• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine*

    2015-11-24 05:28:06ZUOZhigang左志鋼LIUShuhong劉樹紅LIUDemin劉德民QINDaqing覃大清WuYulin吳玉林
    關(guān)鍵詞:玉林

    ZUO Zhi-gang (左志鋼), LIU Shu-hong (劉樹紅), LIU De-min (劉德民), QIN Da-qing (覃大清),Wu Yu-lin (吳玉林)

    1. Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China, E-mail:zhigang200@tsinghua.edu.cn

    2. Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China

    3. State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China

    Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine*

    ZUO Zhi-gang (左志鋼)1, LIU Shu-hong (劉樹紅)1, LIU De-min (劉德民)2, QIN Da-qing (覃大清)3,Wu Yu-lin (吳玉林)1

    1. Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China, E-mail:zhigang200@tsinghua.edu.cn

    2. Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China

    3. State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China

    Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k-εturbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.

    interblade vortices, pressure fluctuations, Francis turbine, cavitation, Rayleigh instability

    Introduction

    It is known that the existence of interblade vortices can induce instabilities in the operations of Francis turbines. For instance, severe vertical vibrations (over 200 μm) in the guide bearings, as well as major horizontal cracks (~1m)in the draft tube cones, were observed on Units Nos. 13 and 14 of Pakistan's Tarbela Power Station at high head after about 6 months of their commissioning. These issues, pointed out by the manufacturer, DBS-Escher Wyss in Canada,are associated with interblade vortices at high head in the units[1]. Through experimental analyses of the model and prototype runners, Alstom had observed cracks in the runners of two Brazilian hydroelectric power stations as induced by the interblade vortices at low head[1]. The source of the extensive noise in the rehabilitated turbines in the Gongzui Power Station was verified to be the interblade vortices under low load operating conditions[2].

    Due to the strong influence of the interblade vortices on the hydraulic instability of the runner, it is desirable to study the characteristics of the vortical flows and the induced pressure fluctuations. Experimental studies so far focused on the identifications of these vortices. Grindoz made observations regarding the visible interblade vortices in a model Francis turbine[3]. A series of experimental studies of the model runner for the Three Gorges power station reveals that the interblade vortices occur from the runner inlet under high head working conditions[4,5]. It is indicated that the existence of the vortices could induce alternating loads on the runner blades, resulting in fatigue damages. Most of the numerical researches were carried outthrough single-phase flow simulations, but no conclusive frequency characteristics of the pressure fluctuations induced by the interblade vortices were obtained[6-8].

    It is shown that the visible vortices in the model tests' interblade flow channels are cavitating flows,i.e., interblade vortex cavitation (Fig.1)[9]. Thus it is clear that single-phase flow simulations are not adequate to model the complex process of this phenomenon. Kurosawa built a numerical model to predict the major characteristics, including the occurrence of the interblade vortices, by solving the Reynolds averaged Navier-Stokes (RANS) equations, combined with the Reynolds Stress model and the volume of fluid (VOF)method[10]. Reasonable agreements were achieved between numerical and experimental results.

    Fig.1 Interblade (cavitating) vortices in a Francis turbine runner

    Since the pressure fluctuations are closely related to the behavior of the vortical flows, it is important to study the characteristics of the vortices. Analyses of the stability of the vortex ropes in Francis turbines were made to account the physical origin of severe low-frequency pressure fluctuations in their draft tubes[11,12].

    In this paper, in order to provide guidelines for safe operations with respect to interblade vortices,analyses are carried out for the stability of the vortices of different appearances in a Francis model turbine,based on unsteady simulation results from the RNG k-εturbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model. Modifications on the turbulence viscosity are made for better resolutions.

    1. Numerical methods

    1.1Cavitation simulation

    The simulations of cavitating flows can be performed by taking the vapor/liquid mixture as a multiphase single fluid, with variable densities. No slip exists between the two phases in this mixture model. Therefore, only one set of momentum equations are needed to describe the pressure and the velocities of the mixture[13]. Various forms of cavitation models were proposed to account for the mass transfers between the two phases in the additional continuity equation of the vapor phase, e.g., the cavitation model by Merkle[14], Kunz[15,16], Singhal[17], Senocak and Shyy[18]. The so-called ZGB cavitation model is applied in this study, which considers the variation of the volume fractions of the cavitation nuclei, and evaluates the rate of mass transfer through a simplified Rayleigh-Plesset equation[19]. The continuity equation for the vapor phase and the expressions of the two source terms,Reand Rc, of the model are as follows:

    wheresgnin sgn(pv-p)is the sign function,αv,ρvrepresent the volume fraction and the density of the vapor, respectively,pvdenotes the vapor pressure,αnucis the nucleation site volume fraction,RBis interpreted as the radius of the nucleation site,F(xiàn)vap,F(xiàn)conare two empirical calibration coefficients. In our calculations,F(xiàn)vap=80,F(xiàn)con=0.01, and the default values for other parameters are specified.

