• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of temperature time series based on Hilbert-Huang Transform*

    2015-11-24 05:28:13MAHao馬皓QIUXiang邱翔LUOJianping羅劍平GUPinqiang顧品強(qiáng)LIUYulu劉宇陸

    MA Hao (馬皓), QIU Xiang (邱翔), LUO Jian-ping (羅劍平), GU Pin-qiang (顧品強(qiáng)),LIU Yu-lu (劉宇陸)

    1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China,E-mail: tracy_mahao@sina.com

    2. School of Science, Shanghai Institute of Technology, Shanghai 201418, China

    3. Shanghai Meteorological Service in Fengxian District, Shanghai 201416, China

    4. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Analysis of temperature time series based on Hilbert-Huang Transform*

    MA Hao (馬皓)1, QIU Xiang (邱翔)2, LUO Jian-ping (羅劍平)1, GU Pin-qiang (顧品強(qiáng))3,LIU Yu-lu (劉宇陸)4

    1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China,E-mail: tracy_mahao@sina.com

    2. School of Science, Shanghai Institute of Technology, Shanghai 201418, China

    3. Shanghai Meteorological Service in Fengxian District, Shanghai 201416, China

    4. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    In this paper, with consideration of the nonlinear and non-stationary properties of the temperature time series, we employ the Hilbert-Huang Transform, based on the empirical mode decomposition (EMD), to analyze the temperature time series from 1959 to 2012 in the Fengxian district of Shanghai, obtained from a certain monitoring station. The oscillating mode is drawn from the data,and its characteristics of the time series are investigated. The results show that the intrinsic modes of 1, 2 and 6 represent the periodic properties of 1 year, 2.5 years, and 27 years. The mean temperature shows periodic variations, but the main trend of this fluctuation is the rising of the temperature in the recent 50 years. The analysis of the reconstructed modes with the wave pattern shows that the variations are quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, which indicates that the temperature rises and falls dramatically in these periods. The volatility from 1993 to 1994 is far more dramatic than in other periods. And the volatility is the most remarkable in recent 50 years. The log-linear plots of the mean time scales T and M show that each mode associated with a time scale almost twice as large as the time scale of the preceding mode. The Hilbert spectrum shows that the energy is concentrated in the range of low frequency from 0.05 to 0.1 Hz, and a very small amount of energy is distributed in the range of higher frequency over 0.1 Hz. In conclusion, the HHT is better than other traditional signal analysis methods in processing the nonlinear signals to obtain the periodic variation and volatility's properties of different time scales.

    atmospheric turbulence, temperature time series, empirical mode decomposition (EMD), Hilbert Huang Transform

    Introduction

    Global warming is currently attracting more and more attentions of researchers, and its causes and the effects on the global climate are issues under debate. In this context, the temperatures vary in different areas of the world. The global mean temperature has raised from 0.56oC to 0.92oC in recent 100 years[1]. The various climate factors in China, especially the average temperature, see complicated fluctuations. Zhao et al.[2]revealed that the climate warmingin China reaches 0.2oC-0.8oC in recent 100 years, Tang et al.[3]found the annual average temperaturein the surface in China has raised about 0.79oC since 1905, so the volatility of thelocaltemperature change is one of the core/key problems in the study of climate problems[4]. The volatility of the temperature variation is useful in identifying and evaluating the causes of the global warming, and it provides an essentialbasis to forecast the trend of the global warming[5].

    The Fengxian district is located in the south of Shanghai, to the north side of the Hangzhou Bay. Agriculture is the mainstay of its economy, in the planning of the Shanghai government. Therefore, the temperature change in this district is important for better understanding and analyzing the climate changes of the natural ecological environment. Due to its special geographic position, the climate in Fengxian isless influenced by the urban heat island than that in other highly urbanized areas in Shanghai. Comparing the annual mean temperature in Xujiahui with that in Fengxian, the difference between them was 0.1oC in 1960, 0.9oC in 1990, and 1.3oC in 2000. And the difference is becoming more and more important.Itis shownthat the temperature in Fengxian is in a rising trend since 1960[6]. From the beginning of the 21st century, under the background of the global warming,the intensity and the frequency of the extreme temperature have increased obviously. And the fluctuation of the temperature change in Fengxian is also more significant[7].

