• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    L1adaptive control with sliding-mode based adaptive law

    2015-12-05 06:23:40JieLUOChengyuCAO
    Control Theory and Technology 2015年3期

    Jie LUO,Chengyu CAO

    Department of Mechanical Engineering,University of Connecticut,Storrs,CT 06269,U.S.A.

    L1adaptive control with sliding-mode based adaptive law

    Jie LUO?,Chengyu CAO

    Department of Mechanical Engineering,University of Connecticut,Storrs,CT 06269,U.S.A.

    This paper presents an adaptive control scheme with an integration of sliding mode control into the L1adaptive control architecture,which provides good tracking performance as well as robustness against matched uncertainties.Sliding mode control is used as an adaptive law in the L1adaptive control architecture,which is considered as a virtual control of error dynamics between estimated states and real states.Low-pass filtering mechanism in the control law design prevents a discontinuous signal in the adaptive law from appearing in actual control signal while maintaining control accuracy.By using sliding mode control as a virtual control of error dynamics and introducing the low-pass filtered control signal,the chattering effect is eliminated.The performance bounds between the close-loop adaptive system and the closed-loop reference system are characterized in this paper.Numerical simulation is provided to demonstrate the performance of the presented adaptive control scheme.

    L1adaptive control,sliding-mode control,matched uncertainties

    DOI10.1007/s11768-015-3116-8

    1 Introduction

    Sliding mode control has been successfully implemented for nonlinear systems with matched uncertainties.In sliding mode control,trajectories of the system are forced to and maintained on the sliding surface.On the sliding surface,the system has a desired behavior,which is independent of matched uncertainties.Despite this robustness,the implementation of sliding mode control suffers from a chattering phenomenon characterized by oscillation of system trajectories around the sliding surface,which is due to the imperfections in switching devices and delays[1].In order to solve this chattering problem,a number of approaches have been proposed to improve sliding mode control.One approach is to replace the discontinuous control law with a continuous one by which the system motion is restricted within a boundary layer of the sliding surface[2,3].This boundary layer solution is a trade-off between control performance and chattering attenuation.Another approach to avoid chattering is higherorder sliding mode control in which the discontinuous control signal appears on the higher-order derivatives of the sliding variable instead of the first-order deriva-tive[4-6].Higher-order sliding mode approach requires higher-order derivatives of the sliding variable,which could be its limitation[7].Adding an integrator for sliding mode control signal is another approach to solve the chattering problem[8].In this approach,the sliding variable contains unknown disturbance as presented in[8],and therefore requires a disturbance estimator,which increases the complexity of sliding mode control design.

    This paper presents an adaptive control scheme by introducing sliding mode control to the adaptive law design in the L1adaptive control architecture,which provides good tracking performance as well as robustness without introducing the chattering effect from the sliding mode control.The L1adaptive control is a variation of the model reference adaptive control with improved transient performance and handling of time-varying parameters and uncertainties.The architecture of the L1adaptive control consists of a state predictor,an adaptive law,and a control law.The adaptive law is used to update the parameters in the state predictor to make the estimated states arbitrarily close to the real states.The typical adaptive law design for the L1adaptive control includes projection-type adaptive law[9]and piece-wise constant adaptive law[10,11].In this paper,an alternative adaptive law design using sliding mode control is provided,which makes the state predictor provide a good estimation of real states independent of matched uncertainties.Chattering effect will not appear in the state predictor dynamics,since sliding-mode based adaptive law is used as a virtual control of error dynamics without any physical actuator involved.The initial states of error dynamics can be chosen on the sliding surface,which ensures robustness from the initial time and further improve the performance.The low-pass filtering design in the control law prevents a discontinuous signal in the adaptive law from appearing in the actual control signal while maintaining the control accuracy.By using sliding mode control as a virtual control of error dynamics and introducing the low-pass filtered control signal,the chattering effect is eliminated in the presented control scheme.

    The contribution of this paper lies in two parts.The first part is that the L1adaptive control architecture can be borrowed by the sliding mode control for avoiding chattering effect.Instead of applying sliding mode control to the real plant,it is applied to the state predictor(virtual plant)to avoid the chattering effect while maintaining robustness against matched uncertainties.The second part is that the L1adaptive control architecture can have an alternative adaptive law design by using the sliding mode control.It shows the potential to use other aggressive control designs to fulfill the fast adaptation of the L1adaptive control architecture.Overall,the presented adaptive control scheme with sliding-mode based adaptive law demonstrates the merging of two control algorithms and provides a better understanding of the fast and robust adaptive mechanism.

    The paper is organized as follows.Section2 gives the problem formulation.The L1adaptive control architecture with sliding-mode based adaptive law is presented in Section3.Stability and uniform performance bounds are given in Section4,while results are verified in Section5 through numerical simulation.Finally,Section6 concludes this paper.

    2 Problem formulation

    Consider the following uncertain dynamic system:

    where x∈Rnis the system state vector,u∈R is the control signal,y∈R is the output,

    with known positive constants a1,a2,...,an,b=[0 0···0 1]T,c ∈ Rnmakes c(-A)-1b nonzero,and σ(x,t)is an unknown function which represents the matched uncertainty.

