• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laboratory model study of the effect of aeration on axial velocity attenuation of turbulent jet flows in plunge pool*

    2015-12-01 02:12:18DENGJun鄧軍ZHANGFaxing張法星TIANZhong田忠XUWeilin許唯臨LIUBin劉斌WEIWangru衛(wèi)望汝StateKeyLaboratoryofHydraulicsandMountainRiverEngineeringSichuanUniversityChengdu610065Chinamaildjhao2002scueducn
    關(guān)鍵詞:劉斌

    DENG Jun (鄧軍), ZHANG Fa-xing (張法星), TIAN Zhong (田忠), XU Wei-lin (許唯臨), LIU Bin (劉斌),WEI Wang-ru (衛(wèi)望汝)State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail:djhao2002@scu.edu.cn

    Laboratory model study of the effect of aeration on axial velocity attenuation of turbulent jet flows in plunge pool*

    DENG Jun (鄧軍), ZHANG Fa-xing (張法星), TIAN Zhong (田忠), XU Wei-lin (許唯臨), LIU Bin (劉斌),WEI Wang-ru (衛(wèi)望汝)
    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065,China, E-mail:djhao2002@scu.edu.cn

    (Received November 2, 2013, Revised April 12, 2014)

    In the laboratory model experiment, the velocities of the jet flow along the axis are measured, using the CQY-Z8a velocity-meter. The velocity attenuations of the jet flow along the axis under different conditions are studied. The effects of the aeration concentration, the initial jet velocity at the entry and the thickness of the jet flow on the velocity attenuation of the jet flow are analyzed. It is seen that the velocity attenuation of the jet flow along the axis sees a regular variation. It is demonstrated by the test results that under the experimental conditions, the velocity along the axis decreases linearly. The higher the air concentration is, the faster the velocity will be decayed. The absolute value of the slopeK increases with the rise of the air concentration. The relationship can be defined as K=ACa+Kb. The coefficientAis 0.03 under the experimental conditions. With the low air concentration of the jet flow, the thinner the jet flow is, the faster the velocity will be decayed. With the increase of the air concentration, the influence of the thickness of the jet flow on the velocity attenuation is reduced. When the air concentration is increased to a certain value, the thickness of the jet flow may not have any influence on the velocity attenuation. The initial jet velocity itself at the entry has no influence on the variation of the velocity attenuation as the curves of the velocity attenuation at different velocities at the entry are practically parallel, even coinciding one with another. Therefore, improving the air concentration of the jet flow and dispersing the jet flow in the plunge pool could reduce the influence of the jet flow on the scour.

    jet flow, air concentration, velocity

    Introduction0F

    With respect to the funds, the ski-jump energy dissipation prevails among considerations of the hydraulic projects with high head and large discharge locating in the alp valleys. The energy dissipation is always a major issue in hydraulic engineering. Experiments conducted previously provide an understanding of the factors affecting scouring, such as the tailrace,the density and the Froude number[1-5]. Some studies show that the scour geometry is affected by the characteristics of the jet flow[6,7]. Canepa and Hager[7]showed that the scour depth is decreased significantly by the addition of air to the jet. Deng[8,9]did a series of experiments about aerated jet flows with different air concentrations. He indicated that the air entrainment can reduce the impinging pressure at the pool bottom. However, with the increase of the air content in the jet flow, the maximum fluctuation pressure increases. Duarte et al.[10]studied the influence of the air entrained by water jets on the dynamic pressures applied on the bottom of a plunge pool. Pagliara and Palermo[11]showed that the presence of the air in the jets deeply affects the scour morphology, and the scour geometry was analyzed and compared with the respective obtained in black water conditions. Chanson[12]studied the air-water flow characteristics close to the jet nozzle in pools at small velocities. Bollaert and Schleiss[13]compared wall pressure measurements at the pool bottom. Manson et al.[14]presented experimental studies for turbulent high-velocity jets plunging in a water pool with a flat bottom. It is shown that the impactpressures under the jet have a negative skewness in shallow pools and a positive skewness in deep pools. Melo[15]documented the impact conditions of submerged water jets with artificial air entrainment for velocities of 10 m/s. His experiment shows that the air entrainment reduces the mean impact pressure. Some theoretical expressions has been developed to estimate the aeration effect on the jet flows[16-18]. In overall, different relevant topics were approached for the aerated jet flow in plunge pools, but there is still not a comprehensive analysis of the velocity attenuation of the aerated jet flow in limited-depth pools. This paper presents a series of experimental studies of the aerated jet flow. The effects of the initial velocity, the air concentration and the initial jet thickness are analyzed, respectively, for a further understanding of the velocity characteristics of the aerated jet flow.

