• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems

    2015-12-05 06:23:43WeihaiZHANGYanLIXikuiLIU
    Control Theory and Technology 2015年3期

    Weihai ZHANG,Yan LI,Xikui LIU

    1.College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao Shandong 266590,China;

    2.College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao Shandong 266590,China

    Infinite horizon indefinite stochastic linear quadratic control for discrete-time systems

    Weihai ZHANG1?,Yan LI1,Xikui LIU2

    1.College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao Shandong 266590,China;

    2.College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao Shandong 266590,China

    This paper discusses discrete-time stochastic linear quadratic(LQ)problem in the infinite horizon with state and control dependent noise,where the weighting matrices in the cost function are assumed to be indefinite.The problem gives rise to a generalized algebraic Riccati equation(GARE)that involves equality and inequality constraints. The well-posedness of the indefinite LQ problem is shown to be equivalent to the feasibility of a linear matrix inequality(LMI).Moreover,the existence of a stabilizing solution to the GARE is equivalent to the attainability of the LQ problem.All the optimal controls are obtained in terms of the solution to the GARE.Finally,we give an LMI-based approach to solve the GARE via a semidefinite programming.

    Indefinite stochastic LQ control,discrete-time stochastic systems,generalized algebraic Riccati equation,linear matrix inequality,semidefinite programming

    DOI10.1007/s11768-015-4147-x

    1 Introduction

    It is well known that the linear quadratic(LQ)optimal control problem of deterministic systems was first founded by Kalman[1],which has been playing important role in both theory and applications.The deterministic LQ problem has been discussed extensively by many researchers;see,e.g.,[2-5].The stochastic LQ problem was initiated by Wonham[6]and has been investigated;see[7-14]and the references therein.In the literature,it is a common assumption that the control weighting matrix should be positive definite and the state weighting matrix should be nonnegative.In this case,the solvability of the LQ problem is equivalent to that of the Riccati equations.However,a class of stochastic LQ problems with indefinite control weightsmay still be well-posed[15].The solvability of indefinite stochastic LQ problem is closely linked to the solvability of the indefinite stochastic Riccati equations.There are many works focusing on this issue,we refer the reader to[16-18].

    For the discrete-time LQ control,Y.Huang et al.[19,20]studied a class of special cases,where the system is described by a difference equation with control and state dependent noise.In[21],the optimal control is obtained for the systems with only control dependent noise.These papers dealt with the LQ problem with the positive definite control weighting matrices in the cost functional.A discrete-time indefinite LQ control in a finite horizon with state and control dependent noise is studied in[22].Analytical properties of the constrained discrete-time indefinite stochastic LQ control in finite time horizon were extensively studied in[23-25].

    This paper considers the discrete-time indefinite stochastic LQ problem in the infinite horizon.Different from the finite horizon case,in order to guarantee the well-posedness of the LQ problem and the existence of the feedback stabilizing control,we have to define some concepts such as stabilizability.A generalized algebraic Riccati equation(GARE)is introduced.It turns out that the attainability of the LQ problem is necessary and sufficient for the existence of the stabilizing solution to the GARE.Meanwhile,we introduce a linear matrix inequality(LMI)condition and show that the well-posedness of the LQ problem is equivalent to the feasibility of the LMI.Furthermore,we present all optimal controls via the solution to the GARE.Finally,we give an LMI-based approach to solve the GARE via a semidefinite programming.

    The remainder of this paper is organized as follows.In Section2,we present the notions of stabilizability and some preliminaries.Section3 shows that the solvability of the GARE is sufficient for the well-posedness of theLQ problem and the existence of an optimal control.Section4 contains main results of the paper.In Section5,we give an LMI-based approach to solve the GARE via a semidefinite programming.Section6 ends this paper with some concluding remarks.

    For convenience,we adopt the following notations.M?represents the transpose of a matrix M;Tr(M)is the trace of asquare matrixM;M>0(M≥0)means that Mis a positive definite(positive semi-definite)symmetric matrix;E[x]represents the mathematical expectation of a random variable x;Rkis the k-dimensional Euclidean space with the usual 2-norm ‖·‖;Rm×nis the vector space of all m×n matrices with entries in R;M?means the Moore-Penrose pseudo inverse of a matrix M;I is the identity matrix with an appropriate dimension;Sndenotes the set of all real n×n symmetric matrices;and N={0,1,2,...}.

    2 Problem formulation and preliminaries

    Consider the following stochastic discrete-time system of the form:

    where A,B,C and D are constant matrices with appropriate dimensions.x∈Rnis called the system state,u∈Rmis the control input.x0∈Rnis the initial state which is deterministic.{wk}k≥0are the one-dimensional independent random variables defined on the complete probability space(Ω,F,P),such that E[wk]=0 and E[wswt]= δst,where δstis the Kronecker delta.

    We denote Fkthe σ-algebra generated by wk,k ∈ N,i.e.,Fk= σ(ws:1 ≤ s≤ k).Let L2(Ω,Rm)represent the space of Rm-valued random vectors ξ with E‖ξ‖2< ∞.(N,Rm)consists of all sequences y={yk:yk∈ Rm}k∈N,such that yk∈ L2(Ω,Rm)is Fk-1measurable for k ∈ N,where we define F-1={φ,Ω},i.e.,y0is a constant.The l2-norm of yis defined by

    For simplicity of our discussion,we give the following definitions.

