• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    2020-05-13 00:43:52HUANGXieyiWANGPengYINGuohengZHANGShaoningZHAOWeiWANGDongBIQingyuanHUANGFuqiang
    無機(jī)材料學(xué)報(bào) 2020年4期
    關(guān)鍵詞:氧化鈦非晶介孔

    HUANG Xieyi, WANG Peng, YIN Guoheng, ZHANG Shaoning, ZHAO Wei,WANG Dong, BI Qingyuan, HUANG Fuqiang,3,4

    Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide

    HUANG Xieyi1,2, WANG Peng2,3, YIN Guoheng1, ZHANG Shaoning1, ZHAO Wei1,WANG Dong1, BI Qingyuan1, HUANG Fuqiang1,3,4

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China; 4. State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)

    Development of high efficiency catalyst is the key factor to catalytic combustion of volatile organic com-pounds (VOCs). Herein, amorphous mesoporous phosphated TiO2(ATO-P) with high specific surface area supported platinum catalyst was successfully fabricated. P-dopant can increase the surface area (up to 278.9 m2?g?1) of ATO-P, which is 21 times higher than that of pristine TiO2, and make the amorphous titanium oxide structure. The supported Pt catalyst with amorphous mesoporous feature shows impressive performance and excellent thermostability for VOCs oxidation. The Pt/ATO-P catalyst exhibits outstanding catalytic efficiency, the50and90(temperatures required for achieving conversions of 50% and 90%) are respectively 130 ℃and 140 ℃, for toluene oxidation under high gas hourly space velocity (GHSV) of 36000 mL·h?1·g?1and toluene concentration of 10000 mL·m?3. The performance is superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. These findings can make a significant contribution on the new applications of amorphous mesoporous phosphated materials in VOCs removal.

    amorphous mesoporous structure; phosphated TiO2; Pt nanoparticle; toluene oxidation; VOCs removal

    Volatile organic compounds (VOCs), like toluene, benzene, esters and hydrocarbons, are emitted from vari-ous industrial sources which can cause serious envi-ronmental pollution and health problems[1?2]. Toluene, one kind of toxic and strong carcinogenic chemical, is frequently used in making paints, adhesives, rubbers, and leather tanning processes because of its excellent ability to dissolve organic substances[3-4]. However, toluene is difficult to degrade due to its stable structure[5]. Several techniques, such as physical and chemical adsorption, photocatalytic and catalytic oxidation methods, are widely used for the combustion of VOCs[6-7]. Among them, catalytic oxidation is regarded as a promising approach owing to its high efficiency and convenient operating conditions[8].

    Researches on catalysts for toluene oxidation have been conducted, including noble metal and metal oxides catalysts[9-10]. Due to the significant reduction on acti-vation energy during the catalytic oxidation process, noble metal based catalysts, such as Pt, Pd, Au, Rh, and Ir have shown impressive performance in toluene remo-val[11-13]. It was found that supported Pt catalysts showed the best catalytic performance compared with other noble metals[14-15]. It should be pointed out that the supports play an important role in the catalytic reaction pro-cesses[16-18]. Many works have focused on the metal- support interac-tion by studying the catalytic properties of TiO2, Al2O3, ZrO2, and ZnO supported Au nanopar-ticles[19], and the shape effect of Pt/CeO2catalysts[10]. Nevertheless, most supports suffer from low specific surface area and few active sites, which are crucial for the overall catalytic activity.

    Due to high specific surface area and variable valence, amorphous materials have attracted increasing interests in VOCs oxidation. And the numerous defects in amo-rphous structures can offer large quantities of oxygen vacancies, which are beneficial for the adsorption of oxygen and organic molecules. Lee,[20]reported that carbon black supported amorphous MnOis highly efficient for oxygen involved reaction. Wang,[21]found that amorphous MnOmodified Co3O4can en-hance the catalytic activity for the VOCs oxidation. It was demonstrated that the amorphous structure of bimetallic Pd-Pt/CeO2-Al2O3-TiO2could provide more vacancies and active sites for catalytic combustion[22]. Therefore, the amorphous catalysts show a tremendous potential in practical catalytic reactions. However, it is still a challenge to develop highly active and robust catalysts based on the amorphous materials for the oxidation of VOCs.

    Herein, we demonstrate an efficient Pt/ATO-P catalyst for the catalytic removal of VOCs under high gas hourly space velocity (GHSV)and high substrate concentration. It should be pointed out that incorporating phosphorus into the framework of TiO2is a widely applied strategy for obtaining amorphous mesoporous feature[23-24]. And the P element can stabilize the TiO2framework and significantly increase the specific surface area[24].

    1 Experimental

    1.1 Preparation of sample

    1.1.1 Preparation of support

    All reagents were of analytical grade and were used without any purification. 3 mL of tetrabutyl titanate was dissolved in 30 mL of ethanol at room temperature, which was marked as solution A. Then 0.125 mL of phosphoric acid (H3PO4) was subsequently dropwisely added into solution A with stirring to form a homogenous mixture, and kept stirring for 24 h. The obtained white solid products were separated by centrifuge, and washed by deionized water and ethanol several times, followed by freeze drying overnight. The as-prepared products were calcined at 400 ℃in air for 4 h at a heating rate of 5 ℃?min?1.

    1.1.2 Preparation of catalyst

    The ATO-P supported platinum (Pt/ATO-P) sample was preparedimpregnation method. A desired amount of ATO-P was transferred into aqueous solution containing appropriate amount of chloroplatinic acid (H2PtCl4). Subsequently, the samples were impregnated at room temperature for 12 h. After drying out the H2O at 80 ℃, the samples were treated at 350 ℃ for 2 h with a H2/Ar mixture (5/95,/).