    Remark 1 For a general controllable linear time invariant system,there always exists a transformation in an appropriate coordinate system to make the system represented in the controllable canonical form in equation(1).The term σ(x,t)captures not only matched uncertainties but also the mismatch part that matrix A for actual plants does not have the same constants a1,a2,...,an.For a nonlinear system with nonlinear terms in the last row of matrix A in equation(1),it can always be transformed into a linear matrix A together with a nonlinear matched uncertainties σ(x,t).

    Assumption1 The system is assumed to be control-lable,and rank(b)and rank(c)are nonzero.

    Assumption 2 The unknown function σ(x,t)is assumed to be bounded and satisfy

    where Φ(x,t)is a known function.

    Assumption 3(Semiglobal Lipschitz condition) For any δ > 0,there exist L(δ) > 0 and B > 0 such that|σ(x,t)-σ(ˉx,t)|≤L(δ)‖x-ˉx‖∞,|σ(0,t)|≤B,for all‖x‖∞≤δ and‖ˉx‖∞≤δ uniformly in t.

    The control objective is to design a full-state feedback controller to ensure that y(t)tracks the output of the desired system:

    where kg=(c(-A)-1b)-1and r(t)is the reference signal.

    3 L1adaptive control with sliding-mode based adaptive law

    In this section,we develop an adaptive control architecture with sliding-mode based adaptive law for the sys-tem in(1).This architecture consists of three elements:state predictor,sliding-mode based adaptive law,and control law.The elements of this adaptive controller are introduced next.

    State predictor

    Let?x=?x-xand?y=?y-y.Then,weobtain the following error dynamics from(1)and(4):

    where the adaptive parameter?σis governed by the following adaptation law.

    Adaptive lawConsider?σas a virtual control signal in the error dynamics(5),and use sliding mode control method from[12]to design?σas

    where xiis the ith component of states x,ρ(x,t)is defined asρ(x,t)≥Φ(x,t)+ηwith designed positive scalar η,s(?x)represents the sliding surface and is defined as

    and the coefficients m1,m2,...,mn-1constitute a Hurwitz polynomial,which guarantees a stable reducedorder sliding motion.

    Control law

    For the proof of stability and uniform performance bounds,the choice of k in the low-pass filter C(s)needs to ensure that there exists ρrsuch that

    where H(s)=(sI-A)-1b,G(s)=H(s)(1-C(s)),r0=(sI-A)-1x0,L(ρr)is the Lipschitz constant as defined in Assumption 3,and B is defined in Assumption 3.

    where ρris introduced in(9),and β is an arbitrary positive constant that satisfies ‖G(s)‖L1L(ρ) < 1.Note that(9)implies that‖G(s)‖L1L(ρr) < 1.Since L(ρ)depends continuously on ρ,‖G(s)‖L1L(ρ)< 1 can always be satisfied if β is small enough.

    The L1adaptive controller consists of(4),(6)and(8)subject to stability condition(9).

    4 Stability analysis

    This section characterizes the estimation performance from state predictor,and provides the error bounds of both states and control input between the closed-loop adaptive system and the closed-loop reference system.

    Lemma 1 For the system in(1)subject to Assumption 2,and the state predictor in(4),the adaptive law in(6)can make

    where γ0can be arbitrarily small.

    Proof It follows from(5)and(7)that

    Substitution of adaptive law(6)into(11)yields

    Consider the Lyapunov function candidate for the switching function s(?x)as V=1 2s2(?x).Then,

    and note that s(0)=0 since?x(0)=0 in(5),therefore trajectory of system starts at the sliding surface from the initial time and will be maintained on this sliding surface independent of matched uncertainties.On the sliding surface,the motion is governed by

    Since the coefficients m1,m2,...,mn-1constitute a Hurwitz polynomial and?x(0)=0,?x(t)will stay on the convergence point?x(0)=0 throughout the entire response of the system,which implies that there always exists an arbitrarily small constant γ0such that‖?x‖L∞≤γ0,and concludes the proof. □

    Then,we can further obtainˉx(t)=eAmtˉx(ts).It means thatˉx(t)exponentially converges to zero,which implies that?x also exponentially converges to zero.The rate of convergence can be adjusted by choice of m1,m2,...,mn-1in(7).

    Next,we give the definition and stability analysis of the closed-loop reference system,and characterize the error bounds between the closed-loop reference system and the closed-loop adaptive system.

    We define the closed-loop reference system with the nonadaptive control law as follows:

    where σref(s)is the Laplace transformation of σ(xref,t).

    Lemma 2 For the closed-loop reference system in(13)subject to the stability condition(9),if‖x0‖∞< ρr,then we have

    where ρris introduced in(9),and ρur=|kg|·‖r‖L∞+‖C(s)‖L1(L(ρr)ρr+B).