    De fi nition 1 Consider system(1)with uk=0.System(1)is said to be mean-square stable[19]if for any x0∈Rn,the corresponding state satisfies0.u={uk:k∈N}(may be an open-loop control)is said to be a mean-square stabilizing control(with respect to x0)if the corresponding state xkof(1)satisfies=0.u={uk:k ∈ N}with uk=Kxkis called a mean-square feedback stabilizing control law if for every x0,the closed-loop system

    is mean-square stable,where K is a constant matrix.

    Definition 2 System(1)is said to be stabilizable in the mean square sense if there exists a mean-square feedback stabilizing control law uk=Kxk,where K is a constant matrix.

    For system(1),the admissible control set Uad(x0)is defined as follows:

    For any(x0,uk)∈Rn×Uad(x0),the associated cost functional to system(1)is defined as

    whereL∈Rn×m,Q ∈SnandR∈Smaregivenmatrices.

    The LQ optimal control problem is to find a control sequence u?=(u?0,...,u?n,...)∈ Uad(x0)such that

    We call V(x0)the optimal cost value.

    Definition 3 The LQ problem is called well-posed if

    A well-posed LQ problem is called attainable if there exists a control sequence(u?0,...,u?n...)that achieves V(x0).

    We suppose that system(1)is stabilizable throughout this paper.Hence,Uad(x0)is nonempty for each x0.

    Now,we present a new GARE as follows.

    Definition 4 The constrained algebraic equation on P∈Sn

    is called a constrained GARE.

    Let us give some lemmas needed in the proof of our main results.

    Lemma 1[26] For any matrix M ∈ Rm×n,there is a unique matrix M?∈ Rn×m,which satisfies

    M?is called the Moore-Penrose pseudo inverse of M.

    Lemma 2[26]Let a symmetric matrix M be given.Then

    Lemma 3[22]Let matrices L,M,N be given,then the matrix equation LXM=N has a solution X if and only if LL?NMM?=N.X is given by X=L?NM?+Y-L?LYMM?,where Y is a matrix with an appropriate dimension.

    Lemma 4(Extended Schur’s lemma)[27]Let matrices M=M?,N,R=R?be given with appropriate sizes.Then the following conditions are equivalent:

    3 Sufficiency of the GARE

    In this section,it is shown that the solvability of the GARE(4)is sufficient for the well-posedness of the LQ problem and the existence of an optimal control.Moreover,we show that any optimal control can be determined by means of the solution to the GARE.

    Theorem 1 If the GARE(4)admits a solution P and there exist Yk∈ Rm×nand Zk∈ Rmsuch that the following control:

    is admissible for any initial x0.Then LQ problem(1)-(3)is attainable.Furthermore,u(Yk,Zk)kis the optimal control and the optimal cost value is uniquely determined by

    Proof Let P solve the GARE(4).It is clear that?T∈N,P∈Sn,

    where

    By adding the above equality to the performance index,we have

    Define

    Hence,we can obtain that

    By completing squares,(7)can be rewritten as

    This implies that the control sequence

    minimizes J with the optimal value given by x?0Px0. □

    Definition 5 A solution P to the GARE(4)is called stabilizing if there exists an admissible control determined by(6).

    Remark 1 A solution P to the GARE(4)is stabilizing if and only if for any x0there exists some Zk∈Rmsuch that the following control:is admissible,where xkis the solution to(1)under the above control with the initial state x0.

    The following definition is concerned with the maximal solution.

    Definition 6 A matrix P is called a maximal solution to the GARE(4)if P ≥ P?for any P?satisfying

    By Definition 6,it is clear that the maximal solution must be unique if it exists.Now,let us turn to the GARE(4).

    Theorem 2 There is at most one stabilizing solution to(4).Moreover,a stabilizing solution to(4)is also its maximal solution.

    Proof Assume that P1and P2are different stabilizing solutions to(4).By Theorem 1,it follows thatfor any x0,so P1=P2.

    Let any P?satisfy(10)and P be the stabilizing solution to(4).Putting P?in(8)we assert that

    By Theorem 1,it is easy to show thatPx0=V(x0)≥x?0P?x0.Therefore,P is a maximal stabilizing solution to the GARE due to Definition 6. □

    The following corollaries are special cases of the above result.

    Corollary 1 Suppose that the GARE(4)admits a stabilizing solution P.If G(P)=0,then any admissible control is optimal and the GARE(4)reduces to

    ProofBy(7)and G(P)=0,we can show that

    which implies that V(x0)= x?0Px0for any uk∈Uad(x0). □

    Corollary 2 Let P be a stabilizing solution to the GARE(4).If G(P)>0,then the LQ problem(1)-(3)is uniquely solvable.The unique optimal control is given by

    Proof Using Theorem 1,we immediately obtain Corollary 2. □

    4 Well-posedness and attainability of LQ problem

    In this section,we first present the connection between the well-posedness of the LQ problem and the solvability of the GARE.Then,we study the wellposedness via the LMI condition.Finally,we establish the link between the attainability of the LQ problem and the solvability of the GARE.

    Lemma 5 The LQ problem(1)-(3)is well-posed if and only if there exists a symmetric constant matrix P such that

    Proof (12)can be shown by a simple adaptation of the well-known result in the deterministic case[2].We introduce the following convex set P of Sn:

    Theorem 3 The LQ problem(1)-(3)is well-posed if and only if the set P is nonempty.Moreover,there exists P∈P such that P≥?P,??P∈P.