    Fig.1 Layout of experimental setup

    1. Experimental setup

    The experiments are carried out at State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University. There are a relatively large number of cascade reservoirs. To measure the velocity of the aerated jet flow, an experimental facility is used,as shown in Fig.1 with a rectangular glass flume of 3.5 m×0.25 m×0.8 m. An air-compressor and an air flow-meter are used to provide and control stable air. The air concentration varies from 0 to 0.2. The place of a honeycomb grid (with diameter d=0.001m),immediately upstream of the bend, is the air entrainment region to improve the homogeneity of the flow over the section. These features are to improve the jet flow stability. The diameter of air bubbles in the airwater jet flows are in the range of 0.001 m-0.002 m. The jet outlet is rectangular, with a nozzle exit of 0.22 m×0.02m. The incident angle of the jet flow is 60o. Eight gauging points are placed along the jet axis(defined as x direction, and at the nozzle entry, x=0 m) from A to H at intervals of 0.06 m, and the velocity at each gauging point is measured. The gauging Point A is 0.01 m (x=0.01m)away from the nozzle exit along the jet axis, and the velocity measured at Point A is considered as the initial velocity of the jet flow under each working condition.

    Fig.2 Sketch of the double-tip conductivity probe

    The velocities of the jet flow along the axis are measured using the CQY-Z8a velocity-meter. The airwater velocities are recorded by using a double-tip conductivity probe (Fig.2). The probe consists of two identical tips with an internal concentric electrode made of platinum and an external stainless steel electrode of 200 μm in diameter. The two tips are aligned in the flow direction and the distance between the two tips isdl (0.01 m). The cross-correlation function between the signals from the two tips assumes the maximum value for the average time dttaken for an air bubble interface to travel from the first tip to the second tip. The velocity at each gauging point (from A to H) is deduced from the time delay between the signals from the two tipsdt and the two-tip separation distancedl.

    The velocity along the axial way is measured in the test for different initial velocities VA, different air concentrations Ca(2%, 5%, 10%, 15%, 20%), and different thicknesses of the jet flow b(0.02 m, 0.03 m, 0.04 m). The detailed data about each working condition (37 groups in all) are shown in Table 1.

    2. Velocity attenuation along axial way for different initial velocities at entry

    The experimental velocity attenuations for different jet velocities at the entry along the way are shown in Fig.3. The relative velocity attenuation value V/ VBis defined as the velocityV at each gauging point over the velocity VBat the nozzle exit. The VAmeasured at the gauging Point A is the initial velocity at the entry. It can be seen that, for different initial velocities at the entry, the velocity along the axis decreases linearly. As the curves of the velocity attenuation for different velocities at the entry are practically the same, the initial jet velocity itself at the entry has noinfluence on the variation of the velocity attenuation. When b =0.02 mand Ca=2%, as shown in Fig.3(a),the absolute value of the slope K of the velocity atte-

    nuations is almost the same where VA=3.15 m/s, 4.02 m/s, 5.83 m/s, respectively. This can also be seen under other working conditions, as shown in Figs.3(b)-3(d). In this paper, because the initial velocity has no influence on the variation of the axial velocity attenuation of the jet flows, the average value of V/ VBfor different initial velocities at the entry with the same air concentration and thickness of the jet flow can be used to reduce the measurement error.

    Table 1 Experimental working conditions

    Fig.3 Velocity attenuation of jet flow along the axis for different jet velocities at entry

    Fig.4 Velocity attenuation of jet flow along the axis for different aeration concentrations

    3. Velocity attenuation along axial way for different air concentrations

    The experimental velocity attenuation for different air concentrations along the way is shown in Fig.4. Each figure is for a certain thickness of the jet flowb. The measurement data of V/ VBare the average value of V/ VBfor different initial velocities at the entry, because the initial velocity has no influence on the variation of the velocity attenuation along the axial way when the thickness of the jet flow and the air entrainment conditions are the same.

    It can be seen, as a whole, the values of V/ VBdecrease very fast as the values of the air concentration increase. When b=0.02 m, the absolute value of the slopeK of the velocity attenuation increases from 0.0150 to 0.0209 with the air concentration of the jet flow increasing from 2% to 20%. The value of K is increased by 39.33%. When b =0.03m, theK increases from 0.0112 to 0.0163 with the air concentration increasing from 2% to 20%. The K is increased by 45.54%. When b =0.04 m, theKincreases from 0.0091 to 0.0143 with the air concentration increasing from 2% to 20%. TheK is increased by 57.14%.