    In the study of the temperature time series, the multi-scaling structures of the oscillation were not paid enough attention. So we take up the multi-scaling structures based on the empirical mode decomposition(EMD) method introduced by Huang et al. as a new time series analysis technique, to separate a given time series into a sum of modes, each associated with well defined scales[8]. This method is very efficient for non-stationary and nonlinear time series, and in separating trends from small-scale fluctuations[9]. Due to its ability of characterizing the multiscaling scale invariant directly, the EMD method has met with a great success and has been successfully applied to many fields of natural and applied sciences: the water wave analysis[10], the earthquake wave analysis, the meteorology and climate studies[8], and the biological applications[11], among others. It has already been applied to non-stationary temperature data, but most studies focus on the relationship between the time and the amplitude, not so much on the frequency. In this paper,we use the Hilbert spectral analysis to describe the relationship among the time, the amplitude and the frequency[12].

    The EMD is used to analyze the oscillating characteristics of the monthly mean temperature time series in the Fengxian district based on the modes after decomposing, the reconstructed modes with the wave pattern are used to analyze the oscillation characteristics of different time scales, the log-linear plot is used to show the relationship between the modes and the mean time scale, the Hilbert spectrum and the Hilbert marginal spectrum are used to reveal the relationship among the time, the frequency and the energy.

    1. Empirical mode decomposition and Hilbert spectral analysis

    1.1Data collection and preprocessing

    The meteorological data, analyzed in this paper,is collected from the Shanghai meteorological service in the Fengxian district. The data include the monthly mean temperatures from 1959 to 2012, which can represent the temperature variation in the past 50 years in the Fengxian district. The monthly mean data are obtained from the averages of daily 2, 8, 14, 20 o'clock data, then with the consideration of the days in a month the arithmetic mean is taken, and the monthly average temperatures (1959-2012) recorded by the Fengxian observatory, Shanghai are analyzed here,including 648 months.

    1.2Hilbert-Huang transform

    The starting point of the EMD is that most of the signals are multi-components, which means that different scales exist simultaneously. The signal can be considered as a superposition of fast and slow oscillations at a very local level. In the time series analysis, a characteristic scale generally is explicitly or implicitly considered[13,14]. For example, in the Fourier analysis the characteristic scale is the length of one period of the sine (or cosine) wave. Then an integration operator is applied to extract the component information. The Fourier analysis is thus an energy based method[15]:only when a component contains enough energy, it can be detected by such method. The characteristic scale for the present EMD approach is defined as the distance between two successive maxima (or minima)points. This scale based definition gives the EMD a very local ability. According to the above definition of a characteristic scale, the so-called intrinsic mode function (IMF) is then proposed to approximate the mono-component signal, which satisfies the following two conditions[14,16]: (1) the difference between the number of local extrema and the number of zero-crossings must be zero or one, (2) the running mean value of the envelope defined by the local maxima and by the local minima is zero.

    Fig.1 Original signal (1959-01-2012-12)

    The EMD algorithm is proposed to extract the IMF modes from a given time series[14]. The first step of the EMD algorithm is to identify all local maxima(respectively, minima) points for a given time series x(t). Once all local maxima points are identified, the upper envelopeemax(t)(respectively, the lower envelope emin(t)) is constructed by a cubic spline interpolation. The mean between these two envelopes is defined as:

    Fig.2 The EMD decomposition of Fengxian monthly average temperature time series (1959-01-2012-12)

    The first component is estimated by

    Ideally,h1(t)should be an IMF as expected. In reality, however,h1(t)may not satisfy the condition to be an IMF. We take h1(t)as a new time series and repeat the shifting processj times, until h1j(t)is an IMF. We thus have the first IMF componentC1t= h1j(t )and the residual from x(t ). The shifting procedure is then repeated on the residuals until rn(t)becomes a monotonic function or at most has one local extreme point. This means that no more IMF can be extracted fromrn(t). Thus, with this algorithm we finally haven-1IMF modes with one residual rn(t). The originalx(t )is then rewritten as

    A stopping criterion has to be introduced in the EMD algorithm to stop the shifting process.

    Fig.3 Comparison of reconstruction of the data from the IMFs with annual mean temperature

    2. Monthly average temperature time series analysis

    2.1EMD decomposition and the analysis of average temperature time series in Fengxian

    The results over the entire data (see Fig.1), are obtained after the EMD decomposing. Then 6 IMFs and a residual are obtained (see Fig.2). From this figure, it is seen that there is a gradual increase of the time scale with the mode and each mode has a different mean frequency, from high frequency to low frequency.

    In processing the non-linear temperature time series with the EMD method, the time series could be decomposed into IMFs of several time scales. The IMFs show some features, which can not be seen from the original series.