    Proof(Sufficiency) Assume that the set P is nonempty,let??P∈P.Then,adding the fol lowing equality:

    to the cost function

    and applying(1),we can see that for any(x0,uk)∈Rn×Uad(x0),

    Since x0and ukare arbitrary,thus implies the well-posedness of the LQ problem.

    (Necessity) Assume that the LQ problem(1)-(3)is well-posed,Lemma 5 yields that there exists a symmetric matrix P such that V(x0)=x?0Px0,?x0∈Rn.

    By the dynamic programming principle,we obtain

    Based on(1)and the above inequality,we conclude that

    Setting uk=ˉu and letting h=0,we have

    Because x0andˉu are arbitrary,it is easy to see that

    This means that P∈P.Employing(14),it follows that

    The following theorem can be viewed as the converse of Theorem 1, which plays an essential role in this paper.

    Theorem 4 The LQ problem(1)-(3)is attainable for any x0,then the GARE(4)has a stabilizing solution.Moreover,any optimal control is given by(6).

    Proof If the LQ problem(1)-(3)is attainable,it is also well-posed.By Theorem 5,there exists a maximal element P∈P satisfying V(x0)=x?0Px0and

    Using Lemma 4,it is obvious that

    Let u?be an optimal control for any initial x0.As same as Theorem 5,the following(17)is derived:

    Combining(16)with V(x0)=x?0Px0,it can be shown that

    Hence,we have

    Together with(15),we obtain that P is a solution to the GARE(4).

    In what follows,we show that any optimal controlcan be given by(6).From(16),it yields that

    which implies

    By Lemma 3 with

    we solve the above equation and have the following solution=-G+(P)H(P)xk+Y-G+(P)G(P)Y.Thuscan be represented by(6)with Zk=Y and Yk=0.On the other hand,from Definition 5,it follows that P is a stabilizing solution to the GARE(4).

    5 Characterizing LQ problem via SDP

    In this section,we develop an approach based on semidefinite programming(SDP).We show that the stabilizing of the feedback control can be examined via solving a SDP problem.We establish several relations among the GARE,the SDP and the optimality of the LQ problem.

    First,we introduce the following definition.

    Definition 7[28] Let a vector c=(c1,...,cm)?∈Rmand matrices F0,F1,...,Fm∈Snbe given.The following optimization problem:

    is called a semidefinite programming(SDP).The SDP is feasible if there exists an x such that F(x)≥0.

    Consider the following SDP problem:

    The following assertions provide connections among the well-posedness of the LQ problem,the feasibility of the SDP and the solvability of the GARE.

    Theorem 5 The SDP(19)is feasible if and only if the LQ problem(1)-(3)is well-posed.

    Proof By Theorem 5,we easily get the desired result.

    Theorem 6 If the SDP(19)is feasible,then it has a unique optimal solution P?satisfying V(x0)=x?0P?x0,?x0∈ Rn.

    By Theorem 5, it follows that the SDP(19)has a maximal solution P such that V(x0)=x?0Px0,?x0∈ Rn,which is also an optimal solution to(19).Let P?be arbitrary optimal solution to(19).It is evident that Tr(P-P?)=0.Moreover,the maximality of P results in P-P?≥ 0.Therefore,P-P?=0,i.e.,P=P?.

    Theorem 7 If the LQ problem(1)-(3)is attainable,then the unique optimal solution to(19)is the stabilizing solution to the GARE(4).

    Proof From Theorems 2 and 6,the assertion is immediately obtained.

    Similar to the discussion in[29],we give a computational approach to determine the lower bound of the control weighting matrix R for the LQ problem to be well-posed.

    Definition 8 Let Q and L be given.The smallest r?∈ R is called the well-posed margin if the LQ problem(1)-(3)is well-posed for any R ≥ r?I.

    Remark 2 By the above definition,if the smallest eigenvalue λmin(R)of R satisfies λmin(R) ≥ r?,then the LQ problem is well-posed.Otherwise,the LQ problem is ill-posed.In particular,if r?=0,the LQ problem is ill-posed for any indefinite R.

    The following result shows that the well-posedness margin r?can be obtained numerically.

    Theorem 8 The well-posedness margin r?can be derived by solving the following SDP problem:

    Proof From Theorem 7,Theorem 8 is easily proved. □

    Example1 System(1)-(3)is specified by the follo wing matrices:

    Solving the corresponding GARE(4)yields G=5,H=[0 1],P=Finally,we can calculate the optimal control sequence uk=-[0 1/5]xkand the optimal cost value V(x0)=x?0Px0=8.By Theorem 8,the well-posedness margin r?=6.

    Remark 3 In stochastic systems,there is no similar definition to transfer function as in linear system theory.Therefore,we cannot define an optimal feedback control to be proper or improper as in[30].In this paper,the admissible control set Uad(x0)is not limited to a static state feedback form,which may include other forms such as open-loop controls.However,from Theorem 4,if the LQ problem is attainable,all optimal controls take the form of(6),which completely characterizes all the optimal control forms.