    Fig.2f(ρm)-ρm

    As stated above, the RANS equations in this study are solved by adapting the RNG k-εturbulence model and the ZGB cavitation model[20]. It is indicated that the turbulence viscosity is usually overestimated in the cavitation simulations due to the use of the mixture model, and modifications of the temporal and spatial discretization schemes alone are not enough to offset this effect[21]. Based on the study ofCoutier-Delgosha[22,23], a modification of the turbulence viscosity μtfrom the Boussinesq eddy viscosity assumption is adopted in this study,

    Table 1 Parameters of the model Francis turbine

    wherek,εare the turbulent kinetic energy and its dissipation rate, respectively,ρv,ρl, and ρmrepresent the density of the vapor, the liquid, and the mixture, respectively, the functionf(ρm)is introduced to consider the influence of the variations in density on the turbulence viscosity. As shown in Fig.2, the value of the exponentncontrols the shape of f(ρm)against ρmn=10is chosen in this study as suggested by the references mentioned above.

    1.2Model Francis turbine

    The numerical studies are conducted with a model Francis turbine, the parameters of which are listed in Table 1. The computational domain is shown in Fig.3.

    Fig.3 Computational domain

    The model gives a 94.54% level of peak efficiency. The performance characteristics determined by model tests under an experimental head of 30 m are shown in Fig.4, where Q11is the discharge,n11is the rotating speed. The experiments are performed on the Test Rig II of Harbin Electric Corporation as a part of the acceptance test of the unit. The systematic uncertainty on the efficiency measurement of the test rig is less than ±0.25%.

    Fig.4 Hill diagram for parameters

    Fig.5 Verification of grid independence

    1.3Computational details

    The model's mesh system is composed of unstructured grids fpr the spiral case, the stay vanes and the runner, and structured grids for the guide vanes, the draft tube, and the inlet pipe. The commercial software package ICEM is used for the mesh discretization. The local refinements to the boundary layer in the runner are applied in order to ensure the values of y+to be compatible with the chosen turbulence model. The grid independence is verified with respect to the runner efficiency, with the total number of grid cells varying from 2×106to 8×106, as shown in Fig.5. It can be seen that the degree of the computational precision is satisfactory when the number of cells is greater than 6×106. A mesh with about 7.6×106cells in total is chosen for the simulations. The numbers of nodes and cells in each part are shown in Table 2.

    Table 2 Numbers of cells and nodes of each subdomain

    Table 3 Comparison of parameters between cavitation calculations and experiments

    The time step for the unsteady simulations is set as 2.17×10-4s (when the runner rotates by 1o). A second-order upwind scheme is used for the discretization of the convective terms, and a second-order centered scheme is used for the source terms. The total pressure, the initial values of the turbulent kinetic energy and the turbulent dissipation rates are set on the inlet boundary, while the static pressure is set as the outlet boundary condition.

    2. Cavitation calculations and predictions of vortex lines

    The numerical method is validated through the unsteady flow calculations with different cavitation numbers at the operating Point A (n11=58.86,Q11= 0.43,a=0.018m), as well as the predictions of the incipient and developed interblade vortex lines with steady flow calculations, as shown in Fig.4.

    Fig.6 Pressure monitoring points

    For the cavitation calculations, the cavitation number is defined in terms of the static pressure at the draft tube outlet

    where HVA=pVA/ρgis the pressure head in the low pressure tank,Ha=pa/ρgis the atmospheric pressure head, andHSis the suction head of the turbine with respect to the centerline of the guide vanes. HV=pV/ρgis the saturated vapor pressure head at the experimental temperature.

    As shown in Table 3, the numerical predicted efficiencyηand powerPagree well with the experimental observations. In order to evaluate the calculated unsteady pressure fluctuations against the experiments, the pressure monitoring Points G1, G2 and D1,D2, D3, D4 are chosen in the vaneless space and the draft tube, as shown in Fig.6. As seen in Table 4, minute differences can be observed between the numerical and the experimental results of the relative amplitude (ΔH/H, where ΔHis the characteristic amplitude of the pressure fluctuations, with a 97% probability[24]), and the dominant frequency of the pressure fluctuations at the monitoring points.

    Furthermore, the predictions of the incipient and developed interblade vortex lines are made. In order to determine the incipience of the interblade vortices in the model acceptance tests, we identify the visible vortices in two or three interblade flow channels simultaneously. When the visible vortices occur in all interblade flow channels, we say that the interblade vortices are developed. The lines connecting the operating points on the Hill diagram in the parameters(Q11-n11)with the incipient and initial occurrence of the developed interblade vortices are called the incipient interblade vortex line, and they and the developed interblade vortex lines are , respectively, shown in Fig.4. In order to predict the two interblade vortex lines, it is essential to evaluate the compatibility of various vortex identification methods in our simulation cases. A number of vortex identification methods/criteria were proposed[25], including the vorticity criterion, theQ criterion, the swirling strength criterion,and the helicity criterion. By comparing the isosurfaces of the four quantities at corresponding operating points with n11=59r/min, and n11=72.5r/min,along the incipient and developed interblade vortex lines, respectively, it can be concluded that the vorticity criterion is most suitable for distinguishing the vortices. N inen11valuesare cho sen, each u nder 3-6 operatingconditionsforsteadycavitationcalculations,and the incipient and developed interblade vortex lines are asymptotically derived based on the vorticity criterion. As shown in Fig.7, good agreements are achieved by using the prescribed cavitation calculations. It can be seen below that the inflection points on both lines are successfully predicted.

