• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of temperature time series based on Hilbert-Huang Transform*

    2015-11-24 05:28:13MAHao馬皓QIUXiang邱翔LUOJianping羅劍平GUPinqiang顧品強LIUYulu劉宇陸
    水動力學研究與進展 B輯 2015年4期

    MA Hao (馬皓), QIU Xiang (邱翔), LUO Jian-ping (羅劍平), GU Pin-qiang (顧品強),LIU Yu-lu (劉宇陸)

    1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China,E-mail: tracy_mahao@sina.com

    2. School of Science, Shanghai Institute of Technology, Shanghai 201418, China

    3. Shanghai Meteorological Service in Fengxian District, Shanghai 201416, China

    4. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    Analysis of temperature time series based on Hilbert-Huang Transform*

    MA Hao (馬皓)1, QIU Xiang (邱翔)2, LUO Jian-ping (羅劍平)1, GU Pin-qiang (顧品強)3,LIU Yu-lu (劉宇陸)4

    1. School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 201418, China,E-mail: tracy_mahao@sina.com

    2. School of Science, Shanghai Institute of Technology, Shanghai 201418, China

    3. Shanghai Meteorological Service in Fengxian District, Shanghai 201416, China

    4. Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China

    In this paper, with consideration of the nonlinear and non-stationary properties of the temperature time series, we employ the Hilbert-Huang Transform, based on the empirical mode decomposition (EMD), to analyze the temperature time series from 1959 to 2012 in the Fengxian district of Shanghai, obtained from a certain monitoring station. The oscillating mode is drawn from the data,and its characteristics of the time series are investigated. The results show that the intrinsic modes of 1, 2 and 6 represent the periodic properties of 1 year, 2.5 years, and 27 years. The mean temperature shows periodic variations, but the main trend of this fluctuation is the rising of the temperature in the recent 50 years. The analysis of the reconstructed modes with the wave pattern shows that the variations are quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, which indicates that the temperature rises and falls dramatically in these periods. The volatility from 1993 to 1994 is far more dramatic than in other periods. And the volatility is the most remarkable in recent 50 years. The log-linear plots of the mean time scales T and M show that each mode associated with a time scale almost twice as large as the time scale of the preceding mode. The Hilbert spectrum shows that the energy is concentrated in the range of low frequency from 0.05 to 0.1 Hz, and a very small amount of energy is distributed in the range of higher frequency over 0.1 Hz. In conclusion, the HHT is better than other traditional signal analysis methods in processing the nonlinear signals to obtain the periodic variation and volatility's properties of different time scales.

    atmospheric turbulence, temperature time series, empirical mode decomposition (EMD), Hilbert Huang Transform

    Introduction

    Global warming is currently attracting more and more attentions of researchers, and its causes and the effects on the global climate are issues under debate. In this context, the temperatures vary in different areas of the world. The global mean temperature has raised from 0.56oC to 0.92oC in recent 100 years[1]. The various climate factors in China, especially the average temperature, see complicated fluctuations. Zhao et al.[2]revealed that the climate warmingin China reaches 0.2oC-0.8oC in recent 100 years, Tang et al.[3]found the annual average temperaturein the surface in China has raised about 0.79oC since 1905, so the volatility of thelocaltemperature change is one of the core/key problems in the study of climate problems[4]. The volatility of the temperature variation is useful in identifying and evaluating the causes of the global warming, and it provides an essentialbasis to forecast the trend of the global warming[5].

    The Fengxian district is located in the south of Shanghai, to the north side of the Hangzhou Bay. Agriculture is the mainstay of its economy, in the planning of the Shanghai government. Therefore, the temperature change in this district is important for better understanding and analyzing the climate changes of the natural ecological environment. Due to its special geographic position, the climate in Fengxian isless influenced by the urban heat island than that in other highly urbanized areas in Shanghai. Comparing the annual mean temperature in Xujiahui with that in Fengxian, the difference between them was 0.1oC in 1960, 0.9oC in 1990, and 1.3oC in 2000. And the difference is becoming more and more important.Itis shownthat the temperature in Fengxian is in a rising trend since 1960[6]. From the beginning of the 21st century, under the background of the global warming,the intensity and the frequency of the extreme temperature have increased obviously. And the fluctuation of the temperature change in Fengxian is also more significant[7].

