偷自拍图片 自拍| 亚洲成人免费电影在线观看| 韩国精品一区二区三区| 日韩欧美一区视频在线观看| 亚洲久久久国产精品| 国产亚洲精品久久久久5区| 一边摸一边抽搐一进一小说 | 黄色成人免费大全| 成年人午夜在线观看视频| 黄色 视频免费看| 国产xxxxx性猛交| 在线天堂中文资源库| 女人久久www免费人成看片| 91精品三级在线观看| 少妇裸体淫交视频免费看高清 | 久久婷婷成人综合色麻豆| 亚洲色图 男人天堂 中文字幕| 国内毛片毛片毛片毛片毛片| 夜夜爽天天搞| a在线观看视频网站| 少妇的丰满在线观看| 免费观看精品视频网站| 咕卡用的链子| 侵犯人妻中文字幕一二三四区| 日韩免费av在线播放| 国产不卡一卡二| 久久国产精品大桥未久av| 又大又爽又粗| 久9热在线精品视频| 一进一出抽搐动态| 老司机福利观看| 夜夜躁狠狠躁天天躁| 欧美国产精品va在线观看不卡| 成人特级黄色片久久久久久久| 久久国产乱子伦精品免费另类| 免费少妇av软件| 深夜精品福利| 天堂中文最新版在线下载| 香蕉国产在线看| 免费久久久久久久精品成人欧美视频| 人妻丰满熟妇av一区二区三区 | 国产xxxxx性猛交| 大陆偷拍与自拍| 久久精品成人免费网站| 国产成人av教育| 成人18禁在线播放| 99国产精品99久久久久| 午夜激情av网站| 免费看a级黄色片| 18禁国产床啪视频网站| 午夜亚洲福利在线播放| 两性夫妻黄色片| 亚洲第一欧美日韩一区二区三区| 黑人欧美特级aaaaaa片| 两性午夜刺激爽爽歪歪视频在线观看 | 精品久久蜜臀av无| 亚洲 欧美一区二区三区| 97人妻天天添夜夜摸| 日韩成人在线观看一区二区三区| 五月开心婷婷网| 在线观看午夜福利视频| 国产区一区二久久| 免费在线观看日本一区| 曰老女人黄片| 国产在线观看jvid| 国产欧美亚洲国产| 女人久久www免费人成看片| 国产一卡二卡三卡精品| 人妻 亚洲 视频| 女人久久www免费人成看片| 国产精华一区二区三区| 老司机午夜福利在线观看视频| 久久国产亚洲av麻豆专区| 久久久精品区二区三区| 日韩欧美一区二区三区在线观看 | 免费久久久久久久精品成人欧美视频| 亚洲成人手机| 每晚都被弄得嗷嗷叫到高潮| 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| 日本撒尿小便嘘嘘汇集6| 窝窝影院91人妻| 在线观看www视频免费| 欧美黑人精品巨大| 狠狠狠狠99中文字幕| 亚洲人成伊人成综合网2020| 怎么达到女性高潮| 999精品在线视频| 两个人免费观看高清视频| 99国产精品一区二区蜜桃av | 欧美 日韩 精品 国产| 99热只有精品国产| 超色免费av| 久久ye,这里只有精品| 亚洲国产精品合色在线| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 国产激情久久老熟女| 欧美日韩瑟瑟在线播放| 人人妻,人人澡人人爽秒播| 老汉色av国产亚洲站长工具| 交换朋友夫妻互换小说| 无人区码免费观看不卡| 最近最新中文字幕大全电影3 | 一区二区三区国产精品乱码| 9色porny在线观看| 一级毛片高清免费大全| 丝袜在线中文字幕| 亚洲久久久国产精品| 久久精品国产亚洲av高清一级| 午夜福利在线观看吧| 亚洲精品乱久久久久久| 黑人操中国人逼视频| 无遮挡黄片免费观看| 欧美在线一区亚洲| 亚洲综合色网址| 久久精品国产综合久久久| 老司机靠b影院| 亚洲av美国av| 麻豆国产av国片精品| 中文字幕最新亚洲高清| 激情在线观看视频在线高清 | 国产亚洲欧美精品永久| 99热网站在线观看| 人妻丰满熟妇av一区二区三区 | 欧美午夜高清在线| 亚洲七黄色美女视频| 欧美黄色淫秽网站| 热re99久久国产66热| 涩涩av久久男人的天堂| 成人亚洲精品一区在线观看| 在线观看日韩欧美| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 91成人精品电影| 国产精品.