    The IMF1 shows the high frequency oscillation,which well depicts Fengxian's temperature fluctuations in about 12 months. And it is plausible that the original time series volatility can be found in the IMF 1. Therefore, the IMF 1 can well reflect the fluctuation details of the monthly mean temperature time series in Fengxian. The IMF 2 shows the higher fluctuation in the average time scale. Besides, it is found that the fluctuationrange is enhanced from 1991 to 1998 than in other time scales. The IMF 6 reflects the change of the trend. From the observed residual, the temperature trend continuallyrises since the 1980s in Fengxian. Jiang[17]revealed that there are three temperature sharp risings, one of them is from the 1980s to the 1990s. Mu et al.[18]also found that the temperature of Shanghai suddenly starts to rise since 1979. In this paper, a similar result is found. Besides, a similar time point of the temperature change as in Fengxian is also found in Shanghai.

    2.2Periodic analysis

    Figure 2 shows that each mode has its frequency of fluctuation and a unique periodicity. Through reconstructing IMFs from 3 to the residual and from 4 to the residual (as Fig.3), it is shown that their trends and periodicity are similar to those of the annual mean temperature time series in Fengxian.

    Table 1 Cycle of the IMFs

    Through the above analyses, it is seen with the EMD method, that we can catch different periodic features from each mode (as shown in Table 1). The properties of different time scales of non-linear temperature time series are essential for forecasting the temperature or preventing the disaster.

    The relationship between the modem and the mean time scaleT is shown in Fig.4. The straight line in the log-linear plot suggests the following relationbetween the mean time scale Tandm , for all modes

    where T0=7.231is a constant and the coefficient λ=0.632is graphically estimated. Calculation shows thateλ=1.9is close to 2, which indicates that each mode is linked with a time scale almost twice as large as the time scale of the preceding mode, which is consistent to a dyadic filter bank in the time domain. It is a good analysis method for periodic changes in nonlinear time series.

    Fig.4 Mean time scales associated with each mode

    2.3Analysis of variability

    With the EMD method, the behaviour of different frequencies can be acquired. But one has to consider different temperatures in different times. To further study different temperatures, therefore, we take up the variability, to measure the fluctuation ratio between each mode and the original data.

    Fig.5 The volatility (a) and variability (b) of reconstructed data from the sum of IMF 2-IMF 6

    We define the variability as the ratio between the absolute value of the IMF in any time and the original data. The variability is expressed as[19]

    where Sh(t )is defined as

    The main period change in IMF 1 is obtained,and the special signal intensity and its period change can be obtained in IMF 1. Figure 5 is the ratio of the absolute value from 2 to 6. It shows that the variabilities are quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, and the temperatures rose and fell dramatically in these periods. The volatility from 1993 to 1994 is far more dramatic than in other times. And it is the most remarkable in recent fifty years.

    Fig.6 Hilbert spectrum

    Fig.7 Hilbert marginal spectrum

    2.4Analysis of Hilbert spectrum and Hilbert marginal spectrum

    Figure 6 and Fig.7 show the Hilbert spectrum and the Hilbert marginal spectrum of monthly average temperature time series. They show that the energy is concentrated on the region of low frequency from 0.05 Hz to 0.1 Hz, and less energy is distributed on the region of higher frequency over 0.1 Hz, one sees the power law behaviour in the range 0.0144<ω< 0.1074 month-1, with the scaling value of 1.82.

    3. Conclusions

    The analysis of the monthly average temperature time series by the HHT in Fengxian shows that the EMD method has a good adaptivityfor both nonlinear or linear cases. The relationship among the time,the frequency and the energy is obtained by the HHT,as follows:

    (1) Through the EMD decomposing, the main change of the temperature follows the period of the annual variation, accompanying with several weaker oscillation periods. In recent 50 years, the change shows a falling →rising, →falling→rising trend.

    (2) The analysis of the periods of each mode shows differrent variabilities of each mode, associated with a time scale almost twice as large as the time scale of the preceding mode.

    (3) The analysis of the reconstructed modes of the wave pattern,shows that the variability is quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, which indicates a dramatic temperature rising and falling in these periods. The volatility from 1993 to 1994 is far more dramatic than in other times. And it is the most remarkable in recent fifty years.

    The Hilbert spectrum shows that the energy is concentrated on the region of low frequency from 0.05 Hz to 0.1 Hz, and less energy is distributed on the region of higher frequency over 0.1 Hz.

    References

    [1]SOLOMON S., QIN D. and MANNING M. et al. IPCC:Climate change 2007-The physical scientific basis[M]. Cambridge, UK: Cambridge University Press,2007.

    [2]ZHAO Zong-ci, WANG Shao-wu and XU Ying et al. Attribution of the 20th century climate warming in China[J]. Climatic and Environmental Research,2005, 10(4): 807-817(in Chinese).