    ProofWe prove the bound in(14)by contradiction.If(14)is not true,since ‖x0‖∞< ρrand xref(t)is continuous,there exists t?such that ‖xref(t?)‖= ρrwhile‖xref(t)‖< ρr,?t∈ [0,t?),which implies that

    It follows from(13)that

    where H(s)=(sI-A)-1b and G(s)=H(s)(1-C(s)).Example 5.2 in[1,Page 199]implies that

    where r0=(sI-A)-1x0.Using Assumption 3 and the upper bound in(16),we arrive at the following upper bound:

    The derivation of equation(19)uses the fact that‖rt?‖L∞≤ ‖r‖L∞.Substitution of(19)into(18)yields

    The stability condition(9)can be solved for ρrto obtain the following upper bound:

    which implies that‖xreft?‖L∞≤ ρrand contradicts(16).This proves(14),which further implies that‖σreft?‖L∞<L(ρr)ρr+B holds for all t with strict inequality.Therefore,it follows from the definition of uref(s)in(13)that

    which proves(15),and concludes the proof. □

    Theorem 1 Given the closed-loop system with the L1adaptive controller defined via(4),(6),and(8),subject to the stability condition in(9),and the closed-loop reference system in(13),if‖x0‖∞< ρr,then

    where

    γ0is introduced in Lemma 1,which can be arbitrarily small,β1is an arbitrarily small positive constant,and β is introduced in(10).

    Proof(By contradiction) Assume that(20)and(21)are not true.Then,since ‖x(0)-xref(0))‖∞=0 < γxe,‖u(0)-uref(0))‖∞=0 < γue,and x(t),xref(t),u(t),and uref(t)are continuous,there exists t?such that‖x(t?)-xref(t?))‖∞< γxe,or ‖u(t?)-uref(t?))‖∞< γue,while ‖x(t)-xref(t))‖∞< γxeand ‖u(t)-uref(t))‖∞< γuefor all t∈[0,t?),which implies that

    From Lemma 2,we have

    It follows from(10),(22)and the bounds in(24)and(25)that

    The Laplace transformation of the system in(1)is

    where σ(s)is the Laplace transformation of σ(t),and ?σ(s)=?σ(s)-σ(s).Let e(t)=x(t)-xref(t).From(17)and(27),we obtain

    It follows from(4)that

    Then,equation(28)becomes

    Assumption 3 and bounds in(25)and(26)yield

    Following from(29)and(30),we further obtain

    It follows from Lemma 2 and Remark 2 that

    From the definition in(8)and control law using in(13)one can derive

    It follows from Lemma 4 in[13]that there exists c0∈Rnsuch that

    where the order of Nd(s)is one more than the order of Nn(s),and both Nn(s)and Nd(s)are stable polynomials.Then,we have C(s)?σ(s)=Since C(s)is stable and strictly proper,the complete system C(s)is proper and stable,which implies that its L1gain exists and is finite.Hence,we have the following upper bound:

    which proves(21),and concludes the proof. □

    Remark4 The error bounds between x(t)andxref(t),and u(t)and uref(t)are uniformly bounded,and can be arbitrarily small.To understand how these bounds can be used for ensuring response with desired specifications,consider the following ideal control signal udes(t)=kgr(t)-σ(x,t),which leads to the desired system in(3)by canceling the uncertainties exactly.In the closed-loop reference system(13),the uncertainties term in the control law is low-pass filtered by C(s).Thus,the closed-loop reference system has a different response as compared with the desired one(3).The response of x(t)can be made as close as desired to(3)by increasing the bandwidth of the low-pass filter C(s).

    5 Simulation

    In this section,two different simulation scenarios will be provided to demonstrate the performance of the L1adaptive control with sliding-mode based adaptive law.

    For the L1-SMC design,switching function and ρ(x)in adaptive law are chosen as=and+10,and the low-pass filter in the control law is chosen as C(s)=For the SMC design,switching function and ρ(x,t)use the same parameters as the ones using in the L1-SMC design.In order to achieve reference tracking,a reference input filter[14,15],ˉr=kgr with kgdefined in equation(3),is introduced for the SMC design.

    The closed-loop response of L1-SMC and SMC are shown in Figs.1-6,respectively.As shown in Figs.1and 5,the output y(t)is coincide with the desire system’s output ydes(t)under L1-SMC and SMC,which demonstrates good tracking performance.Yet,SMC generates an oscillating control signal(shown in Fig.6)to achieve tracking,while L1-SMC generates a smooth control signal(shown in Fig.4).The smooth control signal is due to the low-pass filtering design and sliding-mode based virtual control.For L1-SMC,all states x(t)in Fig.2 are stabilized and the estimation errors?x(t)in Fig.3 have very small values.The estimation errors?x represent errorsbetween the state predictor in equation(4)and plant(1).The small estimation errors demonstrate good estimation by using sliding-mode based adaptive law.

    Fig.1 Scenario 1:Output of the closed-loop system with L1-SMC.

    Fig.2 Scenario 1:States of the closed-loop system with L1-SMC.

    Fig.3 Scenario 1:Estimation errors between state predictor and plant with L1-SMC.

    Fig.4 Scenario 1:Control signal of the closed-loop system with L1-SMC.

    Fig.5 Scenario1:Output of the closed-loop system with SMC.

    Fig.6 Scenario 1:Control signal of the closed-loop system with SMC.

    Scenario 2(L1-SMC for systems with nonlinear dynamics and stable zero dynamics) Consider a nonlinear system with stable zero dynamics as follows:

    For the L1-SMC design,switching function and ρ(?x,t)in adaptive law are chosen as s(?x)=5?x1+?x2+?x3and ρ(?x,t)=5‖?x‖+10,and the low-pass filter in the control law is chosen as C(s)=50/(s+50).