久久久| 国产欧美日韩一区二区精品| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 久热这里只有精品99| 欧美在线一区亚洲| 国产男女内射视频| 一本大道久久a久久精品| 好男人电影高清在线观看| 色94色欧美一区二区| 久久久精品国产亚洲av高清涩受| 色综合婷婷激情| 丝瓜视频免费看黄片| 国产欧美亚洲国产| 国产极品粉嫩免费观看在线| 国产99久久九九免费精品| 悠悠久久av| 国产精品.久久久| 日韩一卡2卡3卡4卡2021年| 搡老熟女国产l中国老女人| 99国产极品粉嫩在线观看| 免费高清在线观看日韩| 操出白浆在线播放| 丁香六月欧美| av天堂在线播放| 狠狠婷婷综合久久久久久88av| 亚洲一区高清亚洲精品| 不卡av一区二区三区| 欧美在线黄色| 亚洲av熟女| 正在播放国产对白刺激| 激情视频va一区二区三区| 免费在线观看完整版高清| 一级作爱视频免费观看| 91精品国产国语对白视频| 日韩欧美国产一区二区入口| 国产淫语在线视频| 精品久久久久久久毛片微露脸| 最新的欧美精品一区二区| 老司机午夜十八禁免费视频| 757午夜福利合集在线观看| 亚洲第一av免费看| 久久久国产精品麻豆| 美女 人体艺术 gogo| 国产免费男女视频| 国产精品综合久久久久久久免费 | 欧美大码av| 欧美成人午夜精品| 99在线人妻在线中文字幕 | 国产野战对白在线观看| 母亲3免费完整高清在线观看| 在线播放国产精品三级| 激情视频va一区二区三区| 女人久久www免费人成看片| 国产区一区二久久| 曰老女人黄片| 久久中文看片网| 午夜老司机福利片| 一本大道久久a久久精品| 国产欧美日韩一区二区精品| 精品少妇久久久久久888优播| 国产精品综合久久久久久久免费 | 一区二区三区国产精品乱码| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 亚洲精品国产一区二区精华液| 一级黄色大片毛片| 亚洲精品美女久久久久99蜜臀| 国产极品粉嫩免费观看在线| 精品久久久精品久久久| av欧美777| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 欧美日韩黄片免| 日韩熟女老妇一区二区性免费视频| 夜夜夜夜夜久久久久| 757午夜福利合集在线观看| 欧美激情 高清一区二区三区| 国产欧美日韩综合在线一区二区| 欧美人与性动交α欧美精品济南到| 一级毛片女人18水好多| 999久久久国产精品视频| 91av网站免费观看| 亚洲成a人片在线一区二区| 欧美性长视频在线观看| 国产精品二区激情视频| 在线观看午夜福利视频| 日日爽夜夜爽网站| 无遮挡黄片免费观看| 亚洲一区二区三区欧美精品| 精品国产乱子伦一区二区三区| 欧美+亚洲+日韩+国产| 国产有黄有色有爽视频| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影| 亚洲av成人av| 国产成人欧美在线观看 | cao死你这个sao货| 国产男女内射视频| 亚洲中文字幕日韩| 女人久久www免费人成看片| 久久久国产一区二区| 国产精品免费视频内射| 99re6热这里在线精品视频| 无人区码免费观看不卡| 高清欧美精品videossex| 80岁老熟妇乱子伦牲交| tocl精华| 精品国内亚洲2022精品成人 | a级毛片在线看网站| 欧美最黄视频在线播放免费 | 午夜视频精品福利| 国产有黄有色有爽视频| 久久ye,这里只有精品| 亚洲av成人不卡在线观看播放网| 亚洲七黄色美女视频| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 男女下面插进去视频免费观看| 国产精品一区二区在线不卡| 手机成人av网站| 99国产精品免费福利视频| 久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 在线播放国产精品三级| 亚洲全国av大片| 久久久水蜜桃国产精品网| 