• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine*

    2015-11-24 05:28:06ZUOZhigang左志鋼LIUShuhong劉樹紅LIUDemin劉德民QINDaqing覃大清WuYulin吳玉林
    關(guān)鍵詞:玉林

    ZUO Zhi-gang (左志鋼), LIU Shu-hong (劉樹紅), LIU De-min (劉德民), QIN Da-qing (覃大清),Wu Yu-lin (吳玉林)

    1. Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China, E-mail:zhigang200@tsinghua.edu.cn

    2. Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China

    3. State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China

    Numerical analyses of pressure fluctuations induced by interblade vortices in a model Francis turbine*

    ZUO Zhi-gang (左志鋼)1, LIU Shu-hong (劉樹紅)1, LIU De-min (劉德民)2, QIN Da-qing (覃大清)3,Wu Yu-lin (吳玉林)1

    1. Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China, E-mail:zhigang200@tsinghua.edu.cn

    2. Research and Test Center, Dongfang Electric Machinery Co. Ltd, Deyang 618000, China

    3. State Key Laboratory of Hydro-power Equipment, Haerbin 150001, China

    Interblade vortices can greatly influence the stable operations of Francis turbines. As visible interblade vortices are essentially cavitating flows, i.e., the ones to cause interblade vortex cavitations, an unsteady simulation with a method using the RNG k-εturbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model is carried out to predict the pressure fluctuations induced. Modifications of the turbulence viscosity are made to improve the resolutions. The interblade vortices of two different appearances are observed from the numerical results, namely, the columnar and streamwise vortices, as is consistent with the experimental results. The pressure fluctuations of different frequencies are found to be induced by the interblade vortices on incipient and developed interblade vortex lines, respectively, on the Hill diagram of the model runner's parameters. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streamwise interblade vortices are unstable in the model Francis turbine.

    interblade vortices, pressure fluctuations, Francis turbine, cavitation, Rayleigh instability

    Introduction

    It is known that the existence of interblade vortices can induce instabilities in the operations of Francis turbines. For instance, severe vertical vibrations (over 200 μm) in the guide bearings, as well as major horizontal cracks (~1m)in the draft tube cones, were observed on Units Nos. 13 and 14 of Pakistan's Tarbela Power Station at high head after about 6 months of their commissioning. These issues, pointed out by the manufacturer, DBS-Escher Wyss in Canada,are associated with interblade vortices at high head in the units[1]. Through experimental analyses of the model and prototype runners, Alstom had observed cracks in the runners of two Brazilian hydroelectric power stations as induced by the interblade vortices at low head[1]. The source of the extensive noise in the rehabilitated turbines in the Gongzui Power Station was verified to be the interblade vortices under low load operating conditions[2].

    Due to the strong influence of the interblade vortices on the hydraulic instability of the runner, it is desirable to study the characteristics of the vortical flows and the induced pressure fluctuations. Experimental studies so far focused on the identifications of these vortices. Grindoz made observations regarding the visible interblade vortices in a model Francis turbine[3]. A series of experimental studies of the model runner for the Three Gorges power station reveals that the interblade vortices occur from the runner inlet under high head working conditions[4,5]. It is indicated that the existence of the vortices could induce alternating loads on the runner blades, resulting in fatigue damages. Most of the numerical researches were carried outthrough single-phase flow simulations, but no conclusive frequency characteristics of the pressure fluctuations induced by the interblade vortices were obtained[6-8].

    It is shown that the visible vortices in the model tests' interblade flow channels are cavitating flows,i.e., interblade vortex cavitation (Fig.1)[9]. Thus it is clear that single-phase flow simulations are not adequate to model the complex process of this phenomenon. Kurosawa built a numerical model to predict the major characteristics, including the occurrence of the interblade vortices, by solving the Reynolds averaged Navier-Stokes (RANS) equations, combined with the Reynolds Stress model and the volume of fluid (VOF)method[10]. Reasonable agreements were achieved between numerical and experimental results.

    Fig.1 Interblade (cavitating) vortices in a Francis turbine runner

    Since the pressure fluctuations are closely related to the behavior of the vortical flows, it is important to study the characteristics of the vortices. Analyses of the stability of the vortex ropes in Francis turbines were made to account the physical origin of severe low-frequency pressure fluctuations in their draft tubes[11,12].

    In this paper, in order to provide guidelines for safe operations with respect to interblade vortices,analyses are carried out for the stability of the vortices of different appearances in a Francis model turbine,based on unsteady simulation results from the RNG k-εturbulence model and the Zwart-Gerber-Belamri(ZGB) cavitation model. Modifications on the turbulence viscosity are made for better resolutions.

    1. Numerical methods

    1.1Cavitation simulation

    The simulations of cavitating flows can be performed by taking the vapor/liquid mixture as a multiphase single fluid, with variable densities. No slip exists between the two phases in this mixture model. Therefore, only one set of momentum equations are needed to describe the pressure and the velocities of the mixture[13]. Various forms of cavitation models were proposed to account for the mass transfers between the two phases in the additional continuity equation of the vapor phase, e.g., the cavitation model by Merkle[14], Kunz[15,16], Singhal[17], Senocak and Shyy[18]. The so-called ZGB cavitation model is applied in this study, which considers the variation of the volume fractions of the cavitation nuclei, and evaluates the rate of mass transfer through a simplified Rayleigh-Plesset equation[19]. The continuity equation for the vapor phase and the expressions of the two source terms,Reand Rc, of the model are as follows:

    wheresgnin sgn(pv-p)is the sign function,αv,ρvrepresent the volume fraction and the density of the vapor, respectively,pvdenotes the vapor pressure,αnucis the nucleation site volume fraction,RBis interpreted as the radius of the nucleation site,F(xiàn)vap,F(xiàn)conare two empirical calibration coefficients. In our calculations,F(xiàn)vap=80,F(xiàn)con=0.01, and the default values for other parameters are specified.