    The results show that the improvement of the air concentration can accelerate the velocity attenuation of the jet flows along the way. There are two possible mechanisms for the air entrainment to affect the velocity attenuation of the jet flows. The first one is, the jet flow has a good air carrying capacity when the velocity is high. The aerated jet flow can be seen as a continuous medium. The density of the aerated jet flow is lower than that of water in the flume. The buoyancy force acts as a resistance to the movement of the aerated jet flow. When the air concentration of the jet flow increases, the buoyancy effect becomes more significant. The other one is, in the experiments, the air bubbles in the aerated jet flow would spill over in a great amount. This movement of air bubbles may destroy the configuration of the jet water. With the increase of the air concentration of the jet flow, the turbulent motion becomes more severe. Therefore, the energy dissipation may become greater along the way. So, the improvement of the air concentration of the jet flow may reduce the influence of the jet flow on the scour.

    Fig.5 The relationship between CaandKfor different values ofb

    Figure 5 depicts the relationship between the air concentration of the jet flow and the absolute value of the slopeK for a certain value ofb. The analysis of the data indicates that, for a certainb, theK increases linearly with the increase of Ca. ThisKis best correlated by

    whereA is a coefficient and Kbis the absolute value of the slope for a certain bwhen Ca=0.Kbvaries with the thickness of the jet flow at the entry. The coefficientA is about 0.03, as deduced from the data under the working conditions for the three different values of b.

    Fig.6 Velocity attenuation of jet flow along the axis for different thicknesses of jet flow

    4. Velocity attenuation along axial way for different thicknesses of jet flow

    Figure 6 shows the velocity attenuation of the jet flow along the axis for different thicknesses of the jet flow and a given Ca. It can be seen that for a certain air concentration of the jet flow, the velocity along the axial way decays slower with the increase of the thickness of the jet flow at the entry.

    When Ca=2%, the absolute values of the slope of the velocity attenuation curve Kare 0.0150, 0.0112 and 0.0091 for b =0.02 m,b =0.03mand b =0.04 m, respectively. Taking theK when b= 0.02 m as a standard reference, the ratio relationship is 1: 0.747: 0.607. This shows the margin of the velocity attenuation whenb increases. The velocity along the axial way decays slower with the increase of the thickness of the water flow. This result shows that the ratio of the shearing dissipation area is the most important element in the energy dissipation in the plunge pool. Under a certain working condition, when the thickness of the water flow decreases, the hydrodynamic radius diminishes. This makes the shearing area of the water flow increase, comparing with the transverse section. Therefore, the energy diffuses rapidly, and the velocity attenuation quickens as well.

    Fig.7 The relationship betweenband K/ Kb=2for different values of Ca

    When Ca=10%, the values ofKare 0.0175,0.0133 and 0.0116 for b =0.02 m,b =0.03mand b =0.04 m, respectively. Taking the K when b= 0.02 m as a standard reference, the ratio relationship is 1:0.760:0.6763. When Ca=20%, the values ofK are 0.0209, 0.0163 and 0.0143 for b =0.02 m,b= 0.03 m and b=0.04 m. And the radio relationship is 1: 0.780: 0.684. This shows that the differences ofK between a thicker water flow and a thinner water flow are reduced with the increase of the air concentration of the jet flow, as shown in Fig.7. This means that when the air concentration of the jet flow increases to a certain value, the thickness of the water flow maynot have effects on the velocity attenuation along the axial way.

    This conclusion is obviously different from that of the non-aerated jet flow. Because the experiments are conducted under artificial aeration conditions and the velocity is not large enough, the air concentration of the jet flow cannot be very high. There is a very special situation. With the increase of the air concentration, the water flow may be discontinuous, just like raining at sea. Raining can be seen as a jet flow with a very high air concentration. For a certain rainfall intensity, the velocity attenuation of the raindrops does not vary no matter how the area of rain changes.

    5. Conclusions

    (1) In this paper, the velocity along the axis decreases linearly. For a certain thickness and a concentration of the jet flow, the initial jet velocity itself at the entry has no influence on the variations of the velocity attenuation along the axial way.

    (2) For a certain thickness of the jet flow, the improvement of the air concentration can accelerate the velocity attenuation of the jet flows along the way. The relationship can be defined as K=ACa+Kb. The coefficientA is 0.03 under the experimental conditions.

    (3) The differences of Kbetween a thicker water flow and a thinner water flow are reduced with the increase of the air concentration of the jet flow. The thickness of the water flow may not have effects on the velocity attenuation along the axial way when the air concentration of the jet flow increases to a certain value.

    [1] MELO J. F., PINHEIRO A. N. and RAMOS C. M. Forces on plunge pool slabs: Influence of joints location and width[J]. American Society of Civil Engineers,2014, 132(1): 49-60.