    In the study of the temperature time series, the multi-scaling structures of the oscillation were not paid enough attention. So we take up the multi-scaling structures based on the empirical mode decomposition(EMD) method introduced by Huang et al. as a new time series analysis technique, to separate a given time series into a sum of modes, each associated with well defined scales[8]. This method is very efficient for non-stationary and nonlinear time series, and in separating trends from small-scale fluctuations[9]. Due to its ability of characterizing the multiscaling scale invariant directly, the EMD method has met with a great success and has been successfully applied to many fields of natural and applied sciences: the water wave analysis[10], the earthquake wave analysis, the meteorology and climate studies[8], and the biological applications[11], among others. It has already been applied to non-stationary temperature data, but most studies focus on the relationship between the time and the amplitude, not so much on the frequency. In this paper,we use the Hilbert spectral analysis to describe the relationship among the time, the amplitude and the frequency[12].

    The EMD is used to analyze the oscillating characteristics of the monthly mean temperature time series in the Fengxian district based on the modes after decomposing, the reconstructed modes with the wave pattern are used to analyze the oscillation characteristics of different time scales, the log-linear plot is used to show the relationship between the modes and the mean time scale, the Hilbert spectrum and the Hilbert marginal spectrum are used to reveal the relationship among the time, the frequency and the energy.

    1. Empirical mode decomposition and Hilbert spectral analysis

    1.1Data collection and preprocessing

    The meteorological data, analyzed in this paper,is collected from the Shanghai meteorological service in the Fengxian district. The data include the monthly mean temperatures from 1959 to 2012, which can represent the temperature variation in the past 50 years in the Fengxian district. The monthly mean data are obtained from the averages of daily 2, 8, 14, 20 o'clock data, then with the consideration of the days in a month the arithmetic mean is taken, and the monthly average temperatures (1959-2012) recorded by the Fengxian observatory, Shanghai are analyzed here,including 648 months.

    1.2Hilbert-Huang transform

    The starting point of the EMD is that most of the signals are multi-components, which means that different scales exist simultaneously. The signal can be considered as a superposition of fast and slow oscillations at a very local level. In the time series analysis, a characteristic scale generally is explicitly or implicitly considered[13,14]. For example, in the Fourier analysis the characteristic scale is the length of one period of the sine (or cosine) wave. Then an integration operator is applied to extract the component information. The Fourier analysis is thus an energy based method[15]:only when a component contains enough energy, it can be detected by such method. The characteristic scale for the present EMD approach is defined as the distance between two successive maxima (or minima)points. This scale based definition gives the EMD a very local ability. According to the above definition of a characteristic scale, the so-called intrinsic mode function (IMF) is then proposed to approximate the mono-component signal, which satisfies the following two conditions[14,16]: (1) the difference between the number of local extrema and the number of zero-crossings must be zero or one, (2) the running mean value of the envelope defined by the local maxima and by the local minima is zero.

    Fig.1 Original signal (1959-01-2012-12)

    The EMD algorithm is proposed to extract the IMF modes from a given time series[14]. The first step of the EMD algorithm is to identify all local maxima(respectively, minima) points for a given time series x(t). Once all local maxima points are identified, the upper envelopeemax(t)(respectively, the lower envelope emin(t)) is constructed by a cubic spline interpolation. The mean between these two envelopes is defined as:

    Fig.2 The EMD decomposition of Fengxian monthly average temperature time series (1959-01-2012-12)

    The first component is estimated by

    Ideally,h1(t)should be an IMF as expected. In reality, however,h1(t)may not satisfy the condition to be an IMF. We take h1(t)as a new time series and repeat the shifting processj times, until h1j(t)is an IMF. We thus have the first IMF componentC1t= h1j(t )and the residual from x(t ). The shifting procedure is then repeated on the residuals until rn(t)becomes a monotonic function or at most has one local extreme point. This means that no more IMF can be extracted fromrn(t). Thus, with this algorithm we finally haven-1IMF modes with one residual rn(t). The originalx(t )is then rewritten as

    A stopping criterion has to be introduced in the EMD algorithm to stop the shifting process.