    6 Conclusions

    This paper has investigated the infinite horizon indefinite LQ control for discrete-time stochastic systems with state and control dependent noise.A GARE has been introduced.The well-posedness of the LQ problem is equivalent to the feasibility of an LMI.Moreover,the attainability of the LQ problem is equivalent to the existence of a stabilizing solution to the GARE.All the optimal controls are obtained in terms of the solution to the GARE.To some extent,the results of this paper may be viewed as a discrete-time version of[29].

    [1] R.E.Kalman.Contributions to the theory of optimal control.Boletin de la Sociedad Matematica Mexicana,1960,5:102-119.

    [2]B.D.O.Anderson,J.B.Moore.Optimal Control-Linear Quadratic Methods.New York:Prentice-Hall,1989.

    [3]F.L.Lewis.OptimalControl.NewYork:John Wileyamp;Sons,1986.

    [4] L.Ntogramatzidis,A.Ferrante.On the solution of the Riccati differential equation arising from the LQ optimal control problem.Systemsamp;Control Letters,2010,59(2):114-121.

    [5]A.Ferrante,L.Ntogrammatzidis.The generalized continuous algebraic Riccati equation and impulse-free continuous-time LQ optimal control.Automatica,2014,50(4):1176-1180.

    [6]W.M.Wonham.On a matrix Riccati equation of stochastic control.SIAM Journal on Control,1968,6:312-326.

    [7]D.H.Jacobson,D.H.Martin,M.Pachter,et al.Extensions of Linear-Quadratic Control Theory.Lecture Notes in Control and Information Sciences.Berlin:Springer,1980.

    [8] A.Bensoussan.Stochastic Control of Partially Observed Systems.Cambridge,U.K.:Cambridge University Press,1992.

    [9]M.H.A.Davis.Linear Estimation and Stochastic Control.London:Chapman and Hall,1977.

    [10]E.Yaz.Infinite horizon quadratic optimal control of a class of nonlinear stochastic systems.IEEE Transactions on Automatic Control,1989,34(11):1176-1180.

    [11]W.Zhang,B.Chen.On stabilizability and exact observability of stochastic systems with their applications.Automatica,2004,40(1):87-94.

    [12]W.Zhang,H.Zhang,B.Chen.Generalized Lyapunov equation approach to state-dependent stochastic stabilization/detectability criterion.IEEE Transactions on Automatic Control,2008,53(7):1630-1642.

    [13]Y.Hu,H.Jin,X.Zhou.Time-inconsistent stochastic linearquadratic control.SIAM Journal on Control and Optimization,2012,50(3):1548-1572.

    [14]J.M.Yong.Linear-quadratic optimal control problems for mean field stochastic differential equations.SIAM Journal on Control and Optimization,2013,51(4):2809-2838.

    [15]S.Chen,X.Li,X.Zhou.Stochastic linear quadratic regulators with indefinite control weight costs.SIAM Journal on Control and Optimization,1998,36(5):1685-1702.

    [16]Z.Qian,X.Zhou.Existence of solutions to a class of indefinite stochastic Riccati equations.SIAM Journal on Control and Optimization,2013,51(1):221-229.

    [17]Q.Meng.Linear quadratic optimal stochastic control problem driven by a Brownian motion and a Poisson random martingale measure with random cofficients.Stochastic Analysis and Applications,2014,32(1):88-109.

    [18]R.S.Burachik,C.Y.Kaya,S.N.Majeed.A duality approach for solving control-constrained linear-quadratic optimal control problems.SIAM Journal on Control and Optimization,2014,52(3):1423-1456.

    [19]Y.Huang,W.Zhang,H.Zhang.Infinite horizon linear quadratic optimal control for discrete-time stochastic systems.Asian Journal of Control,2008,10(5):608-615.

    [20]R.T.Ku,M.Athans.Further results on the uncertainty threshold principle.IEEE Transactions on Automatic Control,1977,22(5):866-868.

    [21]A.Beghi,D.D.Alessandro.Discrete-time optimal control with control-dependent noise and generalized Riccati difference equations.Auto matica,1998,34(8):1031-1034.

    [22]M.Ait Rami,X.Chen,X.Zhou.Discrete-time indefinite LQ control with state and control dependent noises. Journal of Global Optimization,2002,23(3/4):245-265.

    [23]G.Li,W.Zhang.Study on indefinite stochastic linear quadratic optimal control with inequality constraint.Journal of Applied Mathematics,2013:DOI 10.1155/2013/805829.

    [24]W.Zhang,G.Li.Discrete-time indefinite stochastic linear quadratic optimal control with second moment constraints.Math matical Problems in Engineering,2014:DOI 10.1155/2014/278142.

    [25]X.Liu,Y.Li,W.Zhang.Stochastic linear quadratic optimal control with constraint for discrete-time systems.Applied Mathematics and Computation,2014,228:264-270.

    [26]R.Penrose.A generalized inverse for matrices.Mathematical Proceedings of the Cambridge Philosophical Society,1955,51(3):406-413.

    [27]A.Albert.Conditions for positive and nonnegative definiteness in terms of pseudo-inverse.SIAM Journal on Applied Mathematics,1969,17(2):434-440.

    [28]L.Vandenberghe,S.Boyd.Semidefinite programming.SIAM Review,1996,38(1):49-95.

    [29]M.Ait Rami,X.Zhou,J.B.Moore.Well-posedness and attainability of indefinite stochastic linear quadratic control in infinite time horizon.Systemsamp;Control Letters,2000,41(2):123-133.