    1.2 Characterization

    XRD characterization of the samples was carried out on a German Bruker D8 Advance X-ray diffractometer (XRD) using the Ni-filtered Cu Kα radiation at 40 kV and 40 mA. Nitrogen adsorption-desorption isotherms were measured at –196 ℃ on a Micromeritics ASAP 2460 analyzer. Samples were degassed at 120 ℃ for 24 h prior to the measurement. The specific surface area of the samples was calculated using the Brunauer–Emmett– Teller (BET) method with the adsorption data at the relative pressure (/0) range of 0.05–0.2. The total pore volumes were estimated at/0=0.99. The pore size distribution (PSD) curves were calculated from the adsorption branch using Barrett-Joyner-Halenda (BJH) model. The prepared materials were pressed into tablets with KBr powder and then detected by FT-IR (Perkin Elmer, USA) in the scanning range from 400 to 4000 cm–1. SEM images were obtained by Hitachi-S4800. A JEOL 2011 microscope operating at 200 kV equipped with an EDX unit (Si(Li) detector) was used for the transmission electron microscope (TEM) and high resolution trans-mission electron microscope (HRTEM) investigations. The samples for TEM testing were prepared by dis-persing the powder in ethanol and applying a drop of highly dilute suspension on carbon-coated grids. XPS data were recorded with a Perkin Elmer PHI 5000 C system equipped with a hemispherical electron energy analyzer. The spectrometer was operated at 15 kV and 20 mA, and a magnesium anode (Mg Kα,=1253.6 eV) was used. The C1s line (284.6 eV) was used as the reference to calibrate the binding energies (BE). TG measurements were conducted on a Netzsch STA 449C TG-DSC thermoanalyzer. The flow rate of the carrier gas (air) was 30 mL?min–1. The temperature was raised from room temperature to 800 ℃ at a ramp rate of 10 ℃?min–1. Prior to H2-TPR test, the sample (100 mg) was pretreated at 200 ℃ for 2 h and cooled to 50 ℃ in the flowing He. TPR experiment was carried out in 5vol% H2/He flowing at 30 mL?min–1, with a ramping rate of 5 ℃?min–1to a final temperature of800 ℃. The signal was monitored using a TCD detector.

    1.3 Catalytic activity test

    The catalytic activity of samples was evaluated in a continued-flow fixed-bed quartz reactor with 50 mg catalyst. Toluene was introduced into the reactor with bubbling toluene solution in ice bath with pure air. The concentration of toluene was about 104mL?m?3, and the flow rate was kept at 30 mL?min–1by a mass controller, equivalent to a gas hour space velocity (GHSV) of 36000 mL?h–1?g–1. After steady operation for 100 min, the activity of the catalyst was tested. Toluene con-cen-tration was detected by a gas chromatograph equi-pped with a flame ionization detector. The toluene conversion (toluene) was calculated according to the equation:

    toluene(inout)/in·100% (1)

    whereinandoutare the inlet and outlet toluene concentrations, respectively.

    2 Results and discussion

    2.1 Physicochemical properties of ATO-P support

    Fig. 1 displays the schematic diagram of amorphous ATO-P preparedfacile co-precipitation. XRD patterns of ATO-P and TiO2are shown in Fig. 2. All diffraction peaks of basic TiO2sample are indexed to anatase phase (JCPDS 21-1276). Interestingly, there is no TiO2crystal phase observed for ATO-P sample (Fig. 2), suggesting that ATO-P sample is typically amorphous and phosphorus dopant can markedly restrain the crystallization of anatase[25?26].

    According to the TGA-DSC thermograms (Fig. 3), a thermal decomposition of ATO-P took place in the temperature range of 20?900 ℃. The first DSC peak at 30?80 ℃ is due to the release of physical adsorbed water. When all the water is released, Ti?OH and HPO42?groups start to condense[27]. These processes occur simultaneously in the temperature range of 100?220 ℃ (1.927% of weight loss) and 220?516 ℃ (0.7% of weight loss), resulting in an overlap of the TG data. There is no further weight loss up to 516 ℃. The DSC curve shows two exothermic peaks at 704and 781 ℃, corresponding to a two-step exothermic transformation of ATO-P into a crystalline phase.

    Fig. 1 Structure of amorphous ATO-P prepared via facile co-precipitation

    Fig. 2 XRD patterns of TiO2 and ATO-P samples

    Fig. 3 TG (solid line) and DSC (dashed line) curves for ATO-P

    Fig. 4(a,b) show the SEM images of ATO-P. The ATO-P nanoparticles are homogeneously dispersed with the particle size of ~20 nm, and the sizes are similar to that of TiO2(Fig. S1(a)). HRTEM was employed to characterize the nanostructure of samples. No porous structure is observed in the HRTEM image of TiO2(Fig. S1(b)), while various porous structure is shown in ATO-P (Fig. 4(c)). Moreover, the pores of ATO-P are uniform, and the average diameter is around 10 nm. EDS elemental mappings indicate that the P element homo-geneously distributes in ATO-P (Fig. 4(d)). It is found that H3PO4owns unique effects for synthesizing amorphous mesoporous phosphated TiO2[28-29].

    Fig. 4 SEM (a, b) and HRTEM (c) images, and EDS elemental mapping (d) of ATO-P

    As shown in Fig. 5, the obtained ATO-P sample shows a characteristic type-IV isotherm with clear hysteresis loop locates at the/0range of 0.45?1.0, showing the existence of a large amount of mesopore. Notably, the specific surface area of 278.9 m2·g?1for ATO-P is 21 times higher than that of pristine TiO2. The pore diameters of ATO-P center around 10 nm (Fig. 5 and Table 1), which is consistent with HRTEM result (Fig. 4(c)).

    The results of EDX are listed in Table 1. The actual P concentration is much less than the initial addition amount of H3PO4, suggesting that partial H3PO4is leached during the preparation process.

    FT-IR spectra of TiO2and ATO-P samples are depicted in Fig. 6. The wide absorption bands around 3440 and 1620 cm?1are attributed to the surface adsorbed water and/or hydroxyl groups[30-31]. The bands at 1100 cm?1are ascribed to the stretching vibration of Ti?O?P species, which are absent in TiO2. The weak bands at 610 cm?1are due to the vibration of Ti?O?Ti bond[22]. Compared with TiO2, a weak peak appears in series ATO-P, which may result from the incorporating effect of phosphorus dopant. There is no distinct peak over the range of 700?800 cm?1(Fig. 6), indicating the absence of P?O?P groups in the amorphous mesoporous phosphated TiO2. Therefore, the P element is incorporated into the frameworks of ATO-P by forming Ti?O?P bonds[24].