    Fig.3 Comparison of reconstruction of the data from the IMFs with annual mean temperature

    2. Monthly average temperature time series analysis

    2.1EMD decomposition and the analysis of average temperature time series in Fengxian

    The results over the entire data (see Fig.1), are obtained after the EMD decomposing. Then 6 IMFs and a residual are obtained (see Fig.2). From this figure, it is seen that there is a gradual increase of the time scale with the mode and each mode has a different mean frequency, from high frequency to low frequency.

    In processing the non-linear temperature time series with the EMD method, the time series could be decomposed into IMFs of several time scales. The IMFs show some features, which can not be seen from the original series.

    The IMF1 shows the high frequency oscillation,which well depicts Fengxian's temperature fluctuations in about 12 months. And it is plausible that the original time series volatility can be found in the IMF 1. Therefore, the IMF 1 can well reflect the fluctuation details of the monthly mean temperature time series in Fengxian. The IMF 2 shows the higher fluctuation in the average time scale. Besides, it is found that the fluctuationrange is enhanced from 1991 to 1998 than in other time scales. The IMF 6 reflects the change of the trend. From the observed residual, the temperature trend continuallyrises since the 1980s in Fengxian. Jiang[17]revealed that there are three temperature sharp risings, one of them is from the 1980s to the 1990s. Mu et al.[18]also found that the temperature of Shanghai suddenly starts to rise since 1979. In this paper, a similar result is found. Besides, a similar time point of the temperature change as in Fengxian is also found in Shanghai.

    2.2Periodic analysis

    Figure 2 shows that each mode has its frequency of fluctuation and a unique periodicity. Through reconstructing IMFs from 3 to the residual and from 4 to the residual (as Fig.3), it is shown that their trends and periodicity are similar to those of the annual mean temperature time series in Fengxian.

    Table 1 Cycle of the IMFs

    Through the above analyses, it is seen with the EMD method, that we can catch different periodic features from each mode (as shown in Table 1). The properties of different time scales of non-linear temperature time series are essential for forecasting the temperature or preventing the disaster.

    The relationship between the modem and the mean time scaleT is shown in Fig.4. The straight line in the log-linear plot suggests the following relationbetween the mean time scale Tandm , for all modes

    where T0=7.231is a constant and the coefficient λ=0.632is graphically estimated. Calculation shows thateλ=1.9is close to 2, which indicates that each mode is linked with a time scale almost twice as large as the time scale of the preceding mode, which is consistent to a dyadic filter bank in the time domain. It is a good analysis method for periodic changes in nonlinear time series.

    Fig.4 Mean time scales associated with each mode

    2.3Analysis of variability

    With the EMD method, the behaviour of different frequencies can be acquired. But one has to consider different temperatures in different times. To further study different temperatures, therefore, we take up the variability, to measure the fluctuation ratio between each mode and the original data.

    Fig.5 The volatility (a) and variability (b) of reconstructed data from the sum of IMF 2-IMF 6

    We define the variability as the ratio between the absolute value of the IMF in any time and the original data. The variability is expressed as[19]

    where Sh(t )is defined as

    The main period change in IMF 1 is obtained,and the special signal intensity and its period change can be obtained in IMF 1. Figure 5 is the ratio of the absolute value from 2 to 6. It shows that the variabilities are quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, and the temperatures rose and fell dramatically in these periods. The volatility from 1993 to 1994 is far more dramatic than in other times. And it is the most remarkable in recent fifty years.

    Fig.6 Hilbert spectrum

    Fig.7 Hilbert marginal spectrum

    2.4Analysis of Hilbert spectrum and Hilbert marginal spectrum

    Figure 6 and Fig.7 show the Hilbert spectrum and the Hilbert marginal spectrum of monthly average temperature time series. They show that the energy is concentrated on the region of low frequency from 0.05 Hz to 0.1 Hz, and less energy is distributed on the region of higher frequency over 0.1 Hz, one sees the power law behaviour in the range 0.0144<ω< 0.1074 month-1, with the scaling value of 1.82.