    [30]B.R.Copeland,M.G.Safonov.Zero cancelling compensation for singular control problems and their application to the innerouter factorization problem.International Journal of Robust and Nonlinear Control,1992,2(2):139-164.

    18 October 2014;revised 10 July 2015;accepted 13 July 2015

    ?Corresponding author.

    E-mail:w_hzhang@163.com.

    This work was supported by the National Natural Science Foundation of China(Nos.61174078,61170054,61402265)and the Research Fund for the Taishan Scholar Project of Shandong Province of China.

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Weihai ZHANG received his Ph.D.degree from Zhejiang University in 1998,Hangzhou,China.He is currently a professor of Shandong University of Science and Technology.His research interests include stochastic optimal control,robust H∞control,stochastic stability and stabilization.E-mail:w_hzhang@163.com.

    Yan LI received the M.Sc.and Ph.D.degrees from Shandong University of Science and Technology,China,in 2006 and 2015,respectively.She is a lecturer of Shandong University of Science and Technology.Her research interests include linear and nonlinear stochastic control.E-mail:liyanhd@163.com.

    XikuiLIU received the M.Sc.degree from Shandong University of Science and Technology,and the Ph.D.degree from Huazhong University of Science and Technology,China,in 2000 and 2004,respectively.He is a associate professor of Shandong University of Science and Technology.His interests include graph theory and DNA computing.E-mail:liuxikuiqd@163.com.