    Table 4 Pressure fluctuations in the turbine

    Fig.7 Predictions of the incipient and the developed interblade vortex lines

    Fig.8 Appearances of interblade vortices

    Fig.9 Monitoring points on runner blades

    3. Hydraulic stability analysis of interblade vortices

    As shown in Fig.8, the two main appearances of the interblade vortices, namely, the columnar vortices near the runner inlet and the streamwise vortices further inside the interblade channels, are recognized in this study's simulation results of the turbine unit,which agree well with the experimental observations. In order to study the unsteady characteristics of the interblade vortices, we investigate two operating points, B (a =0.010m,=58.7r/min,Q=0.235m3/s)11and C (a =0.008m,n11=58.7r/min,Q11= 0.190m3/s) on the incipient interblade vortex line and the developed interblade vortex line (Fig.4). 18 monitoring points are located on the pressure side and the suction side of the runner blades to study the development of the interblade vortices, as shown in Fig.9. They are arranged in the direction of the flows near the crown (Pc1-Pc3, Sc1-Sc3), in the middle (Pm1-Pm3, Sm1-Sm3), and near the band (Pb1-Pb3, Sb1-Sb3), respectively.

    Table 5 Pressure fluctuations on turbine runner blades (B)

    Table 6 Pressure fluctuations on turbine runner blades (C)

    Table 5 shows the pressure fluctuations at the prescribed monitoring points on the turbine runner blades at the operating Point B. The pressure fluctuation components with three frequencies are observed,307 Hz (the guide vane passing frequency), 2.7 Hz(the frequency of the pressure fluctuation induced by the draft tube vortex rope), and 10.7 Hz, which is believed to be the frequency of the pressure fluctuations induced by the interblade vortices, at almost all monitoring points. Comparing with Table 4, considerable differences in the pressure fluctuation frequencies exist between the stationary and rotating parts of the unit. The guide vane passing frequency Z0fnis a main component in the runner, while the runner blade passing frequencyZfnis a main component in the guide v anes.Si ncethe inte rbladevorti ces occuron the suctionsideofthebladesunderthisworkingcondition, higher amplitudes of the pressure fluctuations are observed there. The pressure fluctuations at the operating Point C have smaller amplitudes, and a slightly different frequency for the pressure fluctuations induced by the interblade vortices (12.8 Hz), as shown in Table 6. In both cases, higher amplitudes of the pressure fluctuations are observed near the runner crown and band, instead of the middle of the runner. An attempt is made to qualitatively account for this phenomenon by analyzing the stability of the vortices with different appearances.

    For inviscid fluids, Rayleigh provided an argument to determine the stability of a revolving flow with respect to axisymmetric disturbances. As shown in Fig.10, consider the interchange of the fluid in two rings of radii r1and r2. Following the conservation of the angular momentum, it is shown that in the caseof r2>r1, the condition for the flow instability is d(Ωr2)2/dr<0somewhere, in whichΩis the angular velocity[26,27]. Since the vortices have strong circumferential components that resemble the revolving flows, the prescribed centrifugal Rayleigh instability criterion can be roughly applied in a preliminary analysis.

    Fig.10 Rayleigh instability criterion

    Fig.11 Rayleigh stability analysis of interblade vortices

    As shown in Fig.11, several pairs of monitoring points are selected for analysis (b1and s1around the columnar vortex center A, Sb1 and Pb1 around the streamwise vortex center B, etc.). In the cases studied,theΩr2values vary as time evolved. As an example,F(xiàn)ig.12 shows the time series ofΩr2at the points Sb1 and Pb1. The time averaging values are selected for analysis, and it is found thatd(Ωr2)2/dr<0is the condition fpr the occurrence of the streamwise interblade vortices, whiled(Ωr2)2/dr>0is the condition for the occurrence of the columnar interblade vortices(see Table 7 for example). This indicates that in the model Francis turbine studied in this paper the streamwise interblade vortices are unstable, while the columnar interblade vortices are stable. This is in accordance with the phenomenon that the pressure fluctuations at the middle of the runner blades are weaker, while those near the runner band are stronger.

    Fig.12 Time series of Ωr2at monitoring points

    4. Conclusions

    In order to predict the pressure fluctuations induced by interblade vortices, a method of cavitation calculations is proposed, which consists of solving the RANS equations with the RNG k-εturbulence model and the ZGB cavitation model. Turbulence viscosity modifications are made to compensate its overestimation in the cavitation area.

    The method is validated by successful predictions of the pressure fluctuations of the cavitating flows in the turbine runner, and of the incipient and developed interblade vortex lines, where the vorticity criterion is chosen for identifying the vortices. The incipient and developed interblade vortex lines are determined by observing the occurrence of the interblade vortices from the steady flow calculation results. Operating points where the vortices occur simultaneously in two or three inter blade flow channels form the incipient interblade vortex line, and when visible vortices occur in all inter blade flow channels, we say that the interblade vortices are developed.