    3. Conclusions

    The analysis of the monthly average temperature time series by the HHT in Fengxian shows that the EMD method has a good adaptivityfor both nonlinear or linear cases. The relationship among the time,the frequency and the energy is obtained by the HHT,as follows:

    (1) Through the EMD decomposing, the main change of the temperature follows the period of the annual variation, accompanying with several weaker oscillation periods. In recent 50 years, the change shows a falling →rising, →falling→rising trend.

    (2) The analysis of the periods of each mode shows differrent variabilities of each mode, associated with a time scale almost twice as large as the time scale of the preceding mode.

    (3) The analysis of the reconstructed modes of the wave pattern,shows that the variability is quite large from 1963 to 1964, from 1977 to 1982 and from 2003 to 2006, which indicates a dramatic temperature rising and falling in these periods. The volatility from 1993 to 1994 is far more dramatic than in other times. And it is the most remarkable in recent fifty years.

    The Hilbert spectrum shows that the energy is concentrated on the region of low frequency from 0.05 Hz to 0.1 Hz, and less energy is distributed on the region of higher frequency over 0.1 Hz.

    References

    [1]SOLOMON S., QIN D. and MANNING M. et al. IPCC:Climate change 2007-The physical scientific basis[M]. Cambridge, UK: Cambridge University Press,2007.

    [2]ZHAO Zong-ci, WANG Shao-wu and XU Ying et al. Attribution of the 20th century climate warming in China[J]. Climatic and Environmental Research,2005, 10(4): 807-817(in Chinese).

    [3]TANG Guo-li, REN Guo-yu. Reanalysis of surface air temperature change of the last 100 years over China[J]. Climatic and Environmental Research, 2005, 10(4):791-798(in Chinese).

    [4]JI Fei, WU Zhao-hua and HUANG Jian-ping et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014, 4: 462-466(in Chinese).

    [5]BRAZDIL R., CHROMA K. and DOBROVOLNY P. et al. Climate fluctuations in the Czech Republic during the period 1961-2005[J]. International Journal of Climatology, 2009, 29(2): 223-242.

    [6]GU Pin-qiang, WU Yong-qi. The climate change of forty years in Fengxian area and rational development and utilization of agriculture[J]. Journal of Agriculture Shanghai, 2000, 16(3): 13-18(in Chinese).

    [7]GU Pin-qiang. Variation characteristic analysis of the first and last day of the four seasons in fengxian district of Shanghai for recent 50 years[J]. Atmospheric Science Research and Application, 2008, (2): 107-112(in Chinese).

    [8]HUANG N. E., CHERN C. C. and HUANG K. et al. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan,21 September 1999[J]. Bulletin of the Seismological Society of America, 2001, 91: 1310-1338.

    [9]CALIF R.,SCHMITTF. G. and HUANG Y. Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(18):4106-4120.

    [10]VELTCHEVA A. D., SOARE C. G. Identification of the components of wave spectra by the Hilbert Huang Transform method[J]. Applied Ocean Research, 2004,26(1-2): 1-12.

    [11]DUFFY D. G. The application of Hilbert-Huang Transforms to meteorological datasets[J]. Journal of Atmospheric and Oceanic Technology, 2004, 21(4): 599-611.

    [12]LU Zhi-ming, HUANG Yong-xiang and LIU Yu-lu. The analysis of an atmospheric turbulence data by Hilbert-Huang Transform[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(3): 310-317(in Chinese).

    [13]LEE Jeung-Hoon, HAN Jae-Moon and PARK HHyung-Gil et al. Application of signal processing techniques to the detection of tip vortex cavitation noise in marine propeller[J]. Journal of Hydrodynamics, 2013, 25(3):440-449.

    [14]SOURETIS G., MANDIC D. P. and GRISSELI M. et al. Blood volume signal analysis with empirical mode decomposition[C]. 15th International Conference on Digital Signal Processing. Cardiff, UK, 2007, 147-150.