    [3]TANG Guo-li, REN Guo-yu. Reanalysis of surface air temperature change of the last 100 years over China[J]. Climatic and Environmental Research, 2005, 10(4):791-798(in Chinese).

    [4]JI Fei, WU Zhao-hua and HUANG Jian-ping et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014, 4: 462-466(in Chinese).

    [5]BRAZDIL R., CHROMA K. and DOBROVOLNY P. et al. Climate fluctuations in the Czech Republic during the period 1961-2005[J]. International Journal of Climatology, 2009, 29(2): 223-242.

    [6]GU Pin-qiang, WU Yong-qi. The climate change of forty years in Fengxian area and rational development and utilization of agriculture[J]. Journal of Agriculture Shanghai, 2000, 16(3): 13-18(in Chinese).

    [7]GU Pin-qiang. Variation characteristic analysis of the first and last day of the four seasons in fengxian district of Shanghai for recent 50 years[J]. Atmospheric Science Research and Application, 2008, (2): 107-112(in Chinese).

    [8]HUANG N. E., CHERN C. C. and HUANG K. et al. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan,21 September 1999[J]. Bulletin of the Seismological Society of America, 2001, 91: 1310-1338.

    [9]CALIF R.,SCHMITTF. G. and HUANG Y. Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(18):4106-4120.

    [10]VELTCHEVA A. D., SOARE C. G. Identification of the components of wave spectra by the Hilbert Huang Transform method[J]. Applied Ocean Research, 2004,26(1-2): 1-12.

    [11]DUFFY D. G. The application of Hilbert-Huang Transforms to meteorological datasets[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(4): 599-611.

    [12]LU Zhi-ming, HUANG Yong-xiang and LIU Yu-lu. The analysis of an atmospheric turbulence data by Hilbert-Huang Transform[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(3): 310-317(in Chinese).

    [13]LEE Jeung-Hoon, HAN Jae-Moon and PARK HHyung-Gil et al. Application of signal processing techniques to the detection of tip vortex cavitation noise in marine propeller[J]. Journal of Hydrodynamics, 2013, 25(3):440-449.

    [14]SOURETIS G., MANDIC D. P. and GRISSELI M. et al. Blood volume signal analysis with empirical mode decomposition[C]. 15th International Conference on Digital Signal Processing. Cardiff, UK, 2007, 147-150.

    [15]HUANG Y., SCHMITT F. G. Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition[J]. Journal of Marine Systems, 2014, 130: 90-100.

    [16]HUANG Y., SCHMITT F. G. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis[J]. Journal of Hydrology, 2009, 373: 103-111.

    [17]JIANG Zhi-hong, DING Yu-guo. Renewed study on the warming process of Shanghai during the past 100 years[J]. Quartely Journal of Applied Meteorology,1999, (2): 155-156(in Chinese).

    [18]MU Hai-zhen, KONG Chun-yan and TANG Xu et al. Preliminary analysis of temperature change in Shanghai and urbanization impacts[J]. Journal of Tropical Meteorology, 2008, 24(6): 673-674.

    [19]SOURETIS G., GRISSELI M. and TANAKA T. Blood volume signal analysis with empirical mode decomposition[C]. 2007 15th International Conference on Digital Signal Processing. Cardiff, UK, 2007, 147-150.

    (December 12, 2014, Revised April 24, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11102114, 11172179 and 11332006), the Inovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ124).