    [2] LI A., LIU P. Mechanism of rock-bed scour due to impinging jet[J]. Journal of Hydraulic Research, 2010,48(1):14-22.

    [3] SARKAR A., DEY S. Review on local scour due to jet[J]. International Journal of Sediment Research,2004, 13(9): 210-238.

    [4] PAGLIARA S., HAGER W. H. and MINOR H. E. Hydraulics of plane plunge pool scour[J]. Journal of Hydraulic Engineering, ASCE, 2005, 132(5): 450-461.

    [5] PAGLIARA S., AMIDEI M. and HAGER W. H. Hydraulics of 3D plunge pool scour[J]. Journal of Hydraulic Engineering, ASCE, 2008, 134(9): 1275-1284.

    [6] AZAMATHULLA H. M., GHANI A. A. and ZAKARIA N. A. Genetic programming to predict ski-jump bucket spill-way scour[J]. Journal of Hydrodynamics,2008, 20(4): 477-484.

    [7] CANEPA S., HAGER W. H. Effect of jet air content on plunge pool scour[J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(5): 358-365.

    [8] DENG Jun, XU Wei-lin and QU Jing-xue et al. Influence of aeration on scouring[J]. Journal of Hydraulic Engineering, 2002, 10(1): 8-13(in Chinese).

    [9] DENG Jun, XU Wei-lin and LIU Shan-jun et al. Influence of water ject aeration on pressure in scour pool and plunge pool[J]. Advanced in Water Science, 2009,20(3): 373-378(in Chinese).

    [10] DUARTE R., SCHLEISS A. J. and PINHEIRO A. Influence of jet aeration on pressures around a block embedded in a plunge pool bottom[J]. Environmental Fluid Mechanics, 2015, 15(1): 1-21.

    [11] PAGLIARA S., PALERMO M. Analysis of scour characteristics in presence of aerated crossing jets[J]. Australian Journal of Water Resources, 2013, 16(2):163-172.

    [12] CHANSON H., AOKI S. and HOQUE A. Physical modeling and similitude of air bubble entrainment at vertical circular plunging jets[J]. Chemical Engineering Science, 2004, 59(4): 747-758.

    [13] BOLLAERT E. F. R., SCHLEISS A. J. Scour of rock due to the impact of plunging high velocity jets[J]. Journal of Hydraulic Research, 2003,41(5): 465-480.

    [14] MANSON P. A., BOOLLAERT E. F. R. and SCHLESIS A. J. Impact pressures of turbulent high-velocity jets plunging in pools with flat bottom[J]. Journal of Experimental Fluids, 2007, 42(1): 49-60.

    [15] MELO J. F. Reduction of plunge pool floor dynamic pressure due to jet air entrainment[C]. International Workshop of Rock Scour: Rock Scour Due to Falling High-Velocity Jets. Lisse, The Netherlands, 2002,125-136.

    [16] MAZIAR M., SCGLEISS A. Dynamic analysis of anchored concrete linings of plunge pools loaded by high velocity jet impacts issuing from dam spillways[J]. Dam Engineering, 2010, 20(4): 307-327.

    [17] LIU Shan-jun, XU Wei-lin and WANG Wei et al. Aeratiion effect of submerged jet on hydraulic characteristics[J]. Journal of Hydrodynamics, Ser. B, 2002, 14(3):35-39.

    [18] MELO J. F., PINHEIRO A. N. Effect of jet aeration on hydrodynamic forces on plunge pool floors[J]. Canadian Journal of Civil Engineering, 2008, 35(5):521-530.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51179113 and 51379138).