两人在一起打扑克的视频| 麻豆乱淫一区二区| 久久中文字幕人妻熟女| 精品午夜福利视频在线观看一区| 动漫黄色视频在线观看| 黄色女人牲交| 国产黄色免费在线视频| 亚洲 欧美一区二区三区| 午夜福利欧美成人| 午夜福利在线观看吧| 亚洲国产欧美网| 一本一本久久a久久精品综合妖精| 99香蕉大伊视频| 色老头精品视频在线观看| 亚洲熟妇熟女久久| 久久久久国产一级毛片高清牌| 午夜两性在线视频| 女人久久www免费人成看片| 十分钟在线观看高清视频www| 99国产精品一区二区三区| 99热只有精品国产| 国产麻豆69| 欧美精品啪啪一区二区三区| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 国产精品久久久久久精品古装| 最近最新中文字幕大全免费视频| 国产男女内射视频| videos熟女内射| 久久九九热精品免费| 好看av亚洲va欧美ⅴa在| 久久狼人影院| 18禁裸乳无遮挡免费网站照片 | 午夜日韩欧美国产| 搡老岳熟女国产| 热99re8久久精品国产| 9热在线视频观看99| 大香蕉久久网| 女人被狂操c到高潮| 757午夜福利合集在线观看| 捣出白浆h1v1| 老司机福利观看| 欧美+亚洲+日韩+国产| 久久九九热精品免费| 国产精品乱码一区二三区的特点 | 精品国产亚洲在线| 18禁美女被吸乳视频| 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区 | 男人舔女人的私密视频| 满18在线观看网站| 亚洲成人手机| 99国产精品免费福利视频| 国产激情久久老熟女| videos熟女内射| 在线观看日韩欧美| av免费在线观看网站| 在线天堂中文资源库| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 日本一区二区免费在线视频| 成年人午夜在线观看视频| 国产免费现黄频在线看| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 亚洲一区二区三区欧美精品| 在线十欧美十亚洲十日本专区| 美女高潮喷水抽搐中文字幕| 亚洲人成伊人成综合网2020| 欧美成人午夜精品| 国产精品自产拍在线观看55亚洲 | 精品一品国产午夜福利视频| 日本vs欧美在线观看视频| 超碰97精品在线观看| 亚洲性夜色夜夜综合| 久久午夜综合久久蜜桃| 欧美精品高潮呻吟av久久| 两性夫妻黄色片| 欧美精品亚洲一区二区| 国产精品av久久久久免费| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 精品国产一区二区久久| 午夜视频精品福利| 最新的欧美精品一区二区| a级毛片黄视频| 亚洲av第一区精品v没综合| 精品少妇久久久久久888优播| 欧美在线黄色| 久久久精品国产亚洲av高清涩受| 久久香蕉精品热| cao死你这个sao货| 又黄又粗又硬又大视频| 国产精品.久久久| 国产免费男女视频| 国产免费现黄频在线看| 高潮久久久久久久久久久不卡| 少妇被粗大的猛进出69影院| 亚洲在线自拍视频| 欧美成人午夜精品| 精品国产乱码久久久久久男人| 一级毛片女人18水好多| 18禁国产床啪视频网站| 熟女少妇亚洲综合色aaa.| 午夜福利视频在线观看免费| av福利片在线| 午夜两性在线视频| 这个男人来自地球电影免费观看| 欧美性长视频在线观看| 黑丝袜美女国产一区| 久热这里只有精品99| 男人操女人黄网站| 午夜两性在线视频| 久久亚洲真实| 激情在线观看视频在线高清 | 亚洲 欧美一区二区三区| 国产一卡二卡三卡精品| 亚洲精品国产色婷婷电影| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 亚洲国产欧美日韩在线播放| 最新的欧美精品一区二区| 麻豆成人av在线观看| 精品免费久久久久久久清纯 | 日韩视频一区二区在线观看| 午夜免费鲁丝| 日韩成人在线观看一区二区三区| 极品人妻少妇av视频| 18禁观看日本| 