    Fig. 5 N2 adsorption-desorption isotherms (a) and pore size distributions (b) of ATO-P and TiO2

    Table 1 Textural properties and elemental compositions ofTiO2 and ATO-P samples

    [a] Weight fraction (wt%) are determined by EDX analysis

    Fig. 6 FT-IR spectra of TiO2 and ATO-P

    As shown in Fig. 7(a), the full XPS spectra indicate the existence of P in ATO-P. High-resolution XPS spectra of P 2p, Ti 2p and O 1s are depicted in Fig. 7(b?d). The peak of P 2p of ATO-P is at 134.0 eV, suggesting that phosphorus in ATO-P gives a pentavalent oxidation state of P5+. No peak observed at 128.6 eV, which is the characteristic binding energy of P2p in TiP, indicating the absence of Ti?P bonds in ATO-P samples. As depicted in Fig. 7(c), the peaks of Ti2p3/2and Ti2p1/2in ATO-P show remarkable blue-shift owing to the incorporation effect of phosphorus element. Fig. 7(d) shows the XPS spectra of O1s signals of TiO2and ATO-P. The single peak at 529.5 eV is corresponded to the oxygen in Ti?O bond of TiO2. However, the O1s spectrum of ATO-P contains two peaks at 531.4 and 532.9 eV, which are contributed to Ti?O?P and O?H bond, respectively[32-33].

    2.2 Physicochemical properties of Pt/ATO-P catalysts

    Fig. 8(a) shows that the Pt nanoparticles are well dis-persed over the ATO-P support, and the size is relatively uniform with the average parameter of (1.8±0.3) nm (insert in Fig. 8(a)). Fig. 8(b) and S2 demonstrate a-spacing of 0.23 nm, attributed to the (111) plane of the highly crystalline Pt nanostructure. Furthermore, the actual Pt content was also confirmed by inductively coulped plasma atomic emission spectra (ICP-AES). The mass loadings of Pt in Pt/TiO2and Pt/ATO-P catalysts are 0.90 and 0.92, respectively, which are close to the nominal composition of 1wt%.

    Fig. 8(c) shows the XRD patterns of Pt/ATO-P and Pt/TiO2catalysts. The amorphous structure is still remained for Pt/ATO-P sample. However, no diffraction pattern of Pt nanoparticles is observed, indicating that the Pt nanoparticles are quite small and/or the Pt species are highly dispersed on the ATO-P surface. These results are well consistent with the HRTEM data above mentioned in Fig. 8(a, b).

    Fig. 7 Full XPS spectra (a) of TiO2 and ATO-P; High-resolution XPS P2p (b), Ti2p (c), and O1s (d) of TiO2 and ATO-P

    Fig. 8 TEM (a) and HRTEM (b) images of Pt/ATO-P with insert in (a) indicating the particle size distribution of Pt nanoparticles, XRD patterns (c) and XPS Pt4f (d) of Pt/ATO-P

    The results of XPS analysis of Pt/ATO-P and Pt/TiO2samples are depicted in Fig. 8(d). It is known that the positions of Pt4f7/2binding energy at 71.1, 72.4, and 74.2 eV are attributedto Pt0, Pt2+, and Pt4+species, respec-tively[34]. Similiar XPS profiles arerendered as the indication of a mixture of various valence states for Pt species overthe small Pt nanoparticles. The exisence of Pt+species reflects the strong metal-support interaction (Pt?ATO-P), especially the prominent electronic intera-ction between active Pt and underlying phosphated TiO2support[35]. This is probably due to the changes of the metal- support interaction by doping phosphorus atoms which can make an obvious effect onTi?O?P frameworks.

    The H2-TPR profiles depicted in Fig. S3 show that there are two H2-consumption peaks at low and high temperature attributed to weak and strong interaction of Pt and supports, respectively[36]. Notably, two reduction peaks of Pt/ATO-P catalyst at 78 and 601 ℃ show stro-nger intensity than that of Pt/TiO2at 72 and 433 ℃, indicating strongPt-support interaction for Pt/ATO-P. These results are consistent with the XPS data.

    2.3 Removal of VOCs by Pt/ATO-P catalysts

    The catalytic efficiencies are depicted in Fig. 9. It is clearly observed that reaction temperature can enhance the performance of Pt/ATO-P catalyst. The50and90are widely used to evaluate the catalytic performance[37]. As shown in Fig. 9(a), Pt/ATO-P shows the excellent catalytic activity.50and90values for toluene com-bustion are 130 and 140 ℃, which are much lower than those of Pt/TiO2with50and90of 160 and 190 ℃, res-pectively. Combined with the above XPS data (Fig. 8(d)), it can be concluded that the existance of phosphorus component plays an important role in electronic structure of the active Pt species underlying amorphous meso-porous ATO-P support and thus the catalytic oxidation removal of toluene over Pt/ATO-P catalyst.

    Fig. 9 Toluene conversion (a) of 1wt% Pt/ATO-P with respect to reaction temperature, and thermal stability (b) of Pt/ATO-P at 180 ℃

    It is well known that noble metal loading significantly affects the catalytic behavior for many reactions. Pt/ATO-P catalysts with different Pt loadings were examined, and the results are depicted in Fig. 10. Compared with 0.5wt% and 2wt%, the Pt loading of 1wt% shows better performance (lower50and90) for toluene oxidation. The low catalytic activity of 0.5 wt% Pt/ATO-P results from low density of active platinum nanoparticles anchoring on the surface of ATO-P support. For the Pt/ATO-P catalyst with Pt loading up to 2wt%, larger size of Pt nanopartices (~5 nm) can be obtained (Fig. S4). Larger Pt particles can not only decrease the dispersion of Pt species[38], but also lead to a weaker metal-support (Pt/ATO-P) interactions, thus resulting in the poor activity.

    Stability is critical for the catalysts on the practical application. 1wt% Pt/ATO-P exhibits excellent thermal stability for toluene oxidation over a 50-h period on stream at 180 ℃ without visible loss of activity, as shown in Fig. 9(b). The toluene conversion remains a high level of 95.4% at the end of reaction process and maintains near full selectivity to final products of CO2and H2O. The excellent stability of Pt/ATO-P catalyst is attributed to the unique geometric structure of crystalline Pt nanoparticles and amorphous mesoporous phosphated TiO2with prominent electronic interaction. For the used 1wt% Pt/ATO-P, TEM measurement and XPS analysis (Fig. S5 and Fig. S6) demonstrate no significant change on the morphology, average size of Pt nanoparticles, and the chemical oxidation state of active Pt species. These results suggest the robustness of Pt/ATO-P catalyst for toluene oxidation removal under a relatively mild the-rmal process.