    Biography: MA Hao (1989-), Male, Master

    QIU Xiang,

    E-mail: emqiux@gmail.com

    国内精品美女久久久久久| 精品久久久久久久末码| 欧美中文日本在线观看视频| 真人做人爱边吃奶动态| 不卡一级毛片| 亚洲18禁久久av| 91在线精品国自产拍蜜月| 精品人妻熟女av久视频| av专区在线播放| 熟女电影av网| 国产免费av片在线观看野外av| 色综合站精品国产| 国产精品嫩草影院av在线观看 | 18+在线观看网站| 国产熟女欧美一区二区| www.色视频.com| 69av精品久久久久久| 欧美3d第一页| 搞女人的毛片| 91av网一区二区| 黄色视频,在线免费观看| 真人一进一出gif抽搐免费| 久久久久久久久久久丰满 | or卡值多少钱| 国内精品久久久久久久电影| 亚洲精华国产精华液的使用体验 | 全区人妻精品视频| 99久久中文字幕三级久久日本| 国产黄a三级三级三级人| 成人特级av手机在线观看| 日本爱情动作片www.在线观看 | 亚洲va在线va天堂va国产| 蜜桃久久精品国产亚洲av| 黄色配什么色好看| 国产一区二区三区av在线 | 有码 亚洲区| 一本一本综合久久| 国产成人a区在线观看| 国产亚洲精品久久久久久毛片| 草草在线视频免费看| 久久6这里有精品| 女人被狂操c到高潮| av在线亚洲专区| 精品人妻1区二区| 亚洲av日韩精品久久久久久密| 可以在线观看的亚洲视频| 99热精品在线国产| 在线观看av片永久免费下载| 亚洲av日韩精品久久久久久密| bbb黄色大片| 99久久精品一区二区三区| 悠悠久久av| 国产高清视频在线观看网站| 精品一区二区三区视频在线| 亚洲av中文字字幕乱码综合| 久久欧美精品欧美久久欧美| 免费看美女性在线毛片视频| 91精品国产九色| 伊人久久精品亚洲午夜| 最新中文字幕久久久久| 午夜福利在线观看吧| 尤物成人国产欧美一区二区三区| 亚洲国产高清在线一区二区三| 99久久中文字幕三级久久日本| 久久久久九九精品影院| 国产色婷婷99| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 51国产日韩欧美| 麻豆一二三区av精品| 又粗又爽又猛毛片免费看| 久久久久久大精品| 色视频www国产| 国产午夜精品论理片| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| 91麻豆av在线| 精品福利观看| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| av专区在线播放| 国产三级中文精品| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产 | 欧美成人a在线观看| 国产久久久一区二区三区| 亚洲av二区三区四区| www.色视频.com| 高清毛片免费观看视频网站| 99热精品在线国产| 国产精品福利在线免费观看| 97热精品久久久久久| 亚洲一区高清亚洲精品| 免费无遮挡裸体视频| 精品一区二区免费观看| 男人和女人高潮做爰伦理| 亚洲三级黄色毛片| 国产乱人视频| 制服丝袜大香蕉在线| 女的被弄到高潮叫床怎么办 | 美女cb高潮喷水在线观看| 久久久久久久亚洲中文字幕| 国产高潮美女av| 久久久久久久午夜电影| 国产精品伦人一区二区| 国产乱人伦免费视频| 国产精品免费一区二区三区在线| 99在线视频只有这里精品首页| 窝窝影院91人妻| 亚洲精品亚洲一区二区| 啪啪无遮挡十八禁网站| 老女人水多毛片| 日本黄大片高清| 亚洲av日韩精品久久久久久密| 桃色一区二区三区在线观看| 国语自产精品视频在线第100页| 亚洲综合色惰| 最后的刺客免费高清国语| 一本精品99久久精品77| 久久久久久九九精品二区国产| 淫秽高清视频在线观看| 欧美另类亚洲清纯唯美| 精品一区二区三区视频在线观看免费| 亚洲最大成人av| 又爽又黄无遮挡网站| 看十八女毛片水多多多| 免费高清视频大片| 久9热在线精品视频| 中文字幕高清在线视频| eeuss影院久久| 97热精品久久久久久| 欧美一级a爱片免费观看看| 久久热精品热| 欧美在线一区亚洲| 99热这里只有是精品50| 国产精品福利在线免费观看| 最后的刺客免费高清国语| 精品国内亚洲2022精品成人| 搡老岳熟女国产| 欧美成人一区二区免费高清观看| 亚洲天堂国产精品一区在线| 免费av不卡在线播放| 村上凉子中文字幕在线| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6 | 国产午夜精品久久久久久一区二区三区 | 国产三级在线视频| 国产高清有码在线观看视频| 国产aⅴ精品一区二区三区波| 