    国产真实伦视频高清在线观看| 伊人久久精品亚洲午夜| 丝瓜视频免费看黄片| 99久久综合免费| 啦啦啦中文免费视频观看日本| 多毛熟女@视频| 亚洲电影在线观看av| 中文字幕人妻熟人妻熟丝袜美| 狂野欧美激情性bbbbbb| 麻豆国产97在线/欧美| 黄片无遮挡物在线观看| 国产一区二区三区综合在线观看 | 卡戴珊不雅视频在线播放| 精品久久久久久久久av| www.色视频.com| 日日啪夜夜撸| 亚洲欧美成人精品一区二区| 欧美高清性xxxxhd video| 女性被躁到高潮视频| 在线 av 中文字幕| 熟女人妻精品中文字幕| 韩国av在线不卡| 下体分泌物呈黄色| 99九九线精品视频在线观看视频| 国产精品一及| 日韩av免费高清视频| 青春草亚洲视频在线观看| 精品少妇久久久久久888优播| 国产精品三级大全| 精品一品国产午夜福利视频| 国产免费一区二区三区四区乱码| 免费久久久久久久精品成人欧美视频 | 一本久久精品| 日韩欧美精品免费久久| 亚洲av电影在线观看一区二区三区| 高清日韩中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品无大码| 九九久久精品国产亚洲av麻豆| 激情五月婷婷亚洲| 最新中文字幕久久久久| 亚洲av日韩在线播放| 成人免费观看视频高清| 亚洲欧美日韩东京热| 女人久久www免费人成看片| 色综合色国产| 天堂中文最新版在线下载| 国产免费一级a男人的天堂| 国产欧美日韩精品一区二区| 亚洲丝袜综合中文字幕| 久久精品熟女亚洲av麻豆精品| 欧美丝袜亚洲另类| 在线免费十八禁| 国产精品99久久99久久久不卡 | 大香蕉97超碰在线| 啦啦啦在线观看免费高清www| 中国三级夫妇交换| 国产精品秋霞免费鲁丝片| 色吧在线观看| 国产男女内射视频| 久久99精品国语久久久| 亚洲成人av在线免费| 中国美白少妇内射xxxbb| 久久国产精品男人的天堂亚洲 | 老师上课跳d突然被开到最大视频| 欧美bdsm另类| 国产精品一区二区三区四区免费观看| 国产白丝娇喘喷水9色精品| 久久国产精品男人的天堂亚洲 | 乱系列少妇在线播放| 卡戴珊不雅视频在线播放| 舔av片在线| 自拍欧美九色日韩亚洲蝌蚪91 | 日日啪夜夜撸| 色网站视频免费| 看免费成人av毛片| 在线观看免费视频网站a站| 亚洲精品乱码久久久v下载方式| 热re99久久精品国产66热6| 毛片一级片免费看久久久久| 亚洲国产欧美人成| 美女xxoo啪啪120秒动态图| 美女福利国产在线 | 国产深夜福利视频在线观看| 美女福利国产在线 | 一二三四中文在线观看免费高清| 黄色怎么调成土黄色| 国内精品宾馆在线| 免费看日本二区| 成人综合一区亚洲| 免费看不卡的av| 观看免费一级毛片| 99热这里只有是精品50| h视频一区二区三区| 国产成人一区二区在线| 黑丝袜美女国产一区| 黄色日韩在线| 男人添女人高潮全过程视频| 国产91av在线免费观看| 麻豆精品久久久久久蜜桃| 国产一级毛片在线| av黄色大香蕉| 97超碰精品成人国产| av天堂中文字幕网| 欧美最新免费一区二区三区| 久久久久久久久久久丰满| 亚洲成人一二三区av| 青春草国产在线视频| 国产精品99久久99久久久不卡 | 亚洲精品一区蜜桃| 嘟嘟电影网在线观看| 国产久久久一区二区三区| 日本欧美视频一区| 直男gayav资源| 亚洲精品一区蜜桃| 精品一区二区三卡| 亚洲精华国产精华液的使用体验| 亚洲成色77777| 午夜福利在线在线| 日韩中字成人| 日本av免费视频播放| 国产av精品麻豆| 国产白丝娇喘喷水9色精品| 亚洲av日韩在线播放| 亚洲天堂av无毛| 国产精品国产三级国产av玫瑰| 大话2 男鬼变身卡| 中国美白少妇内射xxxbb| 久久精品熟女亚洲av麻豆精品| 国产在线一区二区三区精| 蜜桃久久精品国产亚洲av| 国产爽快片一区二区三区| 久久精品国产亚洲av天美| 午夜精品国产一区二区电影| 亚洲国产成人一精品久久久| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久v下载方式| 免费人成在线观看视频色| 欧美一级a爱片免费观看看| 纯流量卡能插随身wifi吗| 欧美3d第一页| 三级国产精品片| 亚洲精品第二区| 少妇人妻精品综合一区二区| 人妻少妇偷人精品九色| 国产精品嫩草影院av在线观看| 亚洲精品国产av成人精品| 精品久久久精品久久久| 好男人视频免费观看在线| 国产成人a∨麻豆精品| av卡一久久| 美女福利国产在线 | 欧美xxxx性猛交bbbb| 日韩 亚洲 欧美在线| 午夜激情福利司机影院| 大香蕉久久网| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人 | 97热精品久久久久久| 97热精品久久久久久| 一级毛片我不卡| 秋霞在线观看毛片| 成人美女网站在线观看视频| 亚洲,欧美,日韩| 91久久精品电影网| 亚洲综合色惰| 国产亚洲欧美精品永久| 久久久精品94久久精品| 国产高清有码在线观看视频| 亚洲国产色片| 尤物成人国产欧美一区二区三区| 免费看光身美女| 大香蕉久久网| 你懂的网址亚洲精品在线观看| 尾随美女入室| 欧美日本视频| 国产在线免费精品| 久久热精品热| 一级毛片 在线播放| 久久97久久精品| 99久久精品国产国产毛片| 麻豆成人午夜福利视频| 51国产日韩欧美| 国产精品久久久久久久久免| 国产亚洲av片在线观看秒播厂| 亚洲国产精品国产精品| 黄色欧美视频在线观看| 高清午夜精品一区二区三区| 在线观看一区二区三区| 天堂8中文在线网| 国产精品一二三区在线看| 国产乱人偷精品视频| 大又大粗又爽又黄少妇毛片口| 人人妻人人看人人澡| 日本黄大片高清| 我的女老师完整版在线观看| 亚洲精品国产成人久久av| 91久久精品国产一区二区三区| 毛片一级片免费看久久久久| 妹子高潮喷水视频| 亚洲av中文字字幕乱码综合| 欧美精品一区二区大全| 最近手机中文字幕大全| 亚洲欧美成人综合另类久久久| 99热网站在线观看| 亚洲内射少妇av| 人人妻人人添人人爽欧美一区卜 | 国产美女午夜福利| 如何舔出高潮| av黄色大香蕉| 国产在线男女| 波野结衣二区三区在线| 高清黄色对白视频在线免费看 | 又大又黄又爽视频免费| 丰满人妻一区二区三区视频av| 色婷婷av一区二区三区视频| 久久人人爽人人爽人人片va| 舔av片在线| 亚洲欧美中文字幕日韩二区| 美女视频免费永久观看网站| 国产深夜福利视频在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲熟女精品中文字幕| 国产伦在线观看视频一区| 国产精品一区二区在线观看99| 国产成人免费无遮挡视频| 亚洲va在线va天堂va国产| 久久国产亚洲av麻豆专区| 又黄又爽又刺激的免费视频.