亚洲熟女精品中文字幕| 激情视频va一区二区三区| 成人手机av| 国产亚洲av高清不卡| cao死你这个sao货| 亚洲午夜精品一区,二区,三区| 极品教师在线免费播放| 王馨瑶露胸无遮挡在线观看| 99在线人妻在线中文字幕 | 日韩三级视频一区二区三区| 精品第一国产精品| 国产淫语在线视频| 国产精品欧美亚洲77777| 亚洲国产看品久久| 亚洲精品乱久久久久久| 91成人精品电影| av片东京热男人的天堂| 99国产极品粉嫩在线观看| 精品久久久久久电影网| 亚洲全国av大片| 日本一区二区免费在线视频| 老司机靠b影院| 麻豆国产av国片精品| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 成人特级黄色片久久久久久久| 久久精品成人免费网站| 久久国产精品影院| 黄片大片在线免费观看| 亚洲欧美日韩另类电影网站| 免费看十八禁软件| 水蜜桃什么品种好| 夜夜爽天天搞| 久久香蕉精品热| 国产色视频综合| 天堂俺去俺来也www色官网| 亚洲一区二区三区欧美精品| 国产亚洲av高清不卡| 亚洲色图 男人天堂 中文字幕| 精品一区二区三区视频在线观看免费 | 午夜视频精品福利| 日韩有码中文字幕| 亚洲全国av大片| 国产国语露脸激情在线看| 韩国精品一区二区三区| 欧美色视频一区免费| 手机成人av网站| 久久99一区二区三区| 欧美精品啪啪一区二区三区| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 久久久精品免费免费高清| 夫妻午夜视频| 午夜免费观看网址| 9色porny在线观看| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 亚洲熟妇熟女久久| 亚洲中文日韩欧美视频| 日韩欧美免费精品| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 岛国在线观看网站| 免费看十八禁软件| 飞空精品影院首页| 女警被强在线播放| 国产男靠女视频免费网站| 国产成人免费观看mmmm| 国产不卡一卡二| 欧美中文综合在线视频| 国产精品久久久人人做人人爽| 国产精品一区二区在线不卡| 亚洲男人天堂网一区| 久久国产精品人妻蜜桃| 亚洲中文av在线| 在线国产一区二区在线| 国产男女超爽视频在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲精品自拍成人| 中文亚洲av片在线观看爽 | 亚洲全国av大片| 女人精品久久久久毛片| 久久亚洲精品不卡| 精品第一国产精品| 啦啦啦 在线观看视频| 亚洲av成人一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 美女国产高潮福利片在线看| av超薄肉色丝袜交足视频| 在线观看www视频免费| 日本wwww免费看| 免费少妇av软件| 国产高清videossex| 美女高潮喷水抽搐中文字幕| 丝袜美足系列| 亚洲国产精品一区二区三区在线| 美女国产高潮福利片在线看| 最新的欧美精品一区二区| 999精品在线视频| 丁香欧美五月| 欧美日韩视频精品一区| 成人国产一区最新在线观看| 亚洲人成伊人成综合网2020| 一a级毛片在线观看| 久久国产精品人妻蜜桃| 亚洲中文av在线| 欧美人与性动交α欧美软件| 一边摸一边抽搐一进一小说 | 女警被强在线播放| 国产又爽黄色视频| 久久久久久久久免费视频了| 一个人免费在线观看的高清视频| 99国产精品一区二区三区| 这个男人来自地球电影免费观看| 精品电影一区二区在线| 亚洲精品乱久久久久久| 精品国产美女av久久久久小说| 亚洲在线自拍视频| 免费观看人在逋| 欧美日韩精品网址| 两性夫妻黄色片| 十八禁高潮呻吟视频| 国产男女内射视频| 久久久久精品人妻al黑| 午夜福利影视在线免费观看| 亚洲五月天丁香| 伊人久久大香线蕉亚洲五| 老司机午夜福利在线观看视频| 国产一卡二卡三卡精品| 久久精品国产综合久久久|