    Biography: DENG Jun (1973-), Male, Ph. D., Professor

    ZHANG Fa-xing,E-mail: zhfx@scu.edu.cn

    猜你喜歡
    劉斌
    山區(qū)高速公路異形互通式立體交叉設(shè)計(jì)
    河南科技(2022年8期)2022-05-31 22:28:08
    Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications?
    Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential?
    DYNAMIC ANALYSIS AND OPTIMAL CONTROL OF A FRACTIONAL ORDER SINGULAR LESLIE-GOWER PREY-PREDATOR MODEL?
    BR Sounds
    尋找快樂的機(jī)器蛙
    白玉蘭
    THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM?
    劉斌 《“設(shè)計(jì)廈門”海報(bào)作品邀請(qǐng)展海報(bào)》
    溶解度計(jì)算錯(cuò)誤種種和對(duì)策
    丰满人妻一区二区三区视频av| 国产三级黄色录像| 我要搜黄色片| 在线看三级毛片| 内地一区二区视频在线| 国产精品亚洲美女久久久| 亚洲第一区二区三区不卡| av欧美777| 少妇裸体淫交视频免费看高清| 午夜激情欧美在线| 少妇的逼水好多| 久久精品91蜜桃| 久久精品国产亚洲av香蕉五月| 成年女人永久免费观看视频| 国产真实乱freesex| 真实男女啪啪啪动态图| 网址你懂的国产日韩在线| 久久久久亚洲av毛片大全| 免费高清视频大片| 精品熟女少妇八av免费久了| 国产激情偷乱视频一区二区| 嫩草影视91久久| 欧美精品国产亚洲| 能在线免费观看的黄片| 啦啦啦观看免费观看视频高清| 国产精品久久久久久久电影| 国产成年人精品一区二区| 午夜老司机福利剧场| 校园春色视频在线观看| 国产精品乱码一区二三区的特点| 18禁黄网站禁片免费观看直播| a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 在线观看舔阴道视频| 嫩草影视91久久| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 色5月婷婷丁香| 久久久成人免费电影| 国产黄色小视频在线观看| xxxwww97欧美| 欧美激情国产日韩精品一区| 男女下面进入的视频免费午夜| 国产精品日韩av在线免费观看| 男人和女人高潮做爰伦理| 国产 一区 欧美 日韩| 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 三级毛片av免费| 波多野结衣巨乳人妻| 日本免费一区二区三区高清不卡| 90打野战视频偷拍视频| 久久久国产成人精品二区| 日日摸夜夜添夜夜添av毛片 | 亚洲精品亚洲一区二区| 欧美日韩中文字幕国产精品一区二区三区| aaaaa片日本免费| 色综合婷婷激情| 老熟妇仑乱视频hdxx| 丰满人妻一区二区三区视频av| 桃红色精品国产亚洲av| 免费一级毛片在线播放高清视频| 色5月婷婷丁香| 少妇熟女aⅴ在线视频| 亚洲欧美精品综合久久99| 亚洲成人久久爱视频| 真人一进一出gif抽搐免费| 给我免费播放毛片高清在线观看| 精品欧美国产一区二区三| 十八禁人妻一区二区| 久久九九热精品免费| 99国产精品一区二区蜜桃av| 日韩亚洲欧美综合| 99热这里只有是精品在线观看 | 日韩欧美国产一区二区入口| 国产免费av片在线观看野外av| 亚洲最大成人av| 亚洲人成伊人成综合网2020| 天天一区二区日本电影三级| www.色视频.com| 成人无遮挡网站| 亚洲天堂国产精品一区在线| 12—13女人毛片做爰片一| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 欧美一级a爱片免费观看看| 亚洲中文字幕日韩| 国产蜜桃级精品一区二区三区| 夜夜爽天天搞| 日韩大尺度精品在线看网址| 自拍偷自拍亚洲精品老妇| 免费观看人在逋| 99久国产av精品| 亚洲,欧美,日韩| 好男人电影高清在线观看| 欧美日本亚洲视频在线播放| 日韩中字成人| 搡老妇女老女人老熟妇| 婷婷丁香在线五月| 中文亚洲av片在线观看爽| 亚洲,欧美精品.| 国产真实乱freesex| 日韩欧美在线乱码| 精品人妻视频免费看| 两个人视频免费观看高清| 国产单亲对白刺激| av国产免费在线观看| 精品久久久久久久久av| 色视频www国产| 757午夜福利合集在线观看| 国产高清激情床上av| 国产成人影院久久av| 久久久久久久亚洲中文字幕 | 夜夜爽天天搞| 亚洲第一欧美日韩一区二区三区| 午夜久久久久精精品| 亚洲国产精品合色在线| 亚洲电影在线观看av| 午夜福利欧美成人| av视频在线观看入口| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 床上黄色一级片| 一级黄片播放器| 国产免费男女视频| 亚洲av美国av| 成年免费大片在线观看| 国产视频一区二区在线看| 男女床上黄色一级片免费看| 欧美黄色淫秽网站| h日本视频在线播放| 宅男免费午夜| 国产日本99.