国产免费一级a男人的天堂| 乱人视频在线观看| 国产av一区在线观看免费| 1000部很黄的大片| 一夜夜www| 免费黄网站久久成人精品| 成年女人看的毛片在线观看| 久久久久久大精品| 久久精品国产鲁丝片午夜精品 | 久久精品国产99精品国产亚洲性色| 网址你懂的国产日韩在线| 国产精品,欧美在线| 久久久国产成人免费| 日韩欧美在线乱码| 国产免费av片在线观看野外av| 99精品久久久久人妻精品| 亚洲性久久影院| 国产精品av视频在线免费观看| 亚洲av免费高清在线观看| netflix在线观看网站| 色噜噜av男人的天堂激情| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 久久久久久久久久黄片| 在线看三级毛片| av福利片在线观看| 乱人视频在线观看| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 成人无遮挡网站| 国产av麻豆久久久久久久| 国产真实伦视频高清在线观看 | 永久网站在线| 亚洲七黄色美女视频| 精品久久久久久久久久免费视频| 午夜福利18| 俺也久久电影网| netflix在线观看网站| 国产精品av视频在线免费观看| 麻豆国产av国片精品| 内射极品少妇av片p| 国产精品一及| 久久精品国产99精品国产亚洲性色| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 直男gayav资源| 亚洲专区中文字幕在线| 国产高清有码在线观看视频| 看片在线看免费视频| av国产免费在线观看| 国产亚洲精品久久久com| 欧美日本视频| 国产亚洲91精品色在线| 一卡2卡三卡四卡精品乱码亚洲| 免费观看在线日韩| 亚洲av一区综合| 最近最新中文字幕大全电影3| 自拍偷自拍亚洲精品老妇| 午夜福利在线观看吧| 在线国产一区二区在线| 深夜精品福利| 欧美极品一区二区三区四区| 97碰自拍视频| 国产成人影院久久av| 韩国av一区二区三区四区| 日日撸夜夜添| 99久国产av精品| 欧美日韩黄片免| 国产高清有码在线观看视频| 赤兔流量卡办理| 一进一出好大好爽视频| 91麻豆av在线| 亚洲精品在线观看二区| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 亚洲图色成人| 亚洲真实伦在线观看| 亚洲精品久久国产高清桃花| 欧美精品啪啪一区二区三区| 国产一区二区三区在线臀色熟女| 老女人水多毛片| 久久国产乱子免费精品| 午夜激情福利司机影院| 我的老师免费观看完整版| 日本爱情动作片www.在线观看 | 国产三级中文精品| 男人和女人高潮做爰伦理| 亚洲国产精品合色在线| 国产黄a三级三级三级人| 亚洲美女搞黄在线观看 | 国产精品自产拍在线观看55亚洲| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 很黄的视频免费| 一区二区三区激情视频| 嫩草影院新地址| 美女被艹到高潮喷水动态| 九九久久精品国产亚洲av麻豆| x7x7x7水蜜桃| 一区二区三区高清视频在线| 国产精品久久久久久av不卡| 免费看光身美女| 男女边吃奶边做爰视频| 久久国产精品人妻蜜桃| 亚洲美女视频黄频| 一级av片app| 午夜福利高清视频| 99久久精品国产国产毛片| 日本熟妇午夜| 偷拍熟女少妇极品色| 中文字幕久久专区| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 长腿黑丝高跟| 直男gayav资源| 精品久久久久久,| 在线免费十八禁| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 男女那种视频在线观看| 国产伦精品一区二区三区视频9| 成人av在线播放网站| 在线观看66精品国产| 免费看美女性在线毛片视频| 国产亚洲精品综合一区在线观看| 亚洲18禁久久av| 亚洲图色成人| 成人国产麻豆网| 国产视频内射| 亚洲 国产 在线| a在线观看视频网站| 黄色配什么色好看| 69人妻影院| 在线播放无遮挡| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 人人妻人人澡欧美一区二区| 国产麻豆成人av免费视频| 日本-黄色视频高清免费观看| 久久久久久久精品吃奶| 国产探花极品一区二区| 听说在线观看完整版免费高清| 久久久久久久亚洲中文字幕| 日韩欧美三级三区| 观看免费一级毛片| 久久久久久久久大av| 极品教师在线视频| 亚洲欧美日韩无卡精品| bbb黄色大片| 国产一区二区三区视频了| 欧美成人一区二区免费高清观看| 婷婷精品国产亚洲av| 日本爱情动作片www.