    Given the superb thermocatalytic performance for 1wt% Pt/ATO-P catalyst toward toluene oxidation, we were curious to examine whether the engineered material would also catalyze the removal of a class of VOCs, especially the complete oxidation of benzene,-hexane, ethyl acetate, and mesitylene. As depicted in Fig. 11, the90values for the catalytic oxidation of benzene, ethyl acetate,-hexane, and mesitylene are 216, 331, 271, and 200 ℃, respectively. Notably, high tem-perature is requ-ired for ethyl acetate conversion at 90% due to its strong structural stability[39-40]. These results show a broad scope toward catalytic combustion invo-lving trouble-some organic compounds over Pt/ATO-P and indicate that the Pt/ATO-P catalysts can provide a new insight for the oxidation of VOCs.

    Fig. 10 Toluene conversion over Pt/ATO-P catalysts with different Pt loadings

    Fig. 11 Catalytic activity of Pt/ATO-P for the conversion of benzene (a), ethyl acetate (b), n-hexane (c), and mesitylene (d) with respect to reaction temperature

    3 Conclusions

    In summary, we successfully fabricated the amorphous mesoporous phosphated TiO2supported platinum catalysts for efficient removal of volatile organic compounds. The electronic modifications of supported Pt nanoparticles for the underlying amorphous ATO-P material and Pt loading for the whole catalyst were systematically investigated. The phosphorus dopant played an important role for stabilizing the inflated Ti?O?P frameworks as well as the electronic structure of Pt species. Compared with pristine TiO2, ATO-P with high specific surface area showed signi-ficant enhancement for Pt/ATO-P samples for catalytic overall oxidation of toluene under practical conditions. The performance of the engineered Pt/ATO-P for toluene combustion was superior to the reference Pt/TiO2and comparable with the state-of-the-art catalysts. Additionally, Pt/ATO-P catalyst exhibited excellent stability for toluene oxidation removal under a relatively mild thermal process and could be potentially applied in a broad scope of VOCs. The present work is expected to make a significant contribution on the new application of amorphous mesoporous phosphated material in VOCs removal.

    Supporting Materials

    Supporting Materials related to this article can be found at https://doi.org/10.15541/jim20190154.

    [1] XIE S H, LIU Y X, DENG J G,. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of-xylene.,2017, 352: 282–292.

    [2] GENUINO H C, DHARMARATHNA S, NJAGI E C,. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts., 2012, 116(22): 12066–12078.

    [3] SIHAIB Z, PULEO F, GARCIA-VARGAS J M,.Manganese oxide-based catalysts for toluene oxidation.,2017, 209(15): 689–700.

    [4] ROKICI?SKA A, DROZDEK M, DUDEK B,. Cobalt- containing BEA zeolite for catalytic combustion of toluene.,2017, 212: 59–67.

    [5] SANTOS V P, PEREIRA M F R, óRF?O J J M,. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds.,2010, 99(1/2): 353–363.

    [6] ?ULIGOJ A, ?TANGAR U L, RISTI? A,. TiO2-SiO2films from organic-free colloidal TiO2anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air.,2016, 184: 119–131.

    [7] QIAN X F, YUE D T, TIAN Z Y,. Carbon quantum dots decorated Bi2WO6nanocomposite with enhanced photocatalytic oxidation activity for VOCs.,2016, 193: 16–21.

    [8] CHEN J, CHEN X, XU W J,. Homogeneous introduction of CeOinto MnO-based catalyst for oxidation of aromatic VOCs.,2018, 224: 825–835.

    [9] YANG H G, DENG J G, LIU Y X,. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3for toluene oxidation.,2016, 414: 9–18.

    [10] PENG R S, SUN X B, LI S J,. Shape effect of Pt/CeO2catalysts on the catalytic oxidation of toluene.,2016, 306: 1234–1246.

    [11] ALGHAMDI A O, JEDIDI A, AZIZ S G,. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100)., 2018, 363: 197–203.

    [12] ZHANG Z X, JIANG Z, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review.,2016, 264: 270–278.

    [13] XIE S H, LIU Y X, DENG J G,. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3for the oxidation of methane and-xylene.,2017, 206: 221–232.

    [14] SANTOS V P, CARABINEIRO S A C, TAVARES P B,. Oxidation of CO, ethanol and toluene over TiO2supported noble metal catalysts.,2010, 99(1/2): 198–205.

    [15] FU X R, LIU Y, YAO W Y,. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation.,2016, 83: 22–26.

    [16] YIN G H, HUANG X Y, CHEN T Y,. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2reduction.,2018, 8(2): 1009–1017.

    [17] WU D W, ZHANG Q L, LIN T,. Effect of Fe on the selective catalytic reduction of NO by NH3at low temperature over Mn/CeO2-TiO2catalyst.,2012, 27(5): 495–500.

    [18] YU W W, ZHANG Q H, SHI G Y,. Preparation of Pt-loaded TiO2nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties.,2011, 26(7): 747–752.

    [19] COMOTTI M, LI W C, SPLIETHOFF B,. Support effect in high activity gold catalysts for CO oxidation.,2006, 128(3): 917–924.

    [20] LEE J S, PARK G S, LEE H I,. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.,2011, 11(12): 5362–5366.

    [21] ZHENG Y L, WANG W Z, JIANG D,. Amorphous MnOmodified Co3O4for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity.,2016, 284: 21–27.

    [22] GUO Y Y, ZHANG S, MU W T,. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2catalysts.,2017, 429: 18–26.

    [23] CLEARFIELD A, THAKUR D S. Zirconium and titanium phosphates as catalysts: a review.,1986, 26: 1–26.

    [24] YU J C, ZHANG L Z, ZHENG Z,. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity.,2003, 15(11): 2280–2286.

    [25] K?R?SI L, OSZKó A, GALBáCS G,. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films.,2007, 77(1/2): 175–183.

    [26] K?R?SI L, PAPP S, BERTóTI I,. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2.,2007, 19(19): 4811–4819.

    [27] MASLOVA M V, RUSANOVA D, NAYDENOV V,. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates.,2008, 47(23): 11351–11360.