免费观看| 亚洲va日本ⅴa欧美va伊人久久| av欧美777| 青草久久国产| 91狼人影院| 国产一区二区在线观看日韩| 中文字幕熟女人妻在线| 国产三级在线视频| 欧美日韩福利视频一区二区| 51国产日韩欧美| 国产视频内射| 欧美国产日韩亚洲一区| 亚洲一区二区三区不卡视频| 国产高清视频在线播放一区| 国产精品一区二区三区四区久久| 岛国在线免费视频观看| 午夜老司机福利剧场| 国产欧美日韩一区二区精品| 99在线视频只有这里精品首页| 一边摸一边抽搐一进一小说| 国产中年淑女户外野战色| 免费黄网站久久成人精品 | 嫩草影视91久久| 我的女老师完整版在线观看| 我要搜黄色片| 婷婷色综合大香蕉| 草草在线视频免费看| 十八禁人妻一区二区| 成人精品一区二区免费| 亚洲av.av天堂| 亚洲人成电影免费在线| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清作品| 色视频www国产| 在线观看66精品国产| 床上黄色一级片| 亚洲精品456在线播放app | 日韩欧美一区二区三区在线观看| 亚洲人成伊人成综合网2020| 亚洲第一区二区三区不卡| 亚洲狠狠婷婷综合久久图片| 久久久久久久亚洲中文字幕 | 色尼玛亚洲综合影院| 两个人的视频大全免费| 老鸭窝网址在线观看| 国产色婷婷99| 一区福利在线观看| 老司机午夜十八禁免费视频| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 国产视频一区二区在线看| 亚洲熟妇中文字幕五十中出| 午夜福利在线观看吧| 欧美性猛交黑人性爽| 日韩欧美精品v在线| 久久久久久久久久黄片| 国模一区二区三区四区视频| 中文字幕高清在线视频| 久久中文看片网| 国内精品久久久久久久电影| 国产精品98久久久久久宅男小说| 免费看美女性在线毛片视频| 国产色婷婷99| 丰满的人妻完整版| 国产v大片淫在线免费观看| 999久久久精品免费观看国产| 我要看日韩黄色一级片| 黄色丝袜av网址大全| 神马国产精品三级电影在线观看| 青草久久国产| 老司机深夜福利视频在线观看| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 人人妻人人澡欧美一区二区| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| 天美传媒精品一区二区| 99久久精品一区二区三区| 一区福利在线观看| 欧美色欧美亚洲另类二区| 久久香蕉精品热| a级毛片a级免费在线| 精品99又大又爽又粗少妇毛片 | 99国产极品粉嫩在线观看| 欧美成人a在线观看| av专区在线播放| 国产高清激情床上av| 成人性生交大片免费视频hd| 国产精品1区2区在线观看.| 变态另类丝袜制服| 日韩欧美在线二视频| 男人舔奶头视频| 亚洲精华国产精华精| 国产欧美日韩精品一区二区| 一进一出好大好爽视频| 免费在线观看亚洲国产| 成年女人看的毛片在线观看| 制服丝袜大香蕉在线| 人妻丰满熟妇av一区二区三区| 搡老岳熟女国产| 成年人黄色毛片网站| 老司机深夜福利视频在线观看| 亚洲av成人av| 日本三级黄在线观看| 久久热精品热| 日韩欧美精品免费久久 | 亚洲精品久久国产高清桃花| 国产高清有码在线观看视频| 精品国内亚洲2022精品成人| 他把我摸到了高潮在线观看| 欧美成人免费av一区二区三区| 国产乱人视频| 好男人在线观看高清免费视频| 日韩国内少妇激情av| 精品久久久久久久久av| 久久久久精品国产欧美久久久| 国产午夜精品久久久久久一区二区三区 | 中文字幕久久专区| 黄色女人牲交| 极品教师在线视频| 国产三级在线视频| 国产中年淑女户外野战色| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 久久久久免费精品人妻一区二区| 十八禁网站免费在线| 亚洲不卡免费看| 婷婷精品国产亚洲av在线| 最后的刺客免费高清国语| 两性午夜刺激爽爽歪歪视频在线观看| 琪琪午夜伦伦电影理论片6080| 直男gayav资源| 午夜影院日韩av| 99riav亚洲国产免费| 色5月婷婷丁香| 天堂动漫精品| 欧美丝袜亚洲另类 | 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩| 最新在线观看一区二区三区| 久久热精品热| 最后的刺客免费高清国语| 熟妇人妻久久中文字幕3abv| a级毛片a级免费在线| 国产色爽女视频免费观看| 精品人妻视频免费看| 可以在线观看的亚洲视频| 黄色日韩在线| 两个人视频免费观看高清| 