| 肉色欧美久久久久久久蜜桃| 国产视频首页在线观看| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 亚洲精品一二三| 91aial.com中文字幕在线观看| 人人妻人人添人人爽欧美一区卜 | 校园人妻丝袜中文字幕| 91精品伊人久久大香线蕉| 97精品久久久久久久久久精品| 亚洲人成网站高清观看| 国产精品不卡视频一区二区| 日韩欧美 国产精品| 插逼视频在线观看| 国产精品福利在线免费观看| 一边亲一边摸免费视频| 丝瓜视频免费看黄片| 一本久久精品| 插阴视频在线观看视频| 国产欧美日韩一区二区三区在线 | 97超碰精品成人国产| 男人狂女人下面高潮的视频| 狂野欧美激情性bbbbbb| 五月玫瑰六月丁香| 九九久久精品国产亚洲av麻豆| 日本午夜av视频| 亚洲精品乱久久久久久| 99热全是精品| 男女免费视频国产| 久久99热这里只频精品6学生| 日本欧美视频一区| 少妇人妻 视频| 简卡轻食公司| 亚洲国产高清在线一区二区三| 国国产精品蜜臀av免费| 亚洲精品乱码久久久v下载方式| 国产乱人视频| av不卡在线播放| 欧美激情国产日韩精品一区| 97在线视频观看| 国产乱人偷精品视频| 亚洲真实伦在线观看| 午夜老司机福利剧场| 在线播放无遮挡| 97超视频在线观看视频| 国产久久久一区二区三区| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 网址你懂的国产日韩在线| 丰满乱子伦码专区| 日韩视频在线欧美| 日日撸夜夜添| 国产91av在线免费观看| 黄片无遮挡物在线观看| 日本wwww免费看| 婷婷色av中文字幕| 午夜福利影视在线免费观看| 久久精品国产亚洲网站| 久久久精品免费免费高清| 边亲边吃奶的免费视频| 国产男女内射视频| 亚洲人与动物交配视频| 国产成人午夜福利电影在线观看| 自拍偷自拍亚洲精品老妇| 国产综合精华液| 中文字幕免费在线视频6| av天堂中文字幕网| 在线看a的网站| 又粗又硬又长又爽又黄的视频| 国产人妻一区二区三区在| 国产成人午夜福利电影在线观看| 肉色欧美久久久久久久蜜桃| 又大又黄又爽视频免费| 久久 成人 亚洲| 亚洲精品一区蜜桃| 成年美女黄网站色视频大全免费 | 欧美日本视频| 少妇人妻一区二区三区视频| 91精品国产国语对白视频| 国产在线一区二区三区精| 99视频精品全部免费 在线| 日日撸夜夜添| 日韩中文字幕视频在线看片 | 岛国毛片在线播放| 亚洲成色77777| 久久热精品热| 亚洲精品乱久久久久久| 九九久久精品国产亚洲av麻豆| 五月伊人婷婷丁香| 中文精品一卡2卡3卡4更新| 欧美日韩视频高清一区二区三区二| 一级毛片我不卡| 少妇人妻精品综合一区二区| 一级毛片黄色毛片免费观看视频| 一区二区三区免费毛片| 网址你懂的国产日韩在线| 久久青草综合色| 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 久久人人爽人人片av| 亚洲国产精品专区欧美| 欧美zozozo另类| 国产成人精品一,二区| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 免费黄频网站在线观看国产| 亚洲精品亚洲一区二区| 国产高清有码在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 久久热精品热| 在线观看免费高清a一片| h视频一区二区三区| 成人黄色视频免费在线看| 国产亚洲精品久久久com| 在线精品无人区一区二区三 | 国产视频内射| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 一个人看的www免费观看视频| 免费观看性生交大片5| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 联通29元200g的流量卡| 国国产精品蜜臀av免费| 亚洲精品一二三| 伦理电影免费视频| 国产精品不卡视频一区二区| 国产精品女同一区二区软件| 欧美+日韩+精品| 国产高清国产精品国产三级 | 亚洲aⅴ乱码一区二区在线播放| 欧美人与善性xxx| 我要看日韩黄色一级片| 欧美日本视频| 观看美女的网站| 欧美+日韩+精品| 视频中文字幕在线观看| 欧美激情极品国产一区二区三区 | 国产成人精品久久久久久| 一本久久精品| 在线看a的网站| 在线 av 中文字幕| 22中文网久久字幕| 97精品久久久久久久久久精品| 日韩av不卡免费在线播放| 国产人妻一区二区三区在| 交换朋友夫妻互换小说| 亚洲精品第二区| 日韩av在线免费看完整版不卡| 熟女人妻精品中文字幕| freevideosex欧美| 成人二区视频| 最新中文字幕久久久久| 日日啪夜夜爽| 各种免费的搞黄视频| 国产精品麻豆人妻色哟哟久久| 日韩大片免费观看网站| 联通29元200g的流量卡| 国产视频首页在线观看| 99re6热这里在线精品视频| 观看美女的网站| 日韩,欧美,国产一区二区三区| 久久6这里有精品| 国产欧美亚洲国产| 亚洲婷婷狠狠爱综合网| 欧美xxⅹ黑人| 欧美xxxx性猛交bbbb| 日韩av在线免费看完整版不卡| 秋霞在线观看毛片| 精品人妻视频免费看| 超碰97精品在线观看| 少妇人妻一区二区三区视频| 欧美成人午夜免费资源| 97超视频在线观看视频| 国产伦精品一区二区三区四那| av一本久久久久| 