    Interblade vortices of two appearances are observed in the numerical results, namely, the columnar and streamwise vortices, which agree with the experimental results. The evaluations of the pressure fluctuati onsind uced by theinterb lade vortices arethen madeonthemonitoringpointslocatedonbothsidesof the runner blades at two operating points, on the incipient and developed interblade vortex lines. It is found that the interblade vortices induce pressure fluctuations with different frequencies on the two vortex lines. A preliminary analysis of the stability of the vortices is carried out to explain the phenomena that the pressure fluctuations at the middle of the runner blades are weaker, while the fluctuations near the band are stronger. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streawise interblade vortices are unstable in the model Francis turbine studied.

    Table 7 Comparisons of Ωr2values

    Further studies of different turbine runners are needed to investigate the applicability of this instability argument of interblade vortices.

    References

    [1]HUANG Yuan-fang, LIU Guang-ning and FAN Shiying. Research on prototype hydro-turbine operation[M], Beijing, China, China Electric Power Press,2010(in Chinese).

    [2]SHI Qing-hua, XU Wei-wei and GONG Li. Noise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]. Dongfang Electrical Machine,2008, (1): 42-46(in Chinese).

    [3]GRINDOZ B. Lois de similitudes dans les essays de cavitation des turbines Francis[D]. Doctoral Thesis,Lausanne, Switzerland: EPFL, 1991.

    [4]PENG Zhong-nian, CHEN Rui and JIANG Xue-yun. Experimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]. Water Resources and Hydropower Engineering, 1999, 30(11): 8-14(in Chinese).

    [5]CHEN Rui, PENG Zhong-nian. An experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]. Water Resources and Hydropower Engineering, 1999, 30(11): 30-32(in Chinese).

    [6]CHEN Jin-xia, LI Guo-wei and LIU Sheng-zhu. The occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]. Large Electric Machine and Hydraulic Turbine, 2007, (3): 42-46(in Chinese).

    [7]ZHANG Peng-yuan, ZHU Bao-shan and ZHANG Le-fu. Numerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbine[J]. Large Electric Machine and Hydraulic Turbine, 2009, (6): 35-39(in Chinese).

    [8]STEIN P., SICK M. and DOERFLER P. et al. Numerical simulation of the cavitating draft tube vortex in a Francis turbine[C]. IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 23rd Symposium. Yokohama, Japan, 2006.

    [9]AVELLAN F. Introduction to cavitation in hydraulic machinery[C]. 6th International Conference on Hydraulic Machinery and Hydrodynamics. Timisoara,Romania, 2004.

    [10]KUROSAWA S., LIM S. M. and ENOMOTO Y. Virtual model test for a Francis turbine[C]. 25th IAHR Symposium on Hydraulic Machinery and Systems. Timisoara, Romania, 2010.

    [11]ZHANG R., CAI Q. and WU J. et al. The physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]. Modern Physics Letters B,2005, 19(28-29): 1527-1530.

    [12]WU J., CHEN S. and WU Y. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2). 021101.

    [13]SENOCAK I., SHYY W. A pressure-based method for turbulent cavitating flow computations[J]. Journal of Computational Physics, 2002, 176(2): 363-383.

    [14]MERKLE C., FENG J. and BUELOW P. Computational modeling of the dynamics of sheet cavitation[C]. Proceeding of Third International Symposium on Cavitation. Grenoble, France, 1998, 307-311.

    [15]KUNZ R. F., BOGER D. A. and CHYCZEWSKI T. S. et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]. ASME Fluid Engineering Division Summer Meeting,F(xiàn)EDSM99-7364. San Francisco, USA, 1999.

    [16]KUNZ R., BOGER D. and STINEBRING D. A Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [17]SINGHAL A. K., ATHAVALE M. M. and LI H. et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3):617-624.

    [18]SENOCAK I., SHYY W. Interfacial dynamics-based modeling of turbulent cavitating flows,model development and steady-state computations[J]. International Journal for Numerical Methods in Fluids, 2004,44(9): 975-995.

    [19]ZWART P., GERBER A. and BELAMRI T. A twophase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [20]LIU Yan, ZHAO Peng-fei and WANG Qiang et al. URANS computation of cavitating flows around skewed propellers[J]. Journal of Hydrodynamics, 2012,24(3): 339-346.

    [21]COUTIER-DELGOSHA O., REBOUD J. Numerical simulation of unsteady cavitation flows[J]. InternationalJournal for Numerical Methods in Fluids, 2003,42(5): 527-548.

    [22]COUTIER-DELGOSHA O., FORTES-PATELLA R. and REBOUD J. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J]. Journal of Fluids Engineering, 2003, 125(1):38-45.

    [23]COUTIER-DELGOSHA O., REBOUD J. and ALBANO G. Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]. ASME Proceedings of ASME Fluids Engineering Division Summer Meeting. Boston, Massachusetts, USA, 2000.

    [24]Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests[S]. International Standard IEC 60193, 1999.