    Fig.2f(ρm)-ρm

    As stated above, the RANS equations in this study are solved by adapting the RNG k-εturbulence model and the ZGB cavitation model[20]. It is indicated that the turbulence viscosity is usually overestimated in the cavitation simulations due to the use of the mixture model, and modifications of the temporal and spatial discretization schemes alone are not enough to offset this effect[21]. Based on the study ofCoutier-Delgosha[22,23], a modification of the turbulence viscosity μtfrom the Boussinesq eddy viscosity assumption is adopted in this study,

    Table 1 Parameters of the model Francis turbine

    wherek,εare the turbulent kinetic energy and its dissipation rate, respectively,ρv,ρl, and ρmrepresent the density of the vapor, the liquid, and the mixture, respectively, the functionf(ρm)is introduced to consider the influence of the variations in density on the turbulence viscosity. As shown in Fig.2, the value of the exponentncontrols the shape of f(ρm)against ρmn=10is chosen in this study as suggested by the references mentioned above.

    1.2Model Francis turbine

    The numerical studies are conducted with a model Francis turbine, the parameters of which are listed in Table 1. The computational domain is shown in Fig.3.

    Fig.3 Computational domain

    The model gives a 94.54% level of peak efficiency. The performance characteristics determined by model tests under an experimental head of 30 m are shown in Fig.4, where Q11is the discharge,n11is the rotating speed. The experiments are performed on the Test Rig II of Harbin Electric Corporation as a part of the acceptance test of the unit. The systematic uncertainty on the efficiency measurement of the test rig is less than ±0.25%.

    Fig.4 Hill diagram for parameters

    Fig.5 Verification of grid independence

    1.3Computational details

    The model's mesh system is composed of unstructured grids fpr the spiral case, the stay vanes and the runner, and structured grids for the guide vanes, the draft tube, and the inlet pipe. The commercial software package ICEM is used for the mesh discretization. The local refinements to the boundary layer in the runner are applied in order to ensure the values of y+to be compatible with the chosen turbulence model. The grid independence is verified with respect to the runner efficiency, with the total number of grid cells varying from 2×106to 8×106, as shown in Fig.5. It can be seen that the degree of the computational precision is satisfactory when the number of cells is greater than 6×106. A mesh with about 7.6×106cells in total is chosen for the simulations. The numbers of nodes and cells in each part are shown in Table 2.

    Table 2 Numbers of cells and nodes of each subdomain

    Table 3 Comparison of parameters between cavitation calculations and experiments

    The time step for the unsteady simulations is set as 2.17×10-4s (when the runner rotates by 1o). A second-order upwind scheme is used for the discretization of the convective terms, and a second-order centered scheme is used for the source terms. The total pressure, the initial values of the turbulent kinetic energy and the turbulent dissipation rates are set on the inlet boundary, while the static pressure is set as the outlet boundary condition.

    2. Cavitation calculations and predictions of vortex lines

    The numerical method is validated through the unsteady flow calculations with different cavitation numbers at the operating Point A (n11=58.86,Q11= 0.43,a=0.018m), as well as the predictions of the incipient and developed interblade vortex lines with steady flow calculations, as shown in Fig.4.

    Fig.6 Pressure monitoring points

    For the cavitation calculations, the cavitation number is defined in terms of the static pressure at the draft tube outlet

    where HVA=pVA/ρgis the pressure head in the low pressure tank,Ha=pa/ρgis the atmospheric pressure head, andHSis the suction head of the turbine with respect to the centerline of the guide vanes. HV=pV/ρgis the saturated vapor pressure head at the experimental temperature.

    As shown in Table 3, the numerical predicted efficiencyηand powerPagree well with the experimental observations. In order to evaluate the calculated unsteady pressure fluctuations against the experiments, the pressure monitoring Points G1, G2 and D1,D2, D3, D4 are chosen in the vaneless space and the draft tube, as shown in Fig.6. As seen in Table 4, minute differences can be observed between the numerical and the experimental results of the relative amplitude (ΔH/H, where ΔHis the characteristic amplitude of the pressure fluctuations, with a 97% probability[24]), and the dominant frequency of the pressure fluctuations at the monitoring points.