    The simulation results of L1-SMC for the nonlinear system with stable zero dynamics are shown in Figs.7-10.The output y(t)is coincide with the desire system’s output ydes(t)in Fig.7,which demonstrates good tracking performance.At the same time,all states x(t)are stabilized as shown in Fig.8.

    Fig.7 Scenario 2:Output of the closed-loop system with L1-SMC.

    Fig.8 Scenario 2:States of the closed-loop system with L1-SMC.

    The estimation errors?x as shown in Fig.9 have very small values,which demonstrates good estimation by using sliding-mode based adaptive law.In Fig.10,the control signal is smooth.

    Fig.9 Scenario 2:Estimation errors between state predictor and plant with L1-SMC.

    Fig.10 Scenario 2:Control signal of the closed-loop system with L1-SMC.

    6 Conclusions

    In this paper, an adaptive control scheme with sliding-mode based adaptive law is presented.The robustness and control accuracy of sliding mode control are preserved while chattering effect is not introduced.The traditional sliding mode control is used as adaptive law in the L1adaptive control architecture,which is a virtual control of error dynamics between estimated states and real states.The error bounds between estimated states and real states are bounded which can be arbitrarily small.The low pass filtering design in the control law prevents discontinuous signal in the adaptive law from appearing in the actual control signal while stillmaintain-ing control accuracy.The norm bounds of both states and control signals between the closed-loop adaptive system and the closed-loop reference system are characterized.Numerical simulation results demonstrate the performance of the presented adaptive control scheme.

    [1]H.K.Khalil.Nonlinear Systems.3rd ed.Upper Saddle River:Prentice Hall,2002.

    [2] J.J.Slotine,S.S.Sastry.Tracking control of non-linear systems using sliding surfaces,with application to robot manipulators.International Journal of Control,1983,38(2):465-492.

    [3]K.D.Young,V.I.Utkin,U.Ozguner.A control engineer’s guide to sliding mode control.IEEE Transactions on Control Systems Technology,1999,7(3):328-342.

    [4] G.Bartolini,A.Ferrara,E.Usani.Chattering avoidance by second-order sliding mode control.IEEE Transactions on Automatic Control,1998,43(2):241-246.

    [5] A.Levant.Sliding order and sliding accuracy in sliding mode control.International Journal of Control,1993,58(6):1247-1263.

    [6] A.Levant.Universal single-input-single-output(SISO)sliding mode controllers with finite-time convergence.IEEE Transactions on Automatic Control,2001,46(9):1447-1451.

    [7] G.Bartolini,A.Pisano,E.Punta,et al.A survey of applications of second-order sliding mode control to mechanical systems.International Journal of Control,2003,76(9/10):875-892.

    [8]M.L.Tseng,M.S.Chen.Chattering reduction of sliding mode control by low-pass filtering the control signal.Asian Journal of Control,2010,12(3):392-398.

    [9]C.Cao,N.Hovakimyan.Design and analysis of a novel L1adaptive control architecture with guaranteed transient performance.IEEE Transactions on Automatic Control,2008,53(2):586-591.

    [10]C.Cao,N.Hovakimyan.L1adaptive output-feedback controllerfornon-strictly-positive-real reference systems:missile longitudinal autopilot design.Journal of Guidance,Control,and Dynamics,2009,32(3):717-726.

    [11]J.Luo,C.Cao,Q.Yang.L1adaptive controller for a class of non-affine multi-input multi-output nonlinear systems.International Journal of Control,2013,86(2):348-359.

    [12]C.Edwards,S.K.Spurgeon.Sliding Mode Control:Theory and Applications.Bristol:Tayloramp;Francis,1998.

    [13]C.Cao,N.Hovakimyan.Guaranteed transient performance with L1adaptive controller for systems with unknown time-varying parameters and bounded disturbances:Part I.Proceedings of the American Control Conference,New York:IEEE,2007:3925-3930.

    [14]W.S.Levine.The Control Handbook.Boca Raton:CRC Press,1996.

    [15]J.Luo,X.Zou,C.Cao.Eigenvalue assignment for linear time-varying systems with disturbances.IET Control Theoryamp;Applications,2012,6(3):365-374.

    16 July 2013;revised 2 May 2015;accepted 4 May 2015

    ?Corresponding author.

    E-mail:jie.luo@outlook.com.

    ?2015 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Jie LUO received his Ph.D.in Mechanical Engineering from University of Connecticut,Storrs,CT,in 2013.He received his B.Sc.and M.Sc.degrees in Department of Control Science and Engineering from Huazhong University of Science and Technology,Wuhan,China,in 2006 and 2008,respectively.His research interests include theory and applications of adaptive control,nonlinear control,and cooperative control.E-mail:jie.luo@outlook.com.