    [28] ZHU Y L, ZHOU W, SUNARSO J,. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution.,2016, 26(32): 5862–5872.

    [29] HEO Y W, PARK S J, IP K,. Transport properties of phosphorus-doped ZnO thin films.,2003, 83(6): 1128–1130.

    [30] YIN G H, BI Q Y, ZHAO W,. Efficient conversion of CO2to methane photocatalyzed by conductive black titania.,2017, 9(23): 4389–4396.

    [31] PLUMEJEAU S, RIVALLIN M, BROSILLON S,. The reductive dehydration of cellulose by solid/gas reaction with TiCl4at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites.,2016, 22(48): 17262–17268.

    [32] REN T Z, YUAN Z Y, AZIOUNE A,. Tailoring the porous hierarchy of titanium phosphates.,2006, 22(8): 3886–3894.

    [33] YOSHIDA H, YAZAWA Y, HATTORI T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion.,2003, 87(1-4): 19–28.

    [34] TIERNAN M J, FINLAYSON O E. Effects of ceria on the combustion activity and surface properties of Pt/Al2O3catalysts.,1998, 19(1): 23–25.

    [35] LYKHACH Y, FAISAL F, SKáLA T,. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts.,2018, 6: 23078–23086.

    [36] ZHANG C B, HE H, TANAKA KI. Catalytic performance and mechanism of a Pt/TiO2catalyst for the oxidation of formaldehyde at room temperature.,2006, 65: 37–43.

    [37] RAHMANI F, HAGHIGHI M, ESTIFAEE P. Synthesis and characterization of Pt/Al2O3-CeO2nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventionalplasma-ultrasound hybrid synthesis methods.,2014, 185(1): 213–223.

    [38] CHEN C Y, CHEN F, ZHANG L,. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts.,2015, 51: 5936–5938.

    [39] LI S M, HAO Q L, ZHAO R Z,. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts.,2016, 285: 536–543.

    [40] CARABINEIRO S A C, CHEN X, MARTYNYUK O,. Gold supported on metal oxides for volatile organic compounds total oxidation.,2015, 244: 103–114.

    摻磷非晶氧化鈦負(fù)載鉑用于高效催化氧化揮發(fā)性有機(jī)化合物

    黃謝意1,2, 王鵬2,3, 尹國恒1, 張紹寧1, 趙偉1, 王東1, 畢慶員1, 黃富強(qiáng)1,3,4

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 上??萍即髮W(xué) 物理科學(xué)與技術(shù)學(xué)院, 上海 200050; 4. 北京大學(xué) 化學(xué)與分子工程學(xué)院, 稀土材料化學(xué)及應(yīng)用國家重點(diǎn)實(shí)驗(yàn)室, 北京 100871)

    高活性催化劑是揮發(fā)性有機(jī)化合物(VOCs)催化氧化消除的關(guān)鍵因素。本研究通過簡單的共沉淀法成功制備了具有高比表面積的非晶介孔磷摻雜氧化鈦負(fù)載鉑催化劑(Pt/ATO-P)。通過P摻雜, 既可獲得非晶介孔結(jié)構(gòu), 又可獲得高ATO-P比表面積(可達(dá)278.9 m2?g?1)。非晶介孔Pt/ATO-P催化劑顯示出優(yōu)異的VOCs催化氧化性能和良好的熱穩(wěn)定性。Pt/ATO-P樣品在空速為36000 mL?h?1?g?1、甲苯濃度為10000 mL?m?3的反應(yīng)條件下, 對甲苯催化氧化的50和90(實(shí)現(xiàn)50%和90%轉(zhuǎn)化率所需的溫度)分別為130 ℃和140 ℃, 明顯優(yōu)于無磷催化劑Pt/TiO2。這些發(fā)現(xiàn)可以為拓展非晶介孔磷化材料在環(huán)境凈化和能源轉(zhuǎn)化等領(lǐng)域的應(yīng)用提供重要參考。

    非晶介孔材料; 磷摻雜非晶氧化鈦; 鉑納米顆粒; 甲苯催化氧化; VOCs消除

    O782

    A

    2019-04-12;

    2019-05-24

    National Key Research and Development Program of China (2016YFB0901600); National Natural Science Foundation of China (21872166); Science & Technology Commission of Shanghai (16ZR1440400, 16JC1401700); The Key Research Program of Chinese Academy of Sciences (QYZDJ-SSW-JSC013 and KGZD-EW-T06)

    Huang Xieyi (1994–), male, Master candidate. E-mail: huangxieyi@student.sic.ac.cn

    黃謝意(1994–), 男, 碩士研究生. E-mail: huangxieyi@student.sic.ac.cn

    BI Qingyuan, associate professor. E-mail: biqingyuan@mail.sic.ac.cn;

    HUANG Fuqiang, professor. E-mail: huangfq@mail.sic.ac.cn

    畢慶元, 副研究員. E-mail: huangfq@mail.sic.ac.cn; 黃富強(qiáng), 研究員. E-mail: huangfq@mail.sic.ac.cn