    Furthermore, the predictions of the incipient and developed interblade vortex lines are made. In order to determine the incipience of the interblade vortices in the model acceptance tests, we identify the visible vortices in two or three interblade flow channels simultaneously. When the visible vortices occur in all interblade flow channels, we say that the interblade vortices are developed. The lines connecting the operating points on the Hill diagram in the parameters(Q11-n11)with the incipient and initial occurrence of the developed interblade vortices are called the incipient interblade vortex line, and they and the developed interblade vortex lines are , respectively, shown in Fig.4. In order to predict the two interblade vortex lines, it is essential to evaluate the compatibility of various vortex identification methods in our simulation cases. A number of vortex identification methods/criteria were proposed[25], including the vorticity criterion, theQ criterion, the swirling strength criterion,and the helicity criterion. By comparing the isosurfaces of the four quantities at corresponding operating points with n11=59r/min, and n11=72.5r/min,along the incipient and developed interblade vortex lines, respectively, it can be concluded that the vorticity criterion is most suitable for distinguishing the vortices. N inen11valuesare cho sen, each u nder 3-6 operatingconditionsforsteadycavitationcalculations,and the incipient and developed interblade vortex lines are asymptotically derived based on the vorticity criterion. As shown in Fig.7, good agreements are achieved by using the prescribed cavitation calculations. It can be seen below that the inflection points on both lines are successfully predicted.

    Table 4 Pressure fluctuations in the turbine

    Fig.7 Predictions of the incipient and the developed interblade vortex lines

    Fig.8 Appearances of interblade vortices

    Fig.9 Monitoring points on runner blades

    3. Hydraulic stability analysis of interblade vortices

    As shown in Fig.8, the two main appearances of the interblade vortices, namely, the columnar vortices near the runner inlet and the streamwise vortices further inside the interblade channels, are recognized in this study's simulation results of the turbine unit,which agree well with the experimental observations. In order to study the unsteady characteristics of the interblade vortices, we investigate two operating points, B (a =0.010m,=58.7r/min,Q=0.235m3/s)11and C (a =0.008m,n11=58.7r/min,Q11= 0.190m3/s) on the incipient interblade vortex line and the developed interblade vortex line (Fig.4). 18 monitoring points are located on the pressure side and the suction side of the runner blades to study the development of the interblade vortices, as shown in Fig.9. They are arranged in the direction of the flows near the crown (Pc1-Pc3, Sc1-Sc3), in the middle (Pm1-Pm3, Sm1-Sm3), and near the band (Pb1-Pb3, Sb1-Sb3), respectively.

    Table 5 Pressure fluctuations on turbine runner blades (B)

    Table 6 Pressure fluctuations on turbine runner blades (C)

    Table 5 shows the pressure fluctuations at the prescribed monitoring points on the turbine runner blades at the operating Point B. The pressure fluctuation components with three frequencies are observed,307 Hz (the guide vane passing frequency), 2.7 Hz(the frequency of the pressure fluctuation induced by the draft tube vortex rope), and 10.7 Hz, which is believed to be the frequency of the pressure fluctuations induced by the interblade vortices, at almost all monitoring points. Comparing with Table 4, considerable differences in the pressure fluctuation frequencies exist between the stationary and rotating parts of the unit. The guide vane passing frequency Z0fnis a main component in the runner, while the runner blade passing frequencyZfnis a main component in the guide v anes.Si ncethe inte rbladevorti ces occuron the suctionsideofthebladesunderthisworkingcondition, higher amplitudes of the pressure fluctuations are observed there. The pressure fluctuations at the operating Point C have smaller amplitudes, and a slightly different frequency for the pressure fluctuations induced by the interblade vortices (12.8 Hz), as shown in Table 6. In both cases, higher amplitudes of the pressure fluctuations are observed near the runner crown and band, instead of the middle of the runner. An attempt is made to qualitatively account for this phenomenon by analyzing the stability of the vortices with different appearances.

    For inviscid fluids, Rayleigh provided an argument to determine the stability of a revolving flow with respect to axisymmetric disturbances. As shown in Fig.10, consider the interchange of the fluid in two rings of radii r1and r2. Following the conservation of the angular momentum, it is shown that in the caseof r2>r1, the condition for the flow instability is d(Ωr2)2/dr<0somewhere, in whichΩis the angular velocity[26,27]. Since the vortices have strong circumferential components that resemble the revolving flows, the prescribed centrifugal Rayleigh instability criterion can be roughly applied in a preliminary analysis.

    Fig.10 Rayleigh instability criterion

    Fig.11 Rayleigh stability analysis of interblade vortices

    As shown in Fig.11, several pairs of monitoring points are selected for analysis (b1and s1around the columnar vortex center A, Sb1 and Pb1 around the streamwise vortex center B, etc.). In the cases studied,theΩr2values vary as time evolved. As an example,F(xiàn)ig.12 shows the time series ofΩr2at the points Sb1 and Pb1. The time averaging values are selected for analysis, and it is found thatd(Ωr2)2/dr<0is the condition fpr the occurrence of the streamwise interblade vortices, whiled(Ωr2)2/dr>0is the condition for the occurrence of the columnar interblade vortices(see Table 7 for example). This indicates that in the model Francis turbine studied in this paper the streamwise interblade vortices are unstable, while the columnar interblade vortices are stable. This is in accordance with the phenomenon that the pressure fluctuations at the middle of the runner blades are weaker, while those near the runner band are stronger.

    Fig.12 Time series of Ωr2at monitoring points

    4. Conclusions

    In order to predict the pressure fluctuations induced by interblade vortices, a method of cavitation calculations is proposed, which consists of solving the RANS equations with the RNG k-εturbulence model and the ZGB cavitation model. Turbulence viscosity modifications are made to compensate its overestimation in the cavitation area.