在线观看 | 久久人人精品亚洲av| 成人av在线播放网站| 久久精品91蜜桃| 欧美成人一区二区免费高清观看| 在线观看66精品国产| 成人午夜高清在线视频| 日韩国内少妇激情av| 我要看日韩黄色一级片| 午夜日韩欧美国产| 欧美一区二区国产精品久久精品| 精品久久久久久久人妻蜜臀av| 国产男人的电影天堂91| 国产高清三级在线| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 国产精品一区二区三区四区久久| 久久久久久久亚洲中文字幕| 亚洲18禁久久av| 国产又黄又爽又无遮挡在线| 我的女老师完整版在线观看| 尤物成人国产欧美一区二区三区| 香蕉av资源在线| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆| aaaaa片日本免费| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 国内精品美女久久久久久| 午夜免费激情av| av天堂中文字幕网| 亚洲国产精品成人综合色| 不卡视频在线观看欧美| 国产高清有码在线观看视频| 少妇高潮的动态图| 色精品久久人妻99蜜桃| 国产老妇女一区| 日本 欧美在线| 免费无遮挡裸体视频| 99国产精品一区二区蜜桃av| 国产精品国产高清国产av| 最近中文字幕高清免费大全6 | 丰满乱子伦码专区| 在线国产一区二区在线| 狂野欧美激情性xxxx在线观看| 看片在线看免费视频| 亚洲精品粉嫩美女一区| 国产伦精品一区二区三区四那| 国产高清视频在线观看网站| 99精品在免费线老司机午夜| 男女边吃奶边做爰视频| 亚洲午夜理论影院| 深爱激情五月婷婷| 国产免费男女视频| 亚洲aⅴ乱码一区二区在线播放| 不卡视频在线观看欧美| 亚洲国产精品成人综合色| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 成人特级黄色片久久久久久久| 午夜老司机福利剧场| av天堂中文字幕网| 99久久精品国产国产毛片| 久久精品91蜜桃| 亚洲最大成人手机在线| 一进一出抽搐gif免费好疼| 精品欧美国产一区二区三| 亚洲国产高清在线一区二区三| 久久久久九九精品影院| 色哟哟哟哟哟哟| 99在线视频只有这里精品首页| 1000部很黄的大片| 非洲黑人性xxxx精品又粗又长| 日本免费一区二区三区高清不卡| 亚洲欧美激情综合另类| 午夜福利18| 成年女人毛片免费观看观看9| 亚洲自拍偷在线| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 老司机福利观看| avwww免费| 亚洲男人的天堂狠狠| 在线观看一区二区三区| 又爽又黄a免费视频| 我的女老师完整版在线观看| 中文字幕久久专区| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 欧美一区二区亚洲| 欧美精品啪啪一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲专区国产一区二区| 男人的好看免费观看在线视频| 欧美三级亚洲精品| 国产淫片久久久久久久久| 欧美一区二区精品小视频在线| 午夜福利高清视频| 国产麻豆成人av免费视频| 日日啪夜夜撸| 91精品国产九色| 男女下面进入的视频免费午夜| 国内久久婷婷六月综合欲色啪| 高清日韩中文字幕在线| 国内精品久久久久精免费| 国产亚洲91精品色在线| 亚洲精华国产精华液的使用体验 | 欧美一区二区国产精品久久精品| av在线亚洲专区| 最近中文字幕高清免费大全6 | 少妇裸体淫交视频免费看高清| 一个人看视频在线观看www免费| 日本爱情动作片www.在线观看 | 精品一区二区免费观看| 国内精品久久久久精免费| 国产一区二区亚洲精品在线观看| 国产伦在线观看视频一区| 日本爱情动作片www.在线观看 | 久久久久久久久大av| 国产在线精品亚洲第一网站| 麻豆国产97在线/欧美| 久久久久久久久中文| 听说在线观看完整版免费高清| 不卡视频在线观看欧美| 国模一区二区三区四区视频| 999久久久精品免费观看国产| 国内精品宾馆在线| 久久久午夜欧美精品| 又爽又黄无遮挡网站| 午夜a级毛片| 亚洲天堂国产精品一区在线| 精品久久国产蜜桃| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费| 免费观看在线日韩| 久久精品国产亚洲网站| 精品久久久久久久久亚洲 | 国产精品三级大全| 特级一级黄色大片| 欧美成人一区二区免费高清观看| 12—13女人毛片做爰片一| 很黄的视频免费| 18禁黄网站禁片免费观看直播| 色尼玛亚洲综合影院| 久久久久久伊人网av| 精品国内亚洲2022精品成人| 免费看美女性在线毛片视频| av福利片在线观看| 