    [25]HANSEN C. D., JOHNSON C. R. Visualization Handbook[M]. Burlington, Canada: Butterworth-Heinemann, 2005, 295-309.

    [26]RAYLEIGH L. On the dynamics of revolving fluids[J]. Proceedings of the Royal Society of London, Series A,1917, 93(648): 148-154.

    [27]DRAZIN P. G., REID W. H. Hydrodynamic stability[M]. 2nd Edition, Cambridge, UK: Cambridge university Press, 2004.

    (February 6, 2014, Revised March 10, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51476083), the National Science and Technology Ministry of China (Grant No. 2011BAF03B01).

    Biography: ZUO Zhi-gang (1977-), Male, Ph. D.

    猜你喜歡
    玉林
    王玉林作品
    馬玉林書法作品選(2幅)
    General Bounds for Maximum Mean Discrepancy Statistics
    邱玉林藝術(shù)作品欣賞
    The four variables that account for the emergence of international business
    Unit 6 Travelling around Asia Listening and speaking
    趙玉林藏石欣賞
    寶藏(2017年10期)2018-01-03 01:53:27
    The influence of nonlinear shear stress on partially averaged Navier-Stokes (PANS) method*
    瞻云寄興
    岷峨詩稿(2014年2期)2014-11-15 03:21:29
    Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil*
    成人黄色视频免费在线看| 亚洲精品,欧美精品| 国产一区有黄有色的免费视频| 香蕉精品网在线| 日韩 亚洲 欧美在线| 国产精品熟女久久久久浪| 久久 成人 亚洲| 国产片内射在线| 国产激情久久老熟女| 久久人人爽人人爽人人片va| 亚洲国产精品专区欧美| 亚洲av成人精品一二三区| 欧美日韩精品成人综合77777| 亚洲av欧美aⅴ国产| 一级毛片黄色毛片免费观看视频| 久久久国产精品麻豆| 精品人妻熟女毛片av久久网站| 午夜福利乱码中文字幕| 精品人妻一区二区三区麻豆| 乱码一卡2卡4卡精品| 精品亚洲乱码少妇综合久久| 精品99又大又爽又粗少妇毛片| av线在线观看网站| 男人舔女人的私密视频| 18禁动态无遮挡网站| 美女视频免费永久观看网站| 日韩一区二区三区影片| 麻豆精品久久久久久蜜桃| 黄网站色视频无遮挡免费观看| 99热6这里只有精品| 一边摸一边做爽爽视频免费| 少妇熟女欧美另类| 最近2019中文字幕mv第一页| 9热在线视频观看99| 国产片特级美女逼逼视频| 丰满少妇做爰视频| 一级毛片我不卡| 99久国产av精品国产电影| 欧美日韩av久久| 天堂俺去俺来也www色官网| 妹子高潮喷水视频| 女人被躁到高潮嗷嗷叫费观| 欧美日韩亚洲高清精品| 欧美日韩亚洲高清精品| 日韩精品免费视频一区二区三区 | 欧美日韩亚洲高清精品| 精品亚洲成国产av| 国产一区有黄有色的免费视频| 午夜福利乱码中文字幕| kizo精华| 91精品三级在线观看| 色网站视频免费| 夫妻性生交免费视频一级片| 九九在线视频观看精品| 满18在线观看网站| 亚洲精品自拍成人| 亚洲熟女精品中文字幕| 天天躁夜夜躁狠狠久久av| 国产黄色免费在线视频| 男人操女人黄网站| 日本wwww免费看| 搡女人真爽免费视频火全软件| 免费不卡的大黄色大毛片视频在线观看| 有码 亚洲区| 亚洲av电影在线观看一区二区三区| 啦啦啦中文免费视频观看日本| 男男h啪啪无遮挡| 最后的刺客免费高清国语| 中文乱码字字幕精品一区二区三区| 国产成人aa在线观看| 久热久热在线精品观看| 熟妇人妻不卡中文字幕| 乱码一卡2卡4卡精品| 涩涩av久久男人的天堂| freevideosex欧美| 22中文网久久字幕| 亚洲av日韩在线播放| 制服丝袜香蕉在线| 丝袜人妻中文字幕| av播播在线观看一区| 欧美日韩精品成人综合77777| 亚洲综合色惰| 少妇的丰满在线观看| 久久久久视频综合| 亚洲精品色激情综合| 黑人猛操日本美女一级片| 丰满迷人的少妇在线观看| 黑人欧美特级aaaaaa片| 精品少妇久久久久久888优播| 国产免费视频播放在线视频| 久久韩国三级中文字幕| 性色avwww在线观看| 老司机影院成人| 久久99热6这里只有精品| 精品99又大又爽又粗少妇毛片| av在线app专区| 