    The method is validated by successful predictions of the pressure fluctuations of the cavitating flows in the turbine runner, and of the incipient and developed interblade vortex lines, where the vorticity criterion is chosen for identifying the vortices. The incipient and developed interblade vortex lines are determined by observing the occurrence of the interblade vortices from the steady flow calculation results. Operating points where the vortices occur simultaneously in two or three inter blade flow channels form the incipient interblade vortex line, and when visible vortices occur in all inter blade flow channels, we say that the interblade vortices are developed.

    Interblade vortices of two appearances are observed in the numerical results, namely, the columnar and streamwise vortices, which agree with the experimental results. The evaluations of the pressure fluctuati onsind uced by theinterb lade vortices arethen madeonthemonitoringpointslocatedonbothsidesof the runner blades at two operating points, on the incipient and developed interblade vortex lines. It is found that the interblade vortices induce pressure fluctuations with different frequencies on the two vortex lines. A preliminary analysis of the stability of the vortices is carried out to explain the phenomena that the pressure fluctuations at the middle of the runner blades are weaker, while the fluctuations near the band are stronger. From the centrifugal Rayleigh instability criterion, it follows that the columnar interblade vortices are stable and the streawise interblade vortices are unstable in the model Francis turbine studied.

    Table 7 Comparisons of Ωr2values

    Further studies of different turbine runners are needed to investigate the applicability of this instability argument of interblade vortices.

    References

    [1]HUANG Yuan-fang, LIU Guang-ning and FAN Shiying. Research on prototype hydro-turbine operation[M], Beijing, China, China Electric Power Press,2010(in Chinese).

    [2]SHI Qing-hua, XU Wei-wei and GONG Li. Noise reduction in a low head Francis turbine caused by runner inter-blade vortices[J]. Dongfang Electrical Machine,2008, (1): 42-46(in Chinese).

    [3]GRINDOZ B. Lois de similitudes dans les essays de cavitation des turbines Francis[D]. Doctoral Thesis,Lausanne, Switzerland: EPFL, 1991.

    [4]PENG Zhong-nian, CHEN Rui and JIANG Xue-yun. Experimental investigation of flow pattern observation and water pressure pulsation performed on the Three Gorges model turbine[J]. Water Resources and Hydropower Engineering, 1999, 30(11): 8-14(in Chinese).

    [5]CHEN Rui, PENG Zhong-nian. An experimental study on water pressure fluctuation at Francis turbine runner blade outlet[J]. Water Resources and Hydropower Engineering, 1999, 30(11): 30-32(in Chinese).

    [6]CHEN Jin-xia, LI Guo-wei and LIU Sheng-zhu. The occurrence and the influence of the interblade vortex on the hydraulic turbine instability[J]. Large Electric Machine and Hydraulic Turbine, 2007, (3): 42-46(in Chinese).

    [7]ZHANG Peng-yuan, ZHU Bao-shan and ZHANG Le-fu. Numerical investigation on pressure fluctuations induced by interblade vortices in a runner of Francis turbine[J]. Large Electric Machine and Hydraulic Turbine, 2009, (6): 35-39(in Chinese).

    [8]STEIN P., SICK M. and DOERFLER P. et al. Numerical simulation of the cavitating draft tube vortex in a Francis turbine[C]. IAHR Section Hydraulic Machinery, Equipment, and Cavitation, 23rd Symposium. Yokohama, Japan, 2006.

    [9]AVELLAN F. Introduction to cavitation in hydraulic machinery[C]. 6th International Conference on Hydraulic Machinery and Hydrodynamics. Timisoara,Romania, 2004.

    [10]KUROSAWA S., LIM S. M. and ENOMOTO Y. Virtual model test for a Francis turbine[C]. 25th IAHR Symposium on Hydraulic Machinery and Systems. Timisoara, Romania, 2010.

    [11]ZHANG R., CAI Q. and WU J. et al. The physical origin of severe low-frequency pressure fluctuations in giant Francis turbines[J]. Modern Physics Letters B,2005, 19(28-29): 1527-1530.

    [12]WU J., CHEN S. and WU Y. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine[J]. Journal of Fluids Engineering, 2009, 131(2). 021101.

    [13]SENOCAK I., SHYY W. A pressure-based method for turbulent cavitating flow computations[J]. Journal of Computational Physics, 2002, 176(2): 363-383.

    [14]MERKLE C., FENG J. and BUELOW P. Computational modeling of the dynamics of sheet cavitation[C]. Proceeding of Third International Symposium on Cavitation. Grenoble, France, 1998, 307-311.

    [15]KUNZ R. F., BOGER D. A. and CHYCZEWSKI T. S. et al. Multi-phase CFD analysis of natural and ventilated cavitation about submerged bodies[C]. ASME Fluid Engineering Division Summer Meeting,F(xiàn)EDSM99-7364. San Francisco, USA, 1999.

    [16]KUNZ R., BOGER D. and STINEBRING D. A Preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849-875.

    [17]SINGHAL A. K., ATHAVALE M. M. and LI H. et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3):617-624.

    [18]SENOCAK I., SHYY W. Interfacial dynamics-based modeling of turbulent cavitating flows,model development and steady-state computations[J]. International Journal for Numerical Methods in Fluids, 2004,44(9): 975-995.