尾随美女入室| 欧美zozozo另类| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| 精品酒店卫生间| 六月丁香七月| 成年美女黄网站色视频大全免费 | 日韩免费高清中文字幕av| 国产有黄有色有爽视频| 成年人午夜在线观看视频| 日韩一本色道免费dvd| 久久人人爽人人片av| 欧美精品一区二区免费开放| 亚洲av不卡在线观看| 国产极品天堂在线| 2021少妇久久久久久久久久久| 中文字幕免费在线视频6| 五月天丁香电影| 精品国产露脸久久av麻豆| 大片电影免费在线观看免费| 中文字幕人妻熟人妻熟丝袜美| 美女主播在线视频| 成人二区视频| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | tube8黄色片| 亚洲一区二区三区欧美精品| 久久国内精品自在自线图片| 精品酒店卫生间| 一区二区三区四区激情视频| 赤兔流量卡办理| 在线观看三级黄色| 免费黄频网站在线观看国产| 亚洲欧洲国产日韩| 成人二区视频| 22中文网久久字幕| 亚洲欧美中文字幕日韩二区| av天堂中文字幕网| 亚洲色图综合在线观看| 欧美变态另类bdsm刘玥| 99久久精品热视频| 亚洲av综合色区一区| 日韩人妻高清精品专区| 欧美xxxx性猛交bbbb| 日本与韩国留学比较| 美女视频免费永久观看网站| www.色视频.com| 中文字幕久久专区| 成人18禁高潮啪啪吃奶动态图 | 妹子高潮喷水视频| 国产精品秋霞免费鲁丝片| 一级爰片在线观看| 搡老乐熟女国产| 不卡视频在线观看欧美| 亚洲精品国产av成人精品| 国产爱豆传媒在线观看| 嘟嘟电影网在线观看| 国产精品秋霞免费鲁丝片| 夜夜爽夜夜爽视频| 在线观看美女被高潮喷水网站| 亚洲中文av在线| 高清欧美精品videossex| 日韩av不卡免费在线播放| 免费看日本二区| 日韩制服骚丝袜av| 在线观看免费视频网站a站| 中国国产av一级| 国产精品.久久久| 中文字幕精品免费在线观看视频 | 中文字幕制服av| 我的女老师完整版在线观看| 80岁老熟妇乱子伦牲交| av在线播放精品| 欧美区成人在线视频| 水蜜桃什么品种好| 看非洲黑人一级黄片| tube8黄色片| 成人影院久久| 女人久久www免费人成看片| 毛片女人毛片| 日产精品乱码卡一卡2卡三| 蜜桃久久精品国产亚洲av| 精品午夜福利在线看| kizo精华| 在线观看免费高清a一片| 三级国产精品欧美在线观看| 成人二区视频| 各种免费的搞黄视频| 亚洲精华国产精华液的使用体验| 国产免费视频播放在线视频| 日韩欧美 国产精品| 国产一级毛片在线| 亚洲一级一片aⅴ在线观看| 小蜜桃在线观看免费完整版高清| 亚洲,一卡二卡三卡| 夜夜看夜夜爽夜夜摸| 乱码一卡2卡4卡精品| 高清av免费在线| 一个人看视频在线观看www免费| 国语对白做爰xxxⅹ性视频网站| 日韩人妻高清精品专区| 久久久久久人妻| 大片电影免费在线观看免费| 国产成人freesex在线| 免费观看的影片在线观看| 午夜日本视频在线| 丝瓜视频免费看黄片| 多毛熟女@视频| 精品酒店卫生间| 麻豆成人午夜福利视频| 一区在线观看完整版| 丝袜喷水一区| 99九九线精品视频在线观看视频| 黑丝袜美女国产一区| 国产成人aa在线观看| 黄片wwwwww| 黄色欧美视频在线观看| av国产精品久久久久影院| 国产免费福利视频在线观看| 嘟嘟电影网在线观看| 精品午夜福利在线看| 在线精品无人区一区二区三 | 国产精品偷伦视频观看了| videos熟女内射| 亚洲精品国产成人久久av| 亚洲成色77777| 最近的中文字幕免费完整| 少妇被粗大猛烈的视频| 日韩视频在线欧美| 亚洲欧美日韩卡通动漫| 国产永久视频网站| 亚洲精品乱码久久久v下载方式| 国国产精品蜜臀av免费| 国产精品一区二区在线观看99| 最近的中文字幕免费完整| 日韩制服骚丝袜av| 亚洲精华国产精华液的使用体验| 能在线免费看毛片的网站| 亚洲精品久久久久久婷婷小说| 极品少妇高潮喷水抽搐| 欧美一区二区亚洲| 亚洲第一区二区三区不卡| 妹子高潮喷水视频| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲成人中文字幕在线播放| 精品久久久噜噜| 精品少妇久久久久久888优播| 身体一侧抽搐| 中文字幕免费在线视频6| 欧美另类一区| 色网站视频免费| 韩国av在线不卡| 七月丁香在线播放| 亚洲,欧美,日韩| 久久久久网色| 欧美bdsm另类| 80岁老熟妇乱子伦牲交| 成人无遮挡网站| 自拍偷自拍亚洲精品老妇| 国产精品麻豆人妻色哟哟久久| 日韩成人av中文字幕在线观看| 三级国产精品欧美在线观看| 久久久久久久国产电影| 亚洲精品国产色婷婷电影| 九九在线视频观看精品| 久久精品久久久久久久性| 777米奇影视久久| 久久鲁丝午夜福利片| 最近2019中文字幕mv第一页| 亚洲综合色惰| 欧美人与善性xxx| 国产淫片久久久久久久久| 在线观看一区二区三区| 成人午夜精彩视频在线观看| 好男人视频免费观看在线| 日产精品乱码卡一卡2卡三| 国产成人a区在线观看| 啦啦啦视频在线资源免费观看| 亚洲精品视频女| 涩涩av久久男人的天堂| 精品少妇久久久久久888优播| 国产爱豆传媒在线观看| 国产日韩欧美亚洲二区| 超碰av人人做人人爽久久| 永久免费av网站大全| 成年av动漫网址| 久久ye,这里只有精品| 成年美女黄网站色视频大全免费 | 青春草国产在线视频| 亚洲精品色激情综合| 黄色配什么色好看| 少妇 在线观看| 日韩三级伦理在线观看| 成人免费观看视频高清| 99热这里只有是精品在线观看| 亚洲精品色激情综合| 伦理电影大哥的女人| 99热全是精品| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲综合色惰| 不卡视频在线观看欧美| 狂野欧美白嫩少妇大欣赏| 97超视频在线观看视频| 精品酒店卫生间| 三级国产精品片| 中文精品一卡2卡3卡4更新| 国产精品一区二区在线观看99| 国产无遮挡羞羞视频在线观看| 国产男女内射视频|