中文字幕制服av| 国产日韩欧美在线精品| 日韩精品免费视频一区二区三区 | 你懂的网址亚洲精品在线观看| 国产免费福利视频在线观看| 亚洲精品乱码久久久久久按摩| 91aial.com中文字幕在线观看| 精品一区二区三区四区五区乱码 | 成人毛片60女人毛片免费| 国产免费福利视频在线观看| 中文天堂在线官网| 男女啪啪激烈高潮av片| av网站免费在线观看视频| 日本与韩国留学比较| 精品久久久久久电影网| 国产高清国产精品国产三级| 黄色怎么调成土黄色| 久久热在线av| av卡一久久| 亚洲欧美一区二区三区国产| 国产精品国产三级国产专区5o| 欧美成人午夜精品| 欧美成人午夜免费资源| 少妇精品久久久久久久| 赤兔流量卡办理| 日韩在线高清观看一区二区三区| 免费看不卡的av| 色94色欧美一区二区| 日韩av在线免费看完整版不卡| 如日韩欧美国产精品一区二区三区| av免费在线看不卡| 午夜久久久在线观看| 久久97久久精品| 亚洲欧美中文字幕日韩二区| 蜜桃国产av成人99| 亚洲三级黄色毛片| 亚洲精品美女久久av网站| 成人毛片a级毛片在线播放| 国产极品天堂在线| 精品一区二区免费观看| 国产亚洲最大av| 日本爱情动作片www.在线观看| 老司机影院成人| 国产精品久久久久久精品古装| 九九爱精品视频在线观看| 日本欧美视频一区| 久久久久国产网址| 精品福利永久在线观看| 中文字幕人妻熟女乱码| 亚洲av福利一区| 最近中文字幕高清免费大全6| 国语对白做爰xxxⅹ性视频网站| 久久精品夜色国产| 婷婷成人精品国产| 一区二区日韩欧美中文字幕 | 国产精品秋霞免费鲁丝片| 国产激情久久老熟女| av电影中文网址| 亚洲国产成人一精品久久久| 赤兔流量卡办理| 99视频精品全部免费 在线| 波多野结衣一区麻豆| 亚洲内射少妇av| 国产免费视频播放在线视频| 欧美丝袜亚洲另类| av视频免费观看在线观看| 女性生殖器流出的白浆| 日韩人妻精品一区2区三区| 日本色播在线视频| 精品久久蜜臀av无| 免费观看性生交大片5| av电影中文网址| 在线观看www视频免费| 91成人精品电影| 欧美激情 高清一区二区三区| 肉色欧美久久久久久久蜜桃| 日本与韩国留学比较| 中文精品一卡2卡3卡4更新| 国产成人av激情在线播放| a级毛片黄视频| 亚洲美女搞黄在线观看| 热99久久久久精品小说推荐| 午夜日本视频在线| 免费在线观看黄色视频的| 久久影院123| 精品少妇内射三级| 国产成人欧美| 日韩一区二区视频免费看| 国产一区二区三区综合在线观看 | 91在线精品国自产拍蜜月| 女性被躁到高潮视频| 亚洲av综合色区一区| 亚洲精品一二三| 免费观看在线日韩| 最新中文字幕久久久久| 欧美国产精品一级二级三级| 91精品伊人久久大香线蕉| 中文乱码字字幕精品一区二区三区| 亚洲精品一区蜜桃| 亚洲精品美女久久av网站| 国产精品 国内视频| 草草在线视频免费看| 97在线视频观看| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 美女中出高潮动态图| 国产白丝娇喘喷水9色精品| 狠狠婷婷综合久久久久久88av| 国产精品无大码| 免费久久久久久久精品成人欧美视频 | 你懂的网址亚洲精品在线观看| 亚洲美女黄色视频免费看| av免费在线看不卡| 国产免费一区二区三区四区乱码| 如何舔出高潮| 亚洲在久久综合| 两性夫妻黄色片 | 午夜精品国产一区二区电影| 亚洲,欧美,日韩| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 最近中文字幕高清免费大全6| 麻豆乱淫一区二区| 男人添女人高潮全过程视频| 日本免费在线观看一区| 国产欧美日韩综合在线一区二区| 国产精品一区二区在线不卡| 免费日韩欧美在线观看| 久久精品国产a三级三级三级| 久久久久国产网址| 五月伊人婷婷丁香| 多毛熟女@视频| 在现免费观看毛片| 久久精品国产a三级三级三级| 精品酒店卫生间| 69精品国产乱码久久久| 欧美国产精品一级二级三级| 人妻人人澡人人爽人人| 激情视频va一区二区三区| 成人午夜精彩视频在线观看| 你懂的网址亚洲精品在线观看| 精品一区二区免费观看| 久久99热这里只频精品6学生| 丝袜美足系列| freevideosex欧美| 午夜91福利影院| a级毛色黄片| av在线app专区| 美女福利国产在线| 国产精品久久久久久精品电影小说| 国产色爽女视频免费观看| 大陆偷拍与自拍| 一级毛片 在线播放| 欧美日韩国产mv在线观看视频| 女的被弄到高潮叫床怎么办| 宅男免费午夜| 欧美亚洲 丝袜 人妻 在线| 亚洲av电影在线观看一区二区三区| 99热这里只有是精品在线观看| 人妻 亚洲 视频| 高清黄色对白视频在线免费看| 各种免费的搞黄视频| av国产久精品久网站免费入址| 18禁观看日本| 国产成人精品福利久久| 欧美日韩视频精品一区| 国产日韩一区二区三区精品不卡| 久久久久网色| 亚洲第一av免费看| 亚洲欧美精品自产自拍| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 精品福利永久在线观看| 2018国产大陆天天弄谢| av电影中文网址| 乱码一卡2卡4卡精品| 国产精品一区二区在线观看99| 搡女人真爽免费视频火全软件| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 