    [19]ZWART P., GERBER A. and BELAMRI T. A twophase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [20]LIU Yan, ZHAO Peng-fei and WANG Qiang et al. URANS computation of cavitating flows around skewed propellers[J]. Journal of Hydrodynamics, 2012,24(3): 339-346.

    [21]COUTIER-DELGOSHA O., REBOUD J. Numerical simulation of unsteady cavitation flows[J]. InternationalJournal for Numerical Methods in Fluids, 2003,42(5): 527-548.

    [22]COUTIER-DELGOSHA O., FORTES-PATELLA R. and REBOUD J. Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitation[J]. Journal of Fluids Engineering, 2003, 125(1):38-45.

    [23]COUTIER-DELGOSHA O., REBOUD J. and ALBANO G. Numerical simulation of the unsteady cavitation behavior of an inducer blade cascade[C]. ASME Proceedings of ASME Fluids Engineering Division Summer Meeting. Boston, Massachusetts, USA, 2000.

    [24]Hydraulic turbines, storage pumps and pump-turbines-Model acceptance tests[S]. International Standard IEC 60193, 1999.

    [25]HANSEN C. D., JOHNSON C. R. Visualization Handbook[M]. Burlington, Canada: Butterworth-Heinemann, 2005, 295-309.

    [26]RAYLEIGH L. On the dynamics of revolving fluids[J]. Proceedings of the Royal Society of London, Series A,1917, 93(648): 148-154.

    [27]DRAZIN P. G., REID W. H. Hydrodynamic stability[M]. 2nd Edition, Cambridge, UK: Cambridge university Press, 2004.

    (February 6, 2014, Revised March 10, 2014)

    * Project supported by the National Natural Science Foundation of China (Grant No. 51476083), the National Science and Technology Ministry of China (Grant No. 2011BAF03B01).

    Biography: ZUO Zhi-gang (1977-), Male, Ph. D.