成人精品一区二区免费| 天堂√8在线中文| 国产精品久久电影中文字幕| 国产午夜精品久久久久久一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区| 成熟少妇高潮喷水视频| 日韩欧美精品v在线| 亚洲人成电影免费在线| 亚洲精品在线美女| 高清毛片免费观看视频网站| 欧美绝顶高潮抽搐喷水| 国产一区二区激情短视频| av黄色大香蕉| www日本黄色视频网| 国产美女午夜福利| 精品福利观看| 偷拍熟女少妇极品色| 国产欧美日韩精品一区二区| 国产成人福利小说| 午夜久久久久精精品| 亚洲成人精品中文字幕电影| x7x7x7水蜜桃| 久久热精品热| 别揉我奶头~嗯~啊~动态视频| 在线观看66精品国产| 69人妻影院| 一级黄色大片毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲成人久久爱视频| 亚洲中文字幕日韩| 亚洲欧美日韩卡通动漫| 久久精品国产亚洲av涩爱 | 看片在线看免费视频| 国产蜜桃级精品一区二区三区| 国产精品伦人一区二区| 村上凉子中文字幕在线| 久久久国产成人精品二区| 波多野结衣高清无吗| 国产淫片久久久久久久久 | 免费人成视频x8x8入口观看| 成人国产综合亚洲| 亚洲av第一区精品v没综合| 午夜免费男女啪啪视频观看 | 一进一出好大好爽视频| 日韩欧美国产在线观看| 久久久久久久久大av| 人妻久久中文字幕网| 国产精品影院久久| 很黄的视频免费| 三级国产精品欧美在线观看| 少妇裸体淫交视频免费看高清| 一级黄片播放器| 婷婷精品国产亚洲av| 99久久久亚洲精品蜜臀av| 国产av不卡久久| 亚洲欧美激情综合另类| 国产免费男女视频| 丰满的人妻完整版| 日韩欧美精品免费久久 | 欧美黑人欧美精品刺激| 欧美xxxx性猛交bbbb| 天天一区二区日本电影三级| 婷婷六月久久综合丁香| 青草久久国产| 搡老熟女国产l中国老女人| 国产真实伦视频高清在线观看 | 性插视频无遮挡在线免费观看| 国产又黄又爽又无遮挡在线| 亚洲专区中文字幕在线| 亚洲av一区综合| 国产av一区在线观看免费| 中文字幕av成人在线电影| 女人十人毛片免费观看3o分钟| 午夜免费男女啪啪视频观看 | 亚洲美女黄片视频| 性欧美人与动物交配| 日本五十路高清| 亚洲欧美激情综合另类| 精品久久久久久,| 51国产日韩欧美| 好男人电影高清在线观看| 国产成人aa在线观看| 精品一区二区三区人妻视频| 精品人妻熟女av久视频| 日韩精品青青久久久久久| bbb黄色大片| 91午夜精品亚洲一区二区三区 | 精品久久久久久久人妻蜜臀av| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 美女xxoo啪啪120秒动态图 | 最近最新免费中文字幕在线| 日本成人三级电影网站| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 亚洲欧美日韩高清专用| 午夜福利高清视频| 国产中年淑女户外野战色| 久久久久亚洲av毛片大全| 99久久精品国产亚洲精品| 又粗又爽又猛毛片免费看| 一进一出抽搐动态| 国产野战对白在线观看| 色av中文字幕| 一区福利在线观看| 老女人水多毛片| 国产精品免费一区二区三区在线| 高潮久久久久久久久久久不卡| 欧美精品国产亚洲| 99热这里只有是精品在线观看 | 国产69精品久久久久777片| 久久国产乱子伦精品免费另类| 欧美中文日本在线观看视频| 亚洲精品日韩av片在线观看| 亚洲欧美激情综合另类| 一级a爱片免费观看的视频| 中出人妻视频一区二区| 欧美bdsm另类| 99久久成人亚洲精品观看| 久久婷婷人人爽人人干人人爱| 日本在线视频免费播放| 亚洲av美国av| 真人做人爱边吃奶动态| 超碰av人人做人人爽久久| 国产在线男女| 深爱激情五月婷婷| 欧美日韩瑟瑟在线播放| 性色avwww在线观看| 又紧又爽又黄一区二区| 成年人黄色毛片网站| 三级国产精品欧美在线观看| 亚洲人与动物交配视频| 国产精品影院久久| 久久久国产成人精品二区| 无遮挡黄片免费观看| 欧美黄色淫秽网站| 男女做爰动态图高潮gif福利片| 亚洲第一电影网av| 国产高清视频在线观看网站| a级一级毛片免费在线观看| 色哟哟·www| 99精品在免费线老司机午夜| or卡值多少钱| 亚洲最大成人中文| 老鸭窝网址在线观看| 熟女电影av网| 真人一进一出gif抽搐免费| 99久久久亚洲精品蜜臀av| 欧美乱妇无乱码| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| www日本黄色视频网| 国内久久婷婷六月综合欲色啪| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| 中文字幕熟女人妻在线| 黄色一级大片看看| 男人的好看免费观看在线视频| 五月玫瑰六月丁香| 日韩欧美在线二视频| 欧美午夜高清在线| 丁香六月欧美| 我要搜黄色片| 日本成人三级电影网站| 亚洲人成电影免费在线| 