    Chengyu CAO is an associate professor of mechanical engineering at the University of Connecticut.He joined the University of Connecticut in 2008.Prior to that,he was a research scientist in the Department of Aerospace and Ocean Engineering at Virginia Polytechnic Institute and State University.He received his Ph.D.in Mechanical Engineering from the Massachusetts Institute of Technology in 2004.He earned his B.Sc.degree in Electronics and Information Engineering from Xian Jiaotong University,China,and M.Sc.in Manufacturing Engineering from Boston University in 1995 and 1999,respectively.His research interests are in the areas of dynamics and control,adaptive and intelligent systems,and mechatron-ics,with a focus on unmanned systems and aerospace applications.E-mail:ccao@engr.uconn.edu.

    国产探花在线观看一区二区| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 22中文网久久字幕| 亚洲中文字幕一区二区三区有码在线看| 国产成人aa在线观看| 亚洲欧美日韩卡通动漫| 成人午夜高清在线视频| 99热6这里只有精品| 桃色一区二区三区在线观看| 成人亚洲精品av一区二区| 特大巨黑吊av在线直播| 亚洲第一电影网av| av专区在线播放| 伊人久久精品亚洲午夜| 不卡一级毛片| 99国产极品粉嫩在线观看| 日韩三级伦理在线观看| 91久久精品国产一区二区三区| 亚洲精品国产成人久久av| 欧美成人一区二区免费高清观看| 国产精品久久久久久精品电影小说 | 日韩高清综合在线| 男人的好看免费观看在线视频| 最近2019中文字幕mv第一页| 高清在线视频一区二区三区 | 一级二级三级毛片免费看| 欧美一区二区国产精品久久精品| 我要看日韩黄色一级片| 成人午夜高清在线视频| 国产精品久久久久久av不卡| 亚洲欧美日韩高清专用| 99久久无色码亚洲精品果冻| 天天躁日日操中文字幕| 一本一本综合久久| 久久九九热精品免费| 国产亚洲精品久久久com| 成人二区视频| 亚洲天堂国产精品一区在线| 天堂网av新在线| 在线播放无遮挡| 中文亚洲av片在线观看爽| 国产三级中文精品| 免费观看a级毛片全部| 亚洲成人中文字幕在线播放| 国产私拍福利视频在线观看| 男女下面进入的视频免费午夜| 亚洲精品久久久久久婷婷小说 | 精品午夜福利在线看| 久久久精品94久久精品| 亚洲aⅴ乱码一区二区在线播放| 国产亚洲精品久久久com| 国产精品伦人一区二区| 国产日韩欧美在线精品| 国产精品综合久久久久久久免费| 成人特级av手机在线观看| 久99久视频精品免费| 中文字幕人妻熟人妻熟丝袜美| 国模一区二区三区四区视频| 日韩制服骚丝袜av| 色哟哟·www| 久久久久九九精品影院| 日韩亚洲欧美综合| 日本一二三区视频观看| 一级av片app| 日韩欧美国产在线观看| 真实男女啪啪啪动态图| 中文字幕av在线有码专区| 看十八女毛片水多多多| 大型黄色视频在线免费观看| 日韩精品有码人妻一区| 美女黄网站色视频| 国产淫片久久久久久久久| 亚洲三级黄色毛片| 免费看a级黄色片| 亚洲av一区综合| 国产精品伦人一区二区| 国产熟女欧美一区二区| 亚洲无线在线观看| 国产v大片淫在线免费观看| 亚洲三级黄色毛片| 一级毛片aaaaaa免费看小| 人人妻人人看人人澡| 少妇熟女aⅴ在线视频| 夫妻性生交免费视频一级片| 又粗又爽又猛毛片免费看| 免费av毛片视频| 久久精品综合一区二区三区| 色视频www国产| 国产精品99久久久久久久久| 永久网站在线| 国产一区二区三区av在线 | 亚洲婷婷狠狠爱综合网| 一本一本综合久久| 日本黄色片子视频| 国产av一区在线观看免费| 一级毛片aaaaaa免费看小| 国产精品1区2区在线观看.