    1000-324X(2020)04-0482-09

    10.15541/jim20190154

    猜你喜歡
    氧化鈦非晶介孔
    基于JAK/STAT信號通路研究納米氧化鈦致卵巢損傷的分子機(jī)制*
    保健文匯(2022年4期)2022-06-01 10:06:50
    功能介孔碳納米球的合成與應(yīng)用研究進(jìn)展
    氧化鈦對陶瓷結(jié)合劑金剛石磨具性能及結(jié)構(gòu)的影響
    新型介孔碳對DMF吸脫附性能的研究
    非晶Ni-P合金鍍層的制備及應(yīng)力腐蝕研究
    有序介孔材料HMS的合成改性及應(yīng)用新發(fā)展
    非晶硼磷玻璃包覆Li[Li0.2Co0.13Ni0.13Mn0.54]O2正極材料的研究
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    塊體非晶合金及其應(yīng)用
    Fe73.5Cu1Nb3Si13.5B9非晶合金粉體的SPS燒結(jié)特性研究
    国产精品 国内视频| 国产伦精品一区二区三区视频9| 亚洲av.av天堂| 成人漫画全彩无遮挡| av不卡在线播放| 亚洲成人一二三区av| 日本欧美视频一区| 亚洲av日韩在线播放| 亚洲av成人精品一二三区| 免费播放大片免费观看视频在线观看| 欧美国产精品一级二级三级| 老司机影院成人| 自线自在国产av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av一本久久久久| 日韩免费高清中文字幕av| 亚洲人成网站在线播| 亚洲性久久影院| 男女边摸边吃奶| 一级片'在线观看视频| 日韩欧美精品免费久久| 国产高清三级在线| 在线看a的网站| 99久久中文字幕三级久久日本| 视频中文字幕在线观看| 特大巨黑吊av在线直播| 女人久久www免费人成看片| 日本av免费视频播放| 日韩强制内射视频| 韩国高清视频一区二区三区| 一个人看视频在线观看www免费| 午夜日本视频在线| 男女高潮啪啪啪动态图| 一边摸一边做爽爽视频免费| 人妻一区二区av| 午夜日本视频在线| 久久久久久久精品精品| 中文字幕免费在线视频6| 亚洲欧美成人精品一区二区| 国产午夜精品久久久久久一区二区三区| 欧美少妇被猛烈插入视频| 热99国产精品久久久久久7| 国产亚洲精品第一综合不卡 | 大香蕉久久成人网| xxxhd国产人妻xxx| 性色av一级| kizo精华| 亚洲天堂av无毛| 一级二级三级毛片免费看| 九色亚洲精品在线播放| 亚洲精华国产精华液的使用体验| 成人手机av| 中国国产av一级| 久久精品夜色国产| 亚洲,欧美,日韩| 免费人妻精品一区二区三区视频| 国产高清国产精品国产三级| 亚洲av综合色区一区| 日日摸夜夜添夜夜添av毛片| 18在线观看网站| 一级毛片电影观看| 啦啦啦啦在线视频资源| 国产成人一区二区在线| 日韩伦理黄色片| 国产av国产精品国产| 亚洲国产欧美日韩在线播放| 久久精品人人爽人人爽视色| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 欧美97在线视频| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 亚洲四区av| 国产高清三级在线| 亚洲精品乱码久久久久久按摩| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| videos熟女内射| 亚洲av二区三区四区| 国产精品一国产av| 精品国产国语对白av| 亚洲精品一区蜜桃| 夫妻性生交免费视频一级片| 日本vs欧美在线观看视频| 午夜91福利影院| 国产深夜福利视频在线观看| 国产免费福利视频在线观看| 丰满迷人的少妇在线观看| 国产成人aa在线观看| 80岁老熟妇乱子伦牲交| 亚洲精品乱码久久久久久按摩| a级毛片免费高清观看在线播放| 下体分泌物呈黄色| 午夜视频国产福利| 久久热精品热| 天堂8中文在线网| 在线观看www视频免费| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 亚洲国产欧美在线一区| 最近2019中文字幕mv第一页| 国产精品不卡视频一区二区| 日本色播在线视频| 美女福利国产在线| 欧美精品高潮呻吟av久久| 国产av码专区亚洲av| 女人精品久久久久毛片| 亚洲欧美清纯卡通| 日本欧美视频一区| 久久99蜜桃精品久久| 美女xxoo啪啪120秒动态图| 99热这里只有是精品在线观看| 久久这里有精品视频免费| 男的添女的下面高潮视频| 激情五月婷婷亚洲| 曰老女人黄片| 成年人免费黄色播放视频| 国产国语露脸激情在线看| 国产高清有码在线观看视频| videos熟女内射| 国产免费福利视频在线观看| 亚洲情色 制服丝袜| 啦啦啦啦在线视频资源| 日韩熟女老妇一区二区性免费视频| 国产一区二区在线观看av| videossex国产| 国产一区有黄有色的免费视频| 制服丝袜香蕉在线| 男女国产视频网站| 韩国高清视频一区二区三区| 国产精品一区二区在线观看99| 国产极品粉嫩免费观看在线 | 亚洲精华国产精华液的使用体验| 黄片无遮挡物在线观看| 美女福利国产在线| 日韩一区二区视频免费看| 日韩一本色道免费dvd| √禁漫天堂资源中文www| 午夜激情av网站| 热99久久久久精品小说推荐| 91国产中文字幕| 一本久久精品| 夜夜爽夜夜爽视频| 国产黄色免费在线视频| 美女内射精品一级片tv| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 日韩成人av中文字幕在线观看| 婷婷成人精品国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久久久久久亚洲中文字幕| 久久人妻熟女aⅴ| 菩萨蛮人人尽说江南好唐韦庄| 好男人视频免费观看在线| 国产日韩欧美亚洲二区| 精品熟女少妇av免费看| 丰满乱子伦码专区| 18禁动态无遮挡网站| 性高湖久久久久久久久免费观看| 大码成人一级视频| 在线观看www视频免费| 国产在线免费精品| 大码成人一级视频| 热re99久久精品国产66热6| 成年人免费黄色播放视频| 又大又黄又爽视频免费| 国产精品久久久久成人av| 日韩一区二区视频免费看| 欧美亚洲 丝袜 人妻 在线| 18禁在线播放成人免费| 国产精品久久久久久久久免| 人体艺术视频欧美日本| 18禁在线播放成人免费| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 