    猜你喜歡
    玉林
    王玉林作品
    馬玉林書法作品選(2幅)
    General Bounds for Maximum Mean Discrepancy Statistics
    邱玉林藝術(shù)作品欣賞
    The four variables that account for the emergence of international business
    Unit 6 Travelling around Asia Listening and speaking
    趙玉林藏石欣賞
    寶藏(2017年10期)2018-01-03 01:53:27
    The influence of nonlinear shear stress on partially averaged Navier-Stokes (PANS) method*
    瞻云寄興
    岷峨詩稿(2014年2期)2014-11-15 03:21:29
    Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil*
    在线精品无人区一区二区三| 日产精品乱码卡一卡2卡三| 少妇人妻一区二区三区视频| 69精品国产乱码久久久| 3wmmmm亚洲av在线观看| 黑丝袜美女国产一区| 成人亚洲精品一区在线观看| 最新的欧美精品一区二区| 国产av精品麻豆| 我的老师免费观看完整版| 久久久久久久久久人人人人人人| 亚洲av成人精品一区久久| 少妇人妻久久综合中文| 高清午夜精品一区二区三区| 久久精品国产亚洲av涩爱| 80岁老熟妇乱子伦牲交| 少妇精品久久久久久久| av黄色大香蕉| 成年av动漫网址| 亚洲精品成人av观看孕妇| 嫩草影院入口| 欧美性感艳星| 国产成人精品婷婷| 成人特级av手机在线观看| 成人国产麻豆网| 只有这里有精品99| 成年美女黄网站色视频大全免费 | 在线观看一区二区三区激情| 国产精品熟女久久久久浪| 久久久精品94久久精品| 国产国拍精品亚洲av在线观看| 少妇的逼好多水| 亚洲av男天堂| 亚州av有码| 日本猛色少妇xxxxx猛交久久| 日韩强制内射视频| 人人澡人人妻人| 91精品国产国语对白视频| 久久久久网色| 国产精品一区www在线观看| 亚洲成人一二三区av| 韩国高清视频一区二区三区| 欧美日韩av久久| 一级,二级,三级黄色视频| 我的老师免费观看完整版| 免费观看在线日韩| 一级毛片黄色毛片免费观看视频| 日韩人妻高清精品专区| 国产极品天堂在线| 视频区图区小说| 久久精品国产自在天天线| 免费不卡的大黄色大毛片视频在线观看| 各种免费的搞黄视频| 日韩av免费高清视频| 成人漫画全彩无遮挡| 老司机影院成人| 国产日韩欧美在线精品| 国内少妇人妻偷人精品xxx网站| 国产亚洲欧美精品永久| 久久人人爽av亚洲精品天堂| 亚洲精品国产成人久久av| 国产av精品麻豆| 亚洲av二区三区四区| 男的添女的下面高潮视频| 久久精品国产自在天天线| 夫妻午夜视频| 久久韩国三级中文字幕| 麻豆成人午夜福利视频| 九九爱精品视频在线观看| 人妻 亚洲 视频| 性高湖久久久久久久久免费观看| 免费观看在线日韩| 如日韩欧美国产精品一区二区三区 | 人人妻人人澡人人爽人人夜夜| 伦理电影大哥的女人| 亚洲av二区三区四区| 欧美最新免费一区二区三区| 99热6这里只有精品| 久热久热在线精品观看| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 亚洲精品久久久久久婷婷小说| 国产成人91sexporn| 国产日韩一区二区三区精品不卡 | 搡女人真爽免费视频火全软件| 日韩强制内射视频| 我要看黄色一级片免费的| 三级国产精品片| 国产高清三级在线| 一级毛片aaaaaa免费看小| av专区在线播放| 精品人妻熟女毛片av久久网站| 亚洲av中文av极速乱| 亚洲真实伦在线观看| 少妇人妻久久综合中文| 欧美日韩精品成人综合77777| 永久免费av网站大全| 精品国产一区二区久久| 亚洲精品国产成人久久av| 国产精品久久久久成人av| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 国产女主播在线喷水免费视频网站| 日韩制服骚丝袜av| 美女xxoo啪啪120秒动态图| 热99国产精品久久久久久7| 纯流量卡能插随身wifi吗| 熟女av电影| 在线天堂最新版资源| 69精品国产乱码久久久| 中国三级夫妇交换| 国产日韩一区二区三区精品不卡 | 日本与韩国留学比较| 美女国产视频在线观看| 国产视频首页在线观看| 午夜91福利影院| 丝袜脚勾引网站| 蜜桃在线观看..| 成人黄色视频免费在线看| av卡一久久| 久久久国产欧美日韩av| 亚洲精品亚洲一区二区| 久久韩国三级中文字幕| 男女无遮挡免费网站观看| 日日啪夜夜撸| 久久精品久久精品一区二区三区| 免费少妇av软件| 91午夜精品亚洲一区二区三区| 美女xxoo啪啪120秒动态图| 18禁动态无遮挡网站| 亚洲经典国产精华液单| 亚洲精品乱久久久久久| 男人狂女人下面高潮的视频| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 十八禁高潮呻吟视频 | 亚洲成人一二三区av| 亚洲成色77777| 亚洲精品乱久久久久久| 另类精品久久| 大陆偷拍与自拍| 国产男人的电影天堂91| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 五月玫瑰六月丁香| 91aial.com中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 建设人人有责人人尽责人人享有的| 九草在线视频观看| av福利片在线| 久久久国产一区二区| av福利片在线观看| 在线观看免费日韩欧美大片 | 我的老师免费观看完整版| 亚洲精品,欧美精品| 亚洲国产av新网站| 少妇裸体淫交视频免费看高清| 最近手机中文字幕大全| 国产无遮挡羞羞视频在线观看| 大又大粗又爽又黄少妇毛片口| 99国产精品免费福利视频| 91午夜精品亚洲一区二区三区| 国产亚洲最大av| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美成人午夜免费资源| 亚洲精品aⅴ在线观看| 免费大片18禁| 精品亚洲乱码少妇综合久久| 亚洲真实伦在线观看| 亚洲高清免费不卡视频| 欧美老熟妇乱子伦牲交| 99久久中文字幕三级久久日本| 国产 精品1| 99re6热这里在线精品视频| 我的女老师完整版在线观看| 成人二区视频| 