| 国产极品天堂在线| 国产一区亚洲一区在线观看| 亚洲最大成人av| 淫秽高清视频在线观看| 欧美又色又爽又黄视频| 亚洲av男天堂| 亚洲七黄色美女视频| 亚洲欧美中文字幕日韩二区| 亚洲人成网站高清观看| 亚洲最大成人中文| 欧美+亚洲+日韩+国产| 国产精品无大码| 丰满人妻一区二区三区视频av| 久久人人爽人人爽人人片va| 国产黄色小视频在线观看| 老司机影院成人| 亚洲不卡免费看| 在线播放无遮挡| 国产精品一区二区性色av| 国产成人福利小说| 欧美另类亚洲清纯唯美| 12—13女人毛片做爰片一| 中文字幕熟女人妻在线| 国产久久久一区二区三区| av.在线天堂| 国产精品三级大全| 欧美丝袜亚洲另类| 亚洲欧美成人精品一区二区| kizo精华| 美女cb高潮喷水在线观看| 午夜激情福利司机影院| 校园春色视频在线观看| 波多野结衣巨乳人妻| 久久精品91蜜桃| av天堂在线播放| 亚洲人成网站在线观看播放| 精品少妇黑人巨大在线播放 | av女优亚洲男人天堂| 久久久精品94久久精品| 少妇裸体淫交视频免费看高清| 久久九九热精品免费| 乱码一卡2卡4卡精品| 真实男女啪啪啪动态图| 国产成人午夜福利电影在线观看| 婷婷亚洲欧美| 男女啪啪激烈高潮av片| 我的女老师完整版在线观看| 成人午夜高清在线视频| 美女高潮的动态| 亚洲成av人片在线播放无| 高清午夜精品一区二区三区 | 国语自产精品视频在线第100页| 亚洲成av人片在线播放无| 99久久九九国产精品国产免费| 亚洲乱码一区二区免费版| 亚洲精品国产成人久久av| 欧美色视频一区免费| 精品人妻一区二区三区麻豆| .国产精品久久| 99热只有精品国产| 亚洲成a人片在线一区二区| www.av在线官网国产| 免费观看在线日韩| 只有这里有精品99| 五月玫瑰六月丁香| 男女视频在线观看网站免费| 亚洲国产精品成人久久小说 | 男人舔奶头视频| 九色成人免费人妻av| 亚洲av免费高清在线观看| 如何舔出高潮| 欧美日韩综合久久久久久| АⅤ资源中文在线天堂| 干丝袜人妻中文字幕| 夫妻性生交免费视频一级片| 欧美性感艳星| 国产综合懂色| 国产一区二区在线观看日韩| 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| av又黄又爽大尺度在线免费看 | 91精品国产九色| 夜夜看夜夜爽夜夜摸| 中文字幕熟女人妻在线| 99久久人妻综合| 午夜福利高清视频| 男女视频在线观看网站免费| 色5月婷婷丁香| 热99在线观看视频| 桃色一区二区三区在线观看| 国语自产精品视频在线第100页| 国产成人精品婷婷| 国产精品久久电影中文字幕| 亚洲精品自拍成人| 给我免费播放毛片高清在线观看| 精品少妇黑人巨大在线播放 | 日本欧美国产在线视频| 日韩国内少妇激情av| 久久中文看片网| 少妇熟女欧美另类| 天堂中文最新版在线下载 | 日韩一区二区视频免费看| 日韩欧美精品v在线| 禁无遮挡网站| 国产精品乱码一区二三区的特点| 一边亲一边摸免费视频| 老师上课跳d突然被开到最大视频| 久久热精品热| 18禁裸乳无遮挡免费网站照片| 国产精品不卡视频一区二区| 色综合亚洲欧美另类图片| 午夜爱爱视频在线播放| 亚洲色图av天堂| 久久人人爽人人爽人人片va| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线| 夫妻性生交免费视频一级片| 91久久精品国产一区二区三区| 国产乱人偷精品视频| 午夜福利高清视频| 插阴视频在线观看视频| 看片在线看免费视频| eeuss影院久久| videossex国产| 国国产精品蜜臀av免费| 亚洲av男天堂| 亚洲精品亚洲一区二区| 精品人妻视频免费看| a级毛片a级免费在线| 久99久视频精品免费| 亚洲三级黄色毛片| 亚洲激情五月婷婷啪啪| 国产成人精品婷婷| 亚洲国产精品久久男人天堂| 人人妻人人澡欧美一区二区| 亚洲高清免费不卡视频| 久久久久久久久久成人| 九色成人免费人妻av| 国产91av在线免费观看| 日本五十路高清| 插阴视频在线观看视频| 亚洲av二区三区四区| 国产视频首页在线观看| 精品久久久久久久久久免费视频| 国产成人91sexporn| 热99re8久久精品国产| 成人亚洲欧美一区二区av| a级毛片a级免费在线| 日韩欧美国产在线观看| 日韩中字成人| 久久人人爽人人片av| 日本成人三级电影网站| 亚洲av一区综合| 亚洲在线自拍视频| 国产精品,欧美在线| 欧美丝袜亚洲另类| 天堂中文最新版在线下载 | 桃色一区二区三区在线观看| 美女脱内裤让男人舔精品视频 | 国产av麻豆久久久久久久| 国产三级中文精品| 综合色av麻豆| 麻豆国产av国片精品| 成人一区二区视频在线观看| 黑人高潮一二区| 桃色一区二区三区在线观看| 国产探花极品一区二区| av天堂在线播放| 美女xxoo啪啪120秒动态图| 日本三级黄在线观看| 午夜福利在线在线| 久99久视频精品免费| 美女脱内裤让男人舔精品视频 | 国产成人a区在线观看| av免费观看日本| 国产成人aa在线观看| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 国产探花在线观看一区二区| 