欧美日本亚洲视频在线播放| 久久久久精品国产欧美久久久| 最新中文字幕久久久久| 在线播放国产精品三级| 免费电影在线观看免费观看| 亚洲人成网站高清观看| 变态另类丝袜制服| 欧美日韩国产亚洲二区| 国产精品女同一区二区软件 | 少妇被粗大猛烈的视频| 级片在线观看| 亚洲熟妇熟女久久| 日日摸夜夜添夜夜添av毛片 | 日本成人三级电影网站| 嫁个100分男人电影在线观看| 男女那种视频在线观看| 久久香蕉精品热| 久久久久久大精品| 成人鲁丝片一二三区免费| 如何舔出高潮| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 久久久色成人| 国产探花极品一区二区| 精品久久久久久久久av| 日韩有码中文字幕| 老熟妇乱子伦视频在线观看| 九色成人免费人妻av| 高清在线国产一区| 色在线成人网| 99精品久久久久人妻精品| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 性插视频无遮挡在线免费观看| 麻豆一二三区av精品| 国内揄拍国产精品人妻在线| 很黄的视频免费| 全区人妻精品视频| 69av精品久久久久久| 免费av观看视频| 高清日韩中文字幕在线| 如何舔出高潮| 国产av在哪里看| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 久久久久久国产a免费观看| 欧美中文日本在线观看视频| 91字幕亚洲| 久久性视频一级片| 婷婷亚洲欧美| 最近视频中文字幕2019在线8| 国产 一区 欧美 日韩| 男人舔女人下体高潮全视频| 国产成人aa在线观看| 久久香蕉精品热| 欧美激情在线99| 免费人成在线观看视频色| 亚洲自拍偷在线| 亚洲人成电影免费在线| 在线观看66精品国产| 欧美一区二区亚洲| 国产精品永久免费网站| 日韩精品青青久久久久久| а√天堂www在线а√下载| 国产av一区在线观看免费| 久久久久亚洲av毛片大全| 精品欧美国产一区二区三| 婷婷精品国产亚洲av| 国产精品自产拍在线观看55亚洲| 十八禁国产超污无遮挡网站| 3wmmmm亚洲av在线观看| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2| 69av精品久久久久久| 亚洲午夜理论影院| 天堂√8在线中文| 直男gayav资源| 搡老岳熟女国产| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 性插视频无遮挡在线免费观看| 熟妇人妻久久中文字幕3abv| 国产精品日韩av在线免费观看| 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 日本黄色片子视频| 91字幕亚洲| 精品欧美国产一区二区三| 小说图片视频综合网站| 亚洲黑人精品在线| 老司机深夜福利视频在线观看| 久久精品影院6| 亚洲在线自拍视频| 精品一区二区免费观看| 午夜福利成人在线免费观看| 国产激情偷乱视频一区二区| 婷婷色综合大香蕉| 日韩 亚洲 欧美在线| 精品一区二区三区人妻视频| 十八禁人妻一区二区| 激情在线观看视频在线高清| 亚洲av第一区精品v没综合| 韩国av一区二区三区四区| 国产精品日韩av在线免费观看| 国内精品久久久久精免费| 黄片小视频在线播放| 高清在线国产一区| 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 精华霜和精华液先用哪个| 99久久精品国产亚洲精品| 久久热精品热| 亚洲国产色片| ponron亚洲| 国产精品美女特级片免费视频播放器| 日本黄色视频三级网站网址| 成人无遮挡网站| 在线观看66精品国产| 欧美成人一区二区免费高清观看| 又黄又爽又免费观看的视频| 亚洲av第一区精品v没综合| 国产精品99久久久久久久久| 我要看日韩黄色一级片| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 久久久精品大字幕| 精品午夜福利在线看| 99热这里只有是精品50| 亚洲av免费在线观看| 男女那种视频在线观看| 亚洲自偷自拍三级| 男女那种视频在线观看| 88av欧美| 国产色婷婷99| 亚州av有码| 国产成人a区在线观看| 亚洲自偷自拍三级| 中文字幕久久专区| 国产精品,欧美在线| 直男gayav资源| 黄色女人牲交| 国产成人啪精品午夜网站| 久久亚洲精品不卡| 欧美日韩亚洲国产一区二区在线观看| 无遮挡黄片免费观看| 美女高潮的动态| 成人三级黄色视频| 精品日产1卡2卡| 国产三级在线视频| 两人在一起打扑克的视频| 99久久久亚洲精品蜜臀av| 精品欧美国产一区二区三| 日韩免费av在线播放| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 精品午夜福利视频在线观看一区| 欧美在线黄色| 在线播放国产精品三级| avwww免费| 国产av一区在线观看免费| 五月玫瑰六月丁香| 中文字幕久久专区|