91在线精品国自产拍蜜月| 欧美日韩亚洲高清精品| 99国产综合亚洲精品| 99久久中文字幕三级久久日本| 一本一本综合久久| 国产伦理片在线播放av一区| 色婷婷av一区二区三区视频| 亚洲精品成人av观看孕妇| 在线精品无人区一区二区三| 日韩制服骚丝袜av| 狂野欧美激情性bbbbbb| 免费看光身美女| 菩萨蛮人人尽说江南好唐韦庄| 国产精品嫩草影院av在线观看| 人妻 亚洲 视频| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 插逼视频在线观看| 亚洲情色 制服丝袜| 亚洲图色成人| 日本与韩国留学比较| 午夜福利视频精品| av视频免费观看在线观看| 久久精品国产自在天天线| 亚洲精品国产av成人精品| 国产成人午夜福利电影在线观看| 亚洲av男天堂| 99热这里只有是精品在线观看| 国产成人精品在线电影| 国产亚洲最大av| 纯流量卡能插随身wifi吗| 插逼视频在线观看| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 男女啪啪激烈高潮av片| 午夜福利影视在线免费观看| 岛国毛片在线播放| 又粗又硬又长又爽又黄的视频| 妹子高潮喷水视频| 制服丝袜香蕉在线| 精品少妇内射三级| 男人添女人高潮全过程视频| 最黄视频免费看| 99久久精品国产国产毛片| 久久久久久久久久成人| 男女边吃奶边做爰视频| 亚洲精品乱码久久久v下载方式| 天天躁夜夜躁狠狠久久av| 国产黄片视频在线免费观看| 免费人成在线观看视频色| 国产一区二区三区av在线| 最近手机中文字幕大全| 国产在线视频一区二区| 91久久精品国产一区二区三区| 中文字幕亚洲精品专区| 成人手机av| 春色校园在线视频观看| 亚洲中文av在线| 亚洲欧洲日产国产| 久久久久久久久久久丰满| 亚洲av国产av综合av卡| 国产亚洲精品久久久com| 麻豆成人av视频| 日日撸夜夜添| 欧美亚洲日本最大视频资源| 中文天堂在线官网| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区| 亚州av有码| 久久99热6这里只有精品| 少妇高潮的动态图| 99九九线精品视频在线观看视频| 久久婷婷青草| 亚洲美女视频黄频| 久久精品久久久久久久性| 欧美三级亚洲精品| 国产免费视频播放在线视频| 在线播放无遮挡| 亚洲综合色惰| 国产无遮挡羞羞视频在线观看| 一级毛片黄色毛片免费观看视频| 欧美国产精品一级二级三级| 久久久国产欧美日韩av| 91aial.com中文字幕在线观看| 国精品久久久久久国模美| 日韩视频在线欧美| 七月丁香在线播放| 自线自在国产av| 男的添女的下面高潮视频| 嫩草影院入口| 黄色一级大片看看| 欧美少妇被猛烈插入视频| videos熟女内射| 男人操女人黄网站| 午夜激情福利司机影院| 国产免费福利视频在线观看| 亚洲精品国产av成人精品| 不卡视频在线观看欧美| 成人18禁高潮啪啪吃奶动态图 | 哪个播放器可以免费观看大片| 老司机亚洲免费影院| 精品酒店卫生间| 国产男女内射视频| videos熟女内射| 哪个播放器可以免费观看大片| 黄色视频在线播放观看不卡| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| 97在线人人人人妻| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 精品国产露脸久久av麻豆| 午夜久久久在线观看| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 丝袜美足系列| 国产一区二区三区综合在线观看 | 午夜91福利影院| 欧美人与善性xxx| 桃花免费在线播放| 另类精品久久| 欧美日韩成人在线一区二区| 一边摸一边做爽爽视频免费| 亚洲精品aⅴ在线观看| 国产精品久久久久久av不卡| 久久久久国产精品人妻一区二区| 午夜福利视频在线观看免费| av免费在线看不卡| 久久精品国产亚洲av天美| 人成视频在线观看免费观看| 99久国产av精品国产电影| 波野结衣二区三区在线| 成人国产麻豆网| 久久精品久久精品一区二区三区| 曰老女人黄片| kizo精华| 日韩大片免费观看网站| 久久久久久久大尺度免费视频| 日本黄大片高清| 王馨瑶露胸无遮挡在线观看| 亚洲在久久综合| 一级a做视频免费观看| 春色校园在线视频观看| 99精国产麻豆久久婷婷| 能在线免费看毛片的网站| 人妻 亚洲 视频| 成人国产av品久久久| 免费高清在线观看日韩| 久久久精品94久久精品| 国产精品一区www在线观看| 欧美xxⅹ黑人| 18禁在线无遮挡免费观看视频| 国产毛片在线视频| 免费久久久久久久精品成人欧美视频 | 午夜福利视频精品| 日韩成人伦理影院| 日韩强制内射视频| 午夜免费男女啪啪视频观看| 多毛熟女@视频| 精品99又大又爽又粗少妇毛片| 中文字幕人妻丝袜制服| 国产免费视频播放在线视频| 欧美激情 高清一区二区三区| 久久久精品94久久精品| 欧美变态另类bdsm刘玥| 黑人猛操日本美女一级片| 天天影视国产精品| 黑人高潮一二区| 99热6这里只有精品| 夫妻性生交免费视频一级片| 亚洲婷婷狠狠爱综合网| 成人免费观看视频高清| 少妇猛男粗大的猛烈进出视频| 大又大粗又爽又黄少妇毛片口| 日日撸夜夜添| 久久久国产欧美日韩av| 亚洲一级一片aⅴ在线观看| 乱人伦中国视频| 亚洲精品日韩av片在线观看| 亚州av有码| 伊人久久国产一区二区| 最黄视频免费看| 久久精品国产亚洲网站| 久久久午夜欧美精品| 欧美亚洲 丝袜 人妻 在线| 免费观看的影片在线观看| 伊人久久精品亚洲午夜| 亚洲国产最新在线播放| 成人国产麻豆网| 晚上一个人看的免费电影| 蜜臀久久99精品久久宅男| 最近2019中文字幕mv第一页| av有码第一页| 高清不卡的av网站| 欧美变态另类bdsm刘玥| 91国产中文字幕| xxxhd国产人妻xxx| 80岁老熟妇乱子伦牲交| 亚洲欧洲日产国产| h视频一区二区三区| 男女边摸边吃奶| 国模一区二区三区四区视频| 国产白丝娇喘喷水9色精品| 色视频在线一区二区三区| 欧美3d第一页| videosex国产| 日韩免费高清中文字幕av| 亚洲在久久综合| 久久久久精品久久久久真实原创| 亚洲图色成人| 欧美日韩在线观看h| 天堂俺去俺来也www色官网| 亚洲中文av在线| 人妻一区二区av| 日韩av免费高清视频| 丁香六月天网| 日韩三级伦理在线观看| 国产一区有黄有色的免费视频| 18禁裸乳无遮挡动漫免费视频| 老女人水多毛片| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| 天天操日日干夜夜撸| 毛片一级片免费看久久久久| 国产淫语在线视频| 又粗又硬又长又爽又黄的视频| 国产日韩欧美在线精品| 亚洲av成人精品一二三区| 免费看av在线观看网站| 亚洲第一区二区三区不卡| 成人无遮挡网站| h视频一区二区三区| 亚洲精品aⅴ在线观看| 欧美xxxx性猛交bbbb| 蜜桃在线观看..