国产精品一区www在线观看 | 国内久久婷婷六月综合欲色啪| 香蕉av资源在线| 啦啦啦观看免费观看视频高清| 久久久久久大精品| 国产伦一二天堂av在线观看| 日韩av在线大香蕉| 欧美三级亚洲精品| 麻豆精品久久久久久蜜桃| 搡老岳熟女国产| 国产在视频线在精品| 亚洲内射少妇av| 91在线观看av| 中亚洲国语对白在线视频| 国产精品一区二区性色av| 在线免费观看不下载黄p国产 | 亚洲在线观看片| a级毛片a级免费在线| 亚洲欧美日韩东京热| 国产精品久久视频播放| 国内少妇人妻偷人精品xxx网站| xxxwww97欧美| 色综合亚洲欧美另类图片| 久久久久久久亚洲中文字幕| 天堂动漫精品| 欧美人与善性xxx| 欧美成人a在线观看| 麻豆久久精品国产亚洲av| 亚洲人成伊人成综合网2020| 成人国产麻豆网| 亚洲欧美日韩高清在线视频| 在线观看美女被高潮喷水网站| av福利片在线观看| 一进一出抽搐动态| 黄片wwwwww| 久久久久久久亚洲中文字幕| 欧美一区二区亚洲| 中文亚洲av片在线观看爽| 狂野欧美白嫩少妇大欣赏| 一级a爱片免费观看的视频| 国产aⅴ精品一区二区三区波| 成人特级av手机在线观看| 国产毛片a区久久久久| 国产亚洲av嫩草精品影院| 此物有八面人人有两片| 亚洲图色成人| 亚洲无线在线观看| 免费无遮挡裸体视频| 99在线视频只有这里精品首页| 村上凉子中文字幕在线| 久久国产精品人妻蜜桃| 偷拍熟女少妇极品色| 小说图片视频综合网站| 精品无人区乱码1区二区| 男人舔女人下体高潮全视频| 日日夜夜操网爽| 嫩草影院新地址| 日本-黄色视频高清免费观看| 桃色一区二区三区在线观看| 我的女老师完整版在线观看| 在线观看舔阴道视频| 欧美成人一区二区免费高清观看| 日韩精品青青久久久久久| 亚洲美女搞黄在线观看 | 亚洲性夜色夜夜综合| 国产精品人妻久久久久久| 欧美一区二区亚洲| 日韩中文字幕欧美一区二区| 桃色一区二区三区在线观看| 久久中文看片网| 韩国av一区二区三区四区| 午夜老司机福利剧场| 人人妻,人人澡人人爽秒播| 日本三级黄在线观看| 久久精品综合一区二区三区| 看十八女毛片水多多多| 无人区码免费观看不卡| 九九久久精品国产亚洲av麻豆| 真人做人爱边吃奶动态| 性插视频无遮挡在线免费观看| 亚洲专区中文字幕在线| 国产久久久一区二区三区| 色综合站精品国产| 欧美最新免费一区二区三区| 99热6这里只有精品| 色综合亚洲欧美另类图片| 国产亚洲精品综合一区在线观看| 最后的刺客免费高清国语| 精品人妻1区二区| 老师上课跳d突然被开到最大视频| 最近视频中文字幕2019在线8| 亚洲经典国产精华液单| 三级毛片av免费| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 夜夜爽天天搞| 日韩一本色道免费dvd| 亚洲人成网站在线播| 国国产精品蜜臀av免费| 国产白丝娇喘喷水9色精品| 三级毛片av免费| 一进一出好大好爽视频| 国产成人一区二区在线| 在现免费观看毛片| 美女免费视频网站| 日韩一区二区视频免费看| 性插视频无遮挡在线免费观看| 此物有八面人人有两片| 国产 一区 欧美 日韩| av在线天堂中文字幕| 全区人妻精品视频| 蜜桃亚洲精品一区二区三区| 床上黄色一级片| 国产精品国产高清国产av| 亚洲人与动物交配视频| 久久这里只有精品中国| 精品久久久久久久人妻蜜臀av| 国模一区二区三区四区视频| 亚洲乱码一区二区免费版| 男女那种视频在线观看| 国产高清有码在线观看视频| 亚洲专区中文字幕在线| 一本精品99久久精品77| 精品免费久久久久久久清纯| 国内少妇人妻偷人精品xxx网站| 久久久久久久久久久丰满 | 国产精品野战在线观看| 性插视频无遮挡在线免费观看| 精品人妻1区二区| 精品久久久久久久久久免费视频| 岛国在线免费视频观看| 欧美+亚洲+日韩+国产| 国产aⅴ精品一区二区三区波| 国产伦人伦偷精品视频| 国内少妇人妻偷人精品xxx网站| 国产av一区在线观看免费| 我要搜黄色片| 一进一出抽搐gif免费好疼| 高清在线国产一区| 一级毛片久久久久久久久女| 亚洲成人久久性| 久久久久久久久久久丰满 | 少妇的逼水好多| 午夜老司机福利剧场| 日本色播在线视频| 国产欧美日韩精品一区二区| 午夜老司机福利剧场| 美女免费视频网站| 中文字幕高清在线视频| 亚洲最大成人手机在线| 精品国产三级普通话版| 国产午夜精品论理片| 99精品久久久久人妻精品| 久久久久久伊人网av| 伊人久久精品亚洲午夜| 三级毛片av免费| 国产精品人妻久久久影院| 国语自产精品视频在线第100页| 日本黄色片子视频| 国产成人福利小说| 熟女电影av网| 精品久久久久久成人av| 欧美一区二区亚洲| 国内少妇人妻偷人精品xxx网站| 国产aⅴ精品一区二区三区波|