在线看a的网站| 一级毛片久久久久久久久女| 欧美97在线视频| 国产精品无大码| 99九九在线精品视频 | 免费观看性生交大片5| 精品人妻一区二区三区麻豆| 日本av免费视频播放| 婷婷色综合www| 另类亚洲欧美激情| 久久久久久伊人网av| 最近的中文字幕免费完整| 大香蕉久久网| 国产亚洲最大av| 乱人伦中国视频| 日韩av不卡免费在线播放| 国产成人免费无遮挡视频| 男女无遮挡免费网站观看| 69精品国产乱码久久久| 51国产日韩欧美| 成人免费观看视频高清| 午夜激情久久久久久久| 高清毛片免费看| 天天躁夜夜躁狠狠久久av| 国产精品久久久久久av不卡| 午夜免费观看性视频| 成人国产麻豆网| 最近2019中文字幕mv第一页| 插逼视频在线观看| 天美传媒精品一区二区| h视频一区二区三区| 日本午夜av视频| 在现免费观看毛片| 国产欧美亚洲国产| 男女国产视频网站| 在线观看人妻少妇| 26uuu在线亚洲综合色| 欧美精品亚洲一区二区| 久久女婷五月综合色啪小说| 亚洲情色 制服丝袜| 国产乱人偷精品视频| 蜜臀久久99精品久久宅男| 最后的刺客免费高清国语| 色5月婷婷丁香| 亚洲自偷自拍三级| 欧美成人午夜免费资源| 欧美精品一区二区免费开放| 国模一区二区三区四区视频| 丝袜喷水一区| 国产真实伦视频高清在线观看| 亚洲综合精品二区| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 一区二区三区乱码不卡18| 男女无遮挡免费网站观看| 美女大奶头黄色视频| 多毛熟女@视频| 一级av片app| 亚洲av日韩在线播放| 国产成人免费无遮挡视频| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 高清毛片免费看| 汤姆久久久久久久影院中文字幕| 99久国产av精品国产电影| 99re6热这里在线精品视频| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看| av在线观看视频网站免费| 国产精品久久久久成人av| 国产一区二区三区综合在线观看 | 桃花免费在线播放| 香蕉精品网在线| 伊人亚洲综合成人网| videossex国产| 日日摸夜夜添夜夜添av毛片| 免费久久久久久久精品成人欧美视频 | 少妇 在线观看| 国产探花极品一区二区| 日韩强制内射视频| 精品视频人人做人人爽| 久久久久视频综合| 十八禁高潮呻吟视频 | 丁香六月天网| 亚洲熟女精品中文字幕| 亚洲精品久久午夜乱码| 最近手机中文字幕大全| 夫妻午夜视频| 久久韩国三级中文字幕| 99久久人妻综合| 日本免费在线观看一区| 国产国拍精品亚洲av在线观看| 下体分泌物呈黄色| a级片在线免费高清观看视频| 91aial.com中文字幕在线观看| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 亚洲图色成人| 内射极品少妇av片p| 亚洲精品日韩av片在线观看| 亚洲成人手机| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 午夜av观看不卡| 在线观看三级黄色| 亚洲国产色片| 丁香六月天网| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 十八禁高潮呻吟视频 | 少妇裸体淫交视频免费看高清| 97精品久久久久久久久久精品| 亚洲,欧美,日韩| 午夜久久久在线观看| 老女人水多毛片| 日本午夜av视频| 国产乱来视频区| 国产免费一级a男人的天堂| 亚洲高清免费不卡视频| 精品少妇黑人巨大在线播放| 成人漫画全彩无遮挡| 久久这里有精品视频免费| 一本色道久久久久久精品综合| 内地一区二区视频在线| 看非洲黑人一级黄片| 啦啦啦啦在线视频资源| 亚洲精品,欧美精品| 欧美精品亚洲一区二区| 久久热精品热| 亚洲国产色片| 男的添女的下面高潮视频| 2021少妇久久久久久久久久久| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 两个人免费观看高清视频 | 久久久欧美国产精品| 亚洲国产欧美在线一区| 黄色欧美视频在线观看| 又粗又硬又长又爽又黄的视频| 熟妇人妻不卡中文字幕| 视频区图区小说| 91精品国产九色| 亚洲真实伦在线观看| 国产成人aa在线观看| 人妻夜夜爽99麻豆av| 人妻人人澡人人爽人人| av.在线天堂| 精品国产国语对白av| 久久久久国产网址| 国精品久久久久久国模美| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 在线精品无人区一区二区三| 免费观看性生交大片5| 午夜福利,免费看| 狂野欧美激情性xxxx在线观看| 亚洲三级黄色毛片| 精品久久国产蜜桃| av专区在线播放| 午夜激情久久久久久久| 日韩一区二区视频免费看| 亚洲av福利一区| 免费少妇av软件| 97超视频在线观看视频| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 日韩大片免费观看网站| 免费少妇av软件| 亚洲精品色激情综合| 日本91视频免费播放| 少妇人妻 视频| 国产视频内射| 中文字幕人妻丝袜制服| 国产高清有码在线观看视频| 日韩一区二区三区影片| 欧美xxxx性猛交bbbb| 欧美丝袜亚洲另类| 性高湖久久久久久久久免费观看| 最新中文字幕久久久久| 亚洲综合精品二区| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 丰满迷人的少妇在线观看| 少妇人妻精品综合一区二区| 麻豆乱淫一区二区| 欧美xxⅹ黑人| 免费观看性生交大片5| 99久久精品一区二区三区| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 在线精品无人区一区二区三| 国产伦精品一区二区三区视频9| 亚洲av综合色区一区| 国产成人精品久久久久久| 人人妻人人添人人爽欧美一区卜| 少妇精品久久久久久久| 亚洲精品日韩av片在线观看| 麻豆成人午夜福利视频| 久久久国产精品麻豆| 噜噜噜噜噜久久久久久91| 在线观看人妻少妇| 免费观看a级毛片全部| 曰老女人黄片| 看十八女毛片水多多多| 久久ye,这里只有精品| 精品人妻一区二区三区麻豆| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 91久久精品国产一区二区三区| 伊人久久国产一区二区| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 