亚洲av电影在线进入| 欧美bdsm另类| 18禁在线无遮挡免费观看视频| 国产精品蜜桃在线观看| 大香蕉久久网| 亚洲美女视频黄频| 久久青草综合色| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久av网站| 美女主播在线视频| 国产精品女同一区二区软件| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 午夜日本视频在线| 国产视频首页在线观看| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 91aial.com中文字幕在线观看| 久久 成人 亚洲| 国产免费又黄又爽又色| 亚洲精品aⅴ在线观看| 国产精品人妻久久久影院| 国语对白做爰xxxⅹ性视频网站| 国产一级毛片在线| 欧美成人午夜免费资源| 日韩熟女老妇一区二区性免费视频| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| www日本在线高清视频| 国产一区有黄有色的免费视频| 国产免费一级a男人的天堂| 高清av免费在线| 亚洲精品成人av观看孕妇| 高清视频免费观看一区二区| 婷婷色综合大香蕉| 色视频在线一区二区三区| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看| 国产国语露脸激情在线看| 国产成人a∨麻豆精品| av黄色大香蕉| 最近最新中文字幕大全免费视频 | 爱豆传媒免费全集在线观看| 99久国产av精品国产电影| 成年动漫av网址| 日韩av不卡免费在线播放| 欧美性感艳星| 女的被弄到高潮叫床怎么办| 亚洲成色77777| 国产一区亚洲一区在线观看| 男人爽女人下面视频在线观看| 国产又色又爽无遮挡免| 久久99精品国语久久久| av国产精品久久久久影院| 99久久人妻综合| 亚洲欧美精品自产自拍| 亚洲精品国产色婷婷电影| 女人被躁到高潮嗷嗷叫费观| a级片在线免费高清观看视频| 国产精品偷伦视频观看了| 国产av国产精品国产| 国产乱人偷精品视频| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 秋霞在线观看毛片| 性高湖久久久久久久久免费观看| 女人精品久久久久毛片| 一二三四在线观看免费中文在 | 午夜日本视频在线| av天堂久久9| 亚洲精品国产av蜜桃| 黑丝袜美女国产一区| 一级片'在线观看视频| 啦啦啦啦在线视频资源| 国产白丝娇喘喷水9色精品| 黑人高潮一二区| 麻豆乱淫一区二区| 五月开心婷婷网| 亚洲精品乱久久久久久| 亚洲国产色片| 欧美激情国产日韩精品一区| 免费播放大片免费观看视频在线观看| 女性被躁到高潮视频| 人妻一区二区av| 亚洲伊人久久精品综合| 熟女人妻精品中文字幕| 精品少妇黑人巨大在线播放| 国产一区二区在线观看av| 欧美人与性动交α欧美软件 | 一级毛片 在线播放| 最近2019中文字幕mv第一页| 九草在线视频观看| av又黄又爽大尺度在线免费看| 九色亚洲精品在线播放| 亚洲国产日韩一区二区| 人人妻人人澡人人看| 亚洲欧美中文字幕日韩二区| 午夜福利,免费看| 成人国语在线视频| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 大码成人一级视频| 51国产日韩欧美| 亚洲性久久影院| 国产麻豆69| 侵犯人妻中文字幕一二三四区| 亚洲中文av在线| 大片电影免费在线观看免费| 啦啦啦啦在线视频资源| 免费观看av网站的网址| 91久久精品国产一区二区三区| 999精品在线视频| av.在线天堂| 人人妻人人添人人爽欧美一区卜| 丁香六月天网| 欧美日韩视频精品一区| 99久久精品国产国产毛片| 尾随美女入室| 精品午夜福利在线看| 国产精品久久久久久久久免| 日本黄大片高清| 久久 成人 亚洲| 亚洲三级黄色毛片| 国产欧美日韩综合在线一区二区| 久久久久网色| 精品人妻熟女毛片av久久网站| 国产男人的电影天堂91| 久久久久久久大尺度免费视频| 在线看a的网站| 色视频在线一区二区三区| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 亚洲在久久综合| 日韩中文字幕视频在线看片| 在线观看www视频免费| 国产成人精品久久久久久| 观看美女的网站| 夜夜爽夜夜爽视频| 欧美bdsm另类| 婷婷色综合www| 亚洲性久久影院| 国产精品国产三级国产av玫瑰| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 午夜免费鲁丝| 国产日韩欧美在线精品| 免费观看a级毛片全部| 日韩 亚洲 欧美在线| 久久国产精品大桥未久av| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 欧美人与善性xxx| 自拍欧美九色日韩亚洲蝌蚪91| 纯流量卡能插随身wifi吗| 18在线观看网站| 我要看黄色一级片免费的| 久久精品国产亚洲av涩爱| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 欧美人与善性xxx| 久久影院123| 妹子高潮喷水视频| 国产精品人妻久久久久久| 国产探花极品一区二区| 国产男人的电影天堂91| 极品人妻少妇av视频| 