国产成人91sexporn| 国产精品久久久久久久久免| 午夜福利高清视频| 国产片特级美女逼逼视频| 99久久九九国产精品国产免费| 青春草亚洲视频在线观看| 观看免费一级毛片| 搡女人真爽免费视频火全软件| 欧美丝袜亚洲另类| 国产高潮美女av| 亚洲精品粉嫩美女一区| 日韩欧美三级三区| 又粗又爽又猛毛片免费看| 国产成人精品婷婷| 一边摸一边抽搐一进一小说| 成人高潮视频无遮挡免费网站| 床上黄色一级片| 在线播放国产精品三级| 国内揄拍国产精品人妻在线| 国产v大片淫在线免费观看| 国产三级中文精品| 久99久视频精品免费| 成人特级黄色片久久久久久久| 亚洲欧美日韩卡通动漫| 伦精品一区二区三区| 成年女人永久免费观看视频| 啦啦啦观看免费观看视频高清| 国产精品av视频在线免费观看| 成人鲁丝片一二三区免费| 欧美+亚洲+日韩+国产| 久久国内精品自在自线图片| 中文亚洲av片在线观看爽| 国产精品久久久久久av不卡| 少妇高潮的动态图| 色播亚洲综合网| 中国美白少妇内射xxxbb| 少妇的逼好多水| 99久久成人亚洲精品观看| 18禁黄网站禁片免费观看直播| 非洲黑人性xxxx精品又粗又长| 边亲边吃奶的免费视频| 毛片女人毛片| 中文亚洲av片在线观看爽| 美女内射精品一级片tv| 成人高潮视频无遮挡免费网站| 国产精品女同一区二区软件| 亚洲精华国产精华液的使用体验 | 久久久久性生活片| 日本熟妇午夜| 蜜臀久久99精品久久宅男| 卡戴珊不雅视频在线播放| 成人午夜精彩视频在线观看| a级毛片免费高清观看在线播放| 亚洲在线观看片| 五月伊人婷婷丁香| 亚洲国产精品成人综合色| 国产单亲对白刺激| 国产精品乱码一区二三区的特点| 久久99热这里只有精品18| 一区二区三区免费毛片| 精品人妻一区二区三区麻豆| 边亲边吃奶的免费视频| 亚洲av第一区精品v没综合| 别揉我奶头 嗯啊视频| 国内精品美女久久久久久| 青春草亚洲视频在线观看| 99热精品在线国产| 国产一区二区激情短视频| 日韩视频在线欧美| 国产精品三级大全| 免费黄网站久久成人精品| 欧美一区二区精品小视频在线| 色综合站精品国产| 免费在线观看成人毛片| 国语自产精品视频在线第100页| 国产av不卡久久| 免费看日本二区| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 亚洲av不卡在线观看| 国产精品一区二区三区四区免费观看| 2021天堂中文幕一二区在线观| 欧美在线一区亚洲| 青春草视频在线免费观看| 免费看a级黄色片| 成人无遮挡网站| 大香蕉久久网| 久久午夜福利片| 国产精品一区二区三区四区免费观看| 亚洲精品影视一区二区三区av| 看免费成人av毛片| 天天躁日日操中文字幕| 三级男女做爰猛烈吃奶摸视频| 深爱激情五月婷婷| 日本在线视频免费播放| 国产熟女欧美一区二区| 变态另类丝袜制服| 午夜激情欧美在线| 黄色一级大片看看| 午夜亚洲福利在线播放| 精品日产1卡2卡| 亚洲第一区二区三区不卡| 免费观看人在逋| 国产成人精品一,二区 | 一级二级三级毛片免费看| 99久久成人亚洲精品观看| 久久热精品热| 女人十人毛片免费观看3o分钟| 国产精品麻豆人妻色哟哟久久 | 插逼视频在线观看| 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看| 国产综合懂色| 精品人妻视频免费看| 日本一二三区视频观看| 伦精品一区二区三区| 亚洲国产欧洲综合997久久,| 国产麻豆成人av免费视频| 免费看光身美女| 少妇的逼好多水| 内地一区二区视频在线| av在线观看视频网站免费| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 高清日韩中文字幕在线| 麻豆精品久久久久久蜜桃| 一级黄色大片毛片| 综合色av麻豆| 成人美女网站在线观看视频| 又大又黄又爽视频免费| 狂野欧美白嫩少妇大欣赏| 免费观看av网站的网址| 国产成人av激情在线播放 | 亚洲美女视频黄频| av黄色大香蕉| 男人操女人黄网站| 午夜激情福利司机影院| 在线观看免费日韩欧美大片 | 免费不卡的大黄色大毛片视频在线观看| 国产亚洲av片在线观看秒播厂| 免费不卡的大黄色大毛片视频在线观看| 夜夜爽夜夜爽视频| 男女高潮啪啪啪动态图| 日本黄色日本黄色录像| 国产精品久久久久久av不卡| 国产成人精品久久久久久| 免费日韩欧美在线观看| 国产极品天堂在线| 嘟嘟电影网在线观看| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 色婷婷av一区二区三区视频| 免费少妇av软件| 免费av中文字幕在线| 97超碰精品成人国产| 日本爱情动作片www.