| 国产精品免费大片| videos熟女内射| 国产成人91sexporn| av在线app专区| 一区二区av电影网| 天堂俺去俺来也www色官网| 成人国语在线视频| 黄色欧美视频在线观看| 欧美国产精品一级二级三级| 久久国产精品男人的天堂亚洲 | 精品一区在线观看国产| 亚洲精品一二三| 精品久久国产蜜桃| 欧美激情 高清一区二区三区| videos熟女内射| 亚洲综合色惰| 一级爰片在线观看| 欧美97在线视频| 大码成人一级视频| 国产精品一区www在线观看| 欧美精品人与动牲交sv欧美| 亚洲五月色婷婷综合| 久久热精品热| 国产69精品久久久久777片| 久久免费观看电影| 亚洲欧美日韩另类电影网站| 全区人妻精品视频| 99久久综合免费| 国产免费现黄频在线看| 精品午夜福利在线看| 免费黄网站久久成人精品| 日本午夜av视频| 亚洲美女搞黄在线观看| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 久久久a久久爽久久v久久| 中文精品一卡2卡3卡4更新| 性色av一级| 日本色播在线视频| 亚洲少妇的诱惑av| 色哟哟·www| 亚洲性久久影院| 青青草视频在线视频观看| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| 亚洲欧美一区二区三区国产| 汤姆久久久久久久影院中文字幕| 国产精品一区www在线观看| 国产精品 国内视频| av女优亚洲男人天堂| 色网站视频免费| 美女cb高潮喷水在线观看| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 亚洲成色77777| 成人无遮挡网站| 国产av码专区亚洲av| 人人妻人人添人人爽欧美一区卜| 80岁老熟妇乱子伦牲交| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 高清毛片免费看| 亚洲av国产av综合av卡| 日本黄色片子视频| 人体艺术视频欧美日本| 国产精品嫩草影院av在线观看| 交换朋友夫妻互换小说| 美女视频免费永久观看网站| 国产永久视频网站| 免费观看的影片在线观看| 天堂中文最新版在线下载| 狂野欧美激情性bbbbbb| 69精品国产乱码久久久| 亚洲av成人精品一区久久| 久久久久视频综合| 午夜免费男女啪啪视频观看| 亚洲精品av麻豆狂野| 久久av网站| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 2021少妇久久久久久久久久久| 日韩熟女老妇一区二区性免费视频| 午夜老司机福利剧场| 日本-黄色视频高清免费观看| 中文乱码字字幕精品一区二区三区| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 国产一区二区在线观看日韩| 十八禁高潮呻吟视频| 亚州av有码| 亚洲精品久久成人aⅴ小说 | 老司机影院成人| 亚洲欧美一区二区三区黑人 | 青青草视频在线视频观看| 欧美激情 高清一区二区三区| 午夜免费鲁丝| 欧美最新免费一区二区三区| 2021少妇久久久久久久久久久| 久久热精品热| 中文字幕制服av| 五月伊人婷婷丁香| 高清毛片免费看| 久久久久久久久大av| 夜夜爽夜夜爽视频| 午夜久久久在线观看| 久久毛片免费看一区二区三区| xxxhd国产人妻xxx| 国产精品99久久久久久久久| 色视频在线一区二区三区| 蜜桃在线观看..| 亚洲欧美日韩卡通动漫| 肉色欧美久久久久久久蜜桃| 春色校园在线视频观看| 亚洲av国产av综合av卡| 18禁观看日本| 亚洲精品色激情综合| 男女无遮挡免费网站观看| 天堂8中文在线网| 中文字幕人妻丝袜制服| 秋霞在线观看毛片| 精品久久久久久久久亚洲| 中文字幕制服av| 久久精品久久久久久噜噜老黄| 黄色欧美视频在线观看| 日本av手机在线免费观看| 国产av精品麻豆| 美女内射精品一级片tv| 欧美精品人与动牲交sv欧美| 最近2019中文字幕mv第一页| 免费播放大片免费观看视频在线观看| av黄色大香蕉| 伊人久久精品亚洲午夜| 精品国产国语对白av| 2022亚洲国产成人精品| 一本大道久久a久久精品| 97超碰精品成人国产| 美女国产视频在线观看| 97超碰精品成人国产| 18禁在线播放成人免费| 热99久久久久精品小说推荐| 一级毛片我不卡| 国产精品99久久久久久久久| 男女国产视频网站| 欧美最新免费一区二区三区| 午夜激情av网站| 制服丝袜香蕉在线| 熟女人妻精品中文字幕| 成人毛片a级毛片在线播放| av天堂久久9| 国产成人精品在线电影| 亚洲欧洲精品一区二区精品久久久 | 十八禁网站网址无遮挡| 成人影院久久| 老司机影院毛片| 亚洲精品日本国产第一区| 美女脱内裤让男人舔精品视频| 免费黄色在线免费观看| 亚洲国产精品专区欧美| 日韩视频在线欧美| 日本爱情动作片www.在线观看| 大话2 男鬼变身卡| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 黄色怎么调成土黄色| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 一本—道久久a久久精品蜜桃钙片| 久久久久久久久久久丰满| 国产亚洲午夜精品一区二区久久| 成年人免费黄色播放视频| 久久国内精品自在自线图片| 亚洲av国产av综合av卡| 伊人久久国产一区二区| av一本久久久久| 免费av不卡在线播放| 黑人高潮一二区| 亚洲,欧美,日韩| 2021少妇久久久久久久久久久| 最黄视频免费看| 久久精品熟女亚洲av麻豆精品| 少妇猛男粗大的猛烈进出视频| 亚洲精品乱码久久久久久按摩| 日韩一区二区三区影片| 男女边摸边吃奶| av在线app专区| 久久免费观看电影| 久久久久精品性色| av播播在线观看一区| 老女人水多毛片| 黄色怎么调成土黄色| 日韩人妻高清精品专区| 另类精品久久| xxx大片免费视频| 亚洲中文av在线| 韩国av在线不卡| 十分钟在线观看高清视频www| 色5月婷婷丁香| 精品少妇内射三级| 只有这里有精品99| 又黄又爽又刺激的免费视频.| 亚洲国产精品一区三区| 国产精品久久久久久久电影| 妹子高潮喷水视频| 日韩中文字幕视频在线看片|