美女xxoo啪啪120秒动态图| 巨乳人妻的诱惑在线观看| 最新中文字幕久久久久| 丰满饥渴人妻一区二区三| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 十八禁网站网址无遮挡| 97在线视频观看| 国产乱人偷精品视频| 香蕉国产在线看| 少妇人妻精品综合一区二区| 成年美女黄网站色视频大全免费| 久久韩国三级中文字幕| 精品人妻熟女毛片av久久网站| 色哟哟·www| 精品亚洲成a人片在线观看| 丝袜人妻中文字幕| 99久久精品国产国产毛片| 91精品三级在线观看| 伦理电影免费视频| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 韩国av在线不卡| 永久网站在线| videossex国产| 91精品三级在线观看| 精品一区在线观看国产| 男人添女人高潮全过程视频| 色吧在线观看| 亚洲国产成人一精品久久久| 只有这里有精品99| av不卡在线播放| 大陆偷拍与自拍| 毛片一级片免费看久久久久| 深夜精品福利| 国产精品三级大全| av在线老鸭窝| 极品人妻少妇av视频| 成人二区视频| 亚洲一区二区三区欧美精品| 亚洲人与动物交配视频| 国产免费一级a男人的天堂| 亚洲成人手机| 捣出白浆h1v1| 免费大片18禁| 成年女人在线观看亚洲视频| 亚洲精品乱久久久久久| 国产日韩欧美亚洲二区| 国产精品无大码| 最近的中文字幕免费完整| 满18在线观看网站| 亚洲成人手机| 九草在线视频观看| 最近中文字幕高清免费大全6| 国产午夜精品一二区理论片| 亚洲精品乱久久久久久| 新久久久久国产一级毛片| 亚洲美女黄色视频免费看| 一二三四在线观看免费中文在 | 国产成人免费观看mmmm| 久久久久久人人人人人| 国产精品国产三级专区第一集| 熟女人妻精品中文字幕| 高清黄色对白视频在线免费看| 亚洲国产最新在线播放| 成年人免费黄色播放视频| 欧美日韩视频高清一区二区三区二| 久久毛片免费看一区二区三区| 午夜久久久在线观看| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 老熟女久久久| 免费播放大片免费观看视频在线观看| 麻豆乱淫一区二区| 18在线观看网站| 麻豆乱淫一区二区| 亚洲av国产av综合av卡| 熟女人妻精品中文字幕| 亚洲一码二码三码区别大吗| 2021少妇久久久久久久久久久| 亚洲成人av在线免费| 精品久久久精品久久久| 亚洲经典国产精华液单| 亚洲色图综合在线观看| 免费大片黄手机在线观看| 国产成人av激情在线播放| 免费看光身美女| 久久精品久久精品一区二区三区| 宅男免费午夜| 欧美性感艳星| 久久精品国产亚洲av涩爱| 黑人欧美特级aaaaaa片| 亚洲精华国产精华液的使用体验| 久久久久人妻精品一区果冻| 免费看不卡的av| 亚洲av电影在线观看一区二区三区| 尾随美女入室| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 一区二区三区四区激情视频| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 亚洲成人av在线免费| 性色avwww在线观看| 久久人妻熟女aⅴ| 99久久精品国产国产毛片| 天堂中文最新版在线下载| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 亚洲欧美清纯卡通| 在线看a的网站| 曰老女人黄片| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 91午夜精品亚洲一区二区三区| 秋霞在线观看毛片| 18在线观看网站| 欧美3d第一页| 国产欧美日韩综合在线一区二区| 亚洲图色成人| 国产精品人妻久久久影院| 日韩精品免费视频一区二区三区 | 最近的中文字幕免费完整| 只有这里有精品99| 999精品在线视频| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 一级毛片 在线播放| 国产色婷婷99| 大片电影免费在线观看免费| 秋霞伦理黄片| 黑人欧美特级aaaaaa片| 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 精品熟女少妇av免费看| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 韩国高清视频一区二区三区| 中文字幕人妻熟女乱码| 乱人伦中国视频| 五月玫瑰六月丁香| 人妻 亚洲 视频| 成人18禁高潮啪啪吃奶动态图| 捣出白浆h1v1| av国产久精品久网站免费入址| 人体艺术视频欧美日本| 一区二区三区乱码不卡18| 中文字幕另类日韩欧美亚洲嫩草| 久久久久精品性色| 亚洲精品自拍成人| 性色av一级| 国产熟女午夜一区二区三区| 久久精品国产鲁丝片午夜精品| 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 视频中文字幕在线观看| 国产一区二区三区综合在线观看 | 成年人免费黄色播放视频| 久久午夜福利片| 永久免费av网站大全| 最近2019中文字幕mv第一页| 国产精品无大码| 97在线人人人人妻| 有码 亚洲区| 亚洲久久久国产精品| 男男h啪啪无遮挡| 亚洲国产精品一区二区三区在线|