在线观看| 岛国毛片在线播放| 我要看黄色一级片免费的| 国产成人精品无人区| 韩国av在线不卡| 午夜av观看不卡| 老熟女久久久| 亚洲国产欧美在线一区| 亚洲欧美成人精品一区二区| av在线播放精品| 美女脱内裤让男人舔精品视频| 久久国内精品自在自线图片| 亚洲av中文av极速乱| 妹子高潮喷水视频| 视频区图区小说| 乱码一卡2卡4卡精品| 一边亲一边摸免费视频| 伦精品一区二区三区| 日日摸夜夜添夜夜爱| 精品人妻熟女毛片av久久网站| 国产精品欧美亚洲77777| 亚洲高清免费不卡视频| 国产 精品1| 九草在线视频观看| 久久国产亚洲av麻豆专区| 亚洲欧美一区二区三区国产| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说| 亚洲精品乱码久久久久久按摩| 91精品国产九色| 少妇丰满av| 亚洲国产毛片av蜜桃av| 夫妻午夜视频| www.av在线官网国产| 王馨瑶露胸无遮挡在线观看| 人成视频在线观看免费观看| 国产日韩欧美视频二区| 亚洲美女视频黄频| 日韩精品免费视频一区二区三区 | 国产精品99久久久久久久久| 日韩av免费高清视频| 日本91视频免费播放| 国产成人免费观看mmmm| 日韩欧美一区视频在线观看| 日本爱情动作片www.在线观看| 99精国产麻豆久久婷婷| 中文乱码字字幕精品一区二区三区| 大香蕉久久成人网| 久久精品国产a三级三级三级| 一边亲一边摸免费视频| 亚洲,欧美,日韩| 精品国产国语对白av| 国产免费现黄频在线看| 免费观看无遮挡的男女| 日韩成人伦理影院| av天堂久久9| 精品人妻在线不人妻| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜喷水一区| 日韩三级伦理在线观看| 蜜桃在线观看..| 国产av国产精品国产| 精品熟女少妇av免费看| 日韩一区二区三区影片| 色婷婷av一区二区三区视频| 男人添女人高潮全过程视频| 久久青草综合色| 一级毛片黄色毛片免费观看视频| 麻豆乱淫一区二区| 九九久久精品国产亚洲av麻豆| 亚洲欧美色中文字幕在线| 亚洲国产精品一区三区| 国产免费现黄频在线看| 最近2019中文字幕mv第一页| 五月伊人婷婷丁香| 精品一区二区三卡| av在线播放精品| 亚洲第一区二区三区不卡| 久久久精品区二区三区| 亚洲av.av天堂| 国产不卡av网站在线观看| 久久精品久久精品一区二区三区| 久久人妻熟女aⅴ| 欧美丝袜亚洲另类| 色吧在线观看| 麻豆成人av视频| 午夜91福利影院| 久久久午夜欧美精品| 纯流量卡能插随身wifi吗| 精品午夜福利在线看| 亚洲无线观看免费| 插阴视频在线观看视频| 日产精品乱码卡一卡2卡三| 精品亚洲乱码少妇综合久久| 久久午夜综合久久蜜桃| 国产高清不卡午夜福利| 国产乱来视频区| 精品久久久久久电影网| 少妇的逼水好多| 免费观看无遮挡的男女| 国产精品 国内视频| 三上悠亚av全集在线观看| 日本猛色少妇xxxxx猛交久久| 国产成人freesex在线| 久久久久网色| 最新中文字幕久久久久| 日韩一区二区视频免费看| 91精品国产国语对白视频| 边亲边吃奶的免费视频| 免费黄网站久久成人精品| 午夜久久久在线观看| 成人免费观看视频高清| 欧美精品亚洲一区二区| 日韩三级伦理在线观看| 伦精品一区二区三区| 日韩免费高清中文字幕av| 国产午夜精品久久久久久一区二区三区| 少妇精品久久久久久久| 欧美日韩视频高清一区二区三区二| 天堂中文最新版在线下载| 天堂俺去俺来也www色官网| 久久久久视频综合| 91精品三级在线观看| 久久国内精品自在自线图片| 日本午夜av视频| 欧美97在线视频| 91久久精品国产一区二区成人| 91久久精品电影网| 乱人伦中国视频| 亚洲欧洲精品一区二区精品久久久 | 你懂的网址亚洲精品在线观看| 99热全是精品| 一级毛片 在线播放| 亚洲久久久国产精品| 亚洲av免费高清在线观看| 国产一区二区在线观看日韩| 人妻 亚洲 视频| 91精品国产国语对白视频| 亚洲一区二区三区欧美精品| 97在线人人人人妻| 午夜免费鲁丝| 美女大奶头黄色视频| 亚洲精品国产av蜜桃| 国产亚洲最大av| 精品国产一区二区三区久久久樱花| 啦啦啦啦在线视频资源| 亚洲av福利一区| 国产白丝娇喘喷水9色精品| 国产 精品1| 美女国产视频在线观看| 尾随美女入室| 热99国产精品久久久久久7| 久久精品久久久久久噜噜老黄| 两个人免费观看高清视频| 性色avwww在线观看| 汤姆久久久久久久影院中文字幕| 午夜影院在线不卡| 亚洲欧美日韩卡通动漫| 2022亚洲国产成人精品| 国产高清三级在线| 91久久精品国产一区二区成人| 2022亚洲国产成人精品| 丝袜喷水一区| 久久国产亚洲av麻豆专区| 午夜日本视频在线| 亚洲欧美色中文字幕在线| 久久97久久精品| 久久久午夜欧美精品| 国产高清三级在线| 91精品国产国语对白视频| 一区二区三区精品91| 亚洲av成人精品一区久久| 91久久精品国产一区二区成人| 亚洲精品日韩在线中文字幕| 一级爰片在线观看| 一二三四中文在线观看免费高清| 汤姆久久久久久久影院中文字幕| 精品久久久噜噜| 男男h啪啪无遮挡| 日本av免费视频播放| 久久婷婷青草| 日韩免费高清中文字幕av|