伦精品一区二区三区| 国产精品免费大片| 亚洲国产精品国产精品| 午夜av观看不卡| 日韩 亚洲 欧美在线| 欧美区成人在线视频| 综合色丁香网| 国产精品国产av在线观看| 97超视频在线观看视频| 免费看日本二区| 美女大奶头黄色视频| 国语对白做爰xxxⅹ性视频网站| 女人久久www免费人成看片| 成人特级av手机在线观看| 91成人精品电影| 一级,二级,三级黄色视频| 最近手机中文字幕大全| 黄色一级大片看看| 国产日韩一区二区三区精品不卡 | 五月天丁香电影| av天堂中文字幕网| 青青草视频在线视频观看| 秋霞伦理黄片| av免费在线看不卡| 香蕉精品网在线| 日日啪夜夜撸| 亚洲国产精品成人久久小说| 国产黄片美女视频| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 久久久久久伊人网av| 晚上一个人看的免费电影| 日日啪夜夜撸| 欧美日韩av久久| 天堂中文最新版在线下载| 亚洲高清免费不卡视频| 久久鲁丝午夜福利片| 色哟哟·www| 国产日韩欧美在线精品| 色吧在线观看| 伊人久久国产一区二区| 人人妻人人澡人人看| 99热全是精品| 亚洲av日韩在线播放| 美女内射精品一级片tv| 伊人久久精品亚洲午夜| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 日韩三级伦理在线观看| 国产深夜福利视频在线观看| 午夜av观看不卡| 三级国产精品片| 在线观看av片永久免费下载| 国产在视频线精品| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 中国美白少妇内射xxxbb| 国产亚洲欧美精品永久| 少妇精品久久久久久久| 亚洲国产精品专区欧美| 熟妇人妻不卡中文字幕| 69精品国产乱码久久久| 久久精品久久久久久久性| 日韩电影二区| 我的女老师完整版在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说| 简卡轻食公司| 美女脱内裤让男人舔精品视频| 人妻少妇偷人精品九色| av有码第一页| 嫩草影院新地址| 日日摸夜夜添夜夜添av毛片| a级毛片免费高清观看在线播放| 青春草视频在线免费观看| 亚州av有码| 99热这里只有是精品50| 国产日韩一区二区三区精品不卡 | 免费观看在线日韩| 亚洲欧美日韩另类电影网站| 美女主播在线视频| 亚洲第一av免费看| 一级二级三级毛片免费看| 国产在线免费精品| 日韩亚洲欧美综合| 自拍偷自拍亚洲精品老妇| 成年av动漫网址| 在线观看三级黄色| 亚洲久久久国产精品| av国产久精品久网站免费入址| 亚洲av欧美aⅴ国产| 久久精品久久久久久久性| 极品人妻少妇av视频| 精品一区二区三卡| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 亚洲精品成人av观看孕妇| 久久久久精品久久久久真实原创| 免费人成在线观看视频色| 人人澡人人妻人| 夫妻性生交免费视频一级片| 国产美女午夜福利| 国内揄拍国产精品人妻在线| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 国产免费福利视频在线观看| 国产精品久久久久久精品古装| 精品一区二区免费观看| 日韩欧美一区视频在线观看 | 亚洲电影在线观看av| 99热全是精品| 欧美精品一区二区免费开放| 极品教师在线视频| 精品国产乱码久久久久久小说| 另类精品久久| 亚洲欧美精品专区久久| 国产精品99久久99久久久不卡 | 欧美人与善性xxx| 天堂8中文在线网| 国产成人精品福利久久| 久久午夜福利片| 天堂中文最新版在线下载| 2021少妇久久久久久久久久久| 中文字幕人妻丝袜制服| 最近手机中文字幕大全| 全区人妻精品视频| 美女cb高潮喷水在线观看| 一级毛片黄色毛片免费观看视频| 国产精品久久久久成人av| 亚洲欧美一区二区三区黑人 | 国产淫语在线视频| 精品久久久久久久久av| 日韩一区二区视频免费看| 久久久精品94久久精品| 亚洲精品一二三| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| 日韩成人av中文字幕在线观看| 妹子高潮喷水视频| 七月丁香在线播放| 中国美白少妇内射xxxbb| 性色avwww在线观看| 男人舔奶头视频| 亚洲精品一区蜜桃| √禁漫天堂资源中文www| 日韩熟女老妇一区二区性免费视频| 国产 精品1| 日韩不卡一区二区三区视频在线| 午夜视频国产福利| 毛片一级片免费看久久久久| 寂寞人妻少妇视频99o| 日韩一区二区三区影片| 亚洲国产精品专区欧美| 国产免费又黄又爽又色| 又粗又硬又长又爽又黄的视频| 午夜视频国产福利| av卡一久久| 三级国产精品欧美在线观看| 亚洲成人一二三区av| 97超视频在线观看视频| 麻豆成人av视频| 亚洲色图综合在线观看| 看十八女毛片水多多多| 插阴视频在线观看视频| 国产精品成人在线| 日日啪夜夜爽| 日韩中文字幕视频在线看片| 久久国产精品男人的天堂亚洲 | 在线观看免费日韩欧美大片 | 国产深夜福利视频在线观看| 精品亚洲成国产av| 久久精品久久久久久噜噜老黄| 久久精品国产亚洲网站| 日本欧美视频一区| 又大又黄又爽视频免费| 久久精品国产a三级三级三级| 亚洲国产精品专区欧美| 又黄又爽又刺激的免费视频.| 国产亚洲91精品色在线| 免费人成在线观看视频色| 免费av中文字幕在线| 亚洲国产精品999| 亚洲欧美日韩卡通动漫| 欧美区成人在线视频| 五月天丁香电影| 久久久午夜欧美精品| 极品教师在线视频| 亚洲怡红院男人天堂| 黄色欧美视频在线观看| 成人影院久久| 国产精品99久久久久久久久| 91精品伊人久久大香线蕉| 免费观看在线日韩| 少妇人妻精品综合一区二区| 哪个播放器可以免费观看大片| 久久精品国产a三级三级三级| 亚洲国产欧美在线一区| 蜜桃在线观看..| 亚洲色图综合在线观看| 插逼视频在线观看| 狂野欧美激情性bbbbbb| 一区在线观看完整版| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲5aaaaa淫片| 国产日韩欧美在线精品| 91精品伊人久久大香线蕉| 自拍偷自拍亚洲精品老妇| 中文字幕久久专区| 王馨瑶露胸无遮挡在线观看| 亚洲精品,欧美精品| 久久狼人影院| 丰满少妇做爰视频| 精华霜和精华液先用哪个| 欧美变态另类bdsm刘玥| 我要看黄色一级片免费的| 国产一区二区在线观看日韩| 欧美高清成人免费视频www| 亚洲四区av| 国产极品粉嫩免费观看在线 | 亚洲成人av在线免费|