    [15]HUANG Y., SCHMITT F. G. Time dependent intrinsic correlation analysis of temperature and dissolved oxygen time series using empirical mode decomposition[J]. Journal of Marine Systems, 2014, 130: 90-100.

    [16]HUANG Y., SCHMITT F. G. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis[J]. Journal of Hydrology, 2009, 373: 103-111.

    [17]JIANG Zhi-hong, DING Yu-guo. Renewed study on the warming process of Shanghai during the past 100 years[J]. Quartely Journal of Applied Meteorology,1999, (2): 155-156(in Chinese).

    [18]MU Hai-zhen, KONG Chun-yan and TANG Xu et al. Preliminary analysis of temperature change in Shanghai and urbanization impacts[J]. Journal of Tropical Meteorology, 2008, 24(6): 673-674.

    [19]SOURETIS G., GRISSELI M. and TANAKA T. Blood volume signal analysis with empirical mode decomposition[C]. 2007 15th International Conference on Digital Signal Processing. Cardiff, UK, 2007, 147-150.

    (December 12, 2014, Revised April 24, 2015)

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11102114, 11172179 and 11332006), the Inovation Program of Shanghai Municipal Education Commission (Grant No. 13YZ124).

    Biography: MA Hao (1989-), Male, Master

    QIU Xiang,

    E-mail: emqiux@gmail.com

    国产精品久久视频播放| 插逼视频在线观看| 精品久久久久久久人妻蜜臀av| 极品教师在线视频| 美女 人体艺术 gogo| 亚洲最大成人手机在线| 日本一二三区视频观看| 亚洲精品国产av成人精品 | 亚洲欧美成人精品一区二区| 成人精品一区二区免费| 日韩在线高清观看一区二区三区| 久久久久久久久中文| 欧美最黄视频在线播放免费| 久久精品国产99精品国产亚洲性色| 国产精品伦人一区二区| 女人被狂操c到高潮| 欧美3d第一页| 秋霞在线观看毛片| 精品无人区乱码1区二区| 干丝袜人妻中文字幕| 美女高潮的动态| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久爱视频| 最近2019中文字幕mv第一页| 久久久色成人| 亚洲精品国产av成人精品 | 变态另类成人亚洲欧美熟女| 亚洲av五月六月丁香网| 欧美不卡视频在线免费观看| 少妇高潮的动态图| 内射极品少妇av片p| 国产精品99久久久久久久久| 又黄又爽又免费观看的视频| 看免费成人av毛片| 又黄又爽又免费观看的视频| 大香蕉久久网| 日本成人三级电影网站| 黄色一级大片看看| 国产高清不卡午夜福利| 一本精品99久久精品77| 晚上一个人看的免费电影| а√天堂www在线а√下载| 国产高清有码在线观看视频| 美女内射精品一级片tv| 一边摸一边抽搐一进一小说| 免费av毛片视频| 国内精品久久久久精免费| 久久久精品94久久精品| 国产老妇女一区| 亚洲不卡免费看| 日韩亚洲欧美综合| 中国国产av一级| 日韩欧美三级三区| 欧美精品国产亚洲| 欧美一区二区国产精品久久精品| 噜噜噜噜噜久久久久久91| 最近中文字幕高清免费大全6| 国产高清有码在线观看视频| 在线观看午夜福利视频| 亚洲国产色片| 最新在线观看一区二区三区| 色视频www国产| 国产久久久一区二区三区| 午夜久久久久精精品| 青春草视频在线免费观看| 亚洲人成网站在线观看播放| 看片在线看免费视频| av专区在线播放| 成人综合一区亚洲| 国产伦精品一区二区三区四那| 国产综合懂色| 天堂影院成人在线观看| 国内精品久久久久精免费| 国产伦精品一区二区三区四那| 99精品在免费线老司机午夜| 小蜜桃在线观看免费完整版高清| 亚洲精华国产精华液的使用体验 | 亚洲精华国产精华液的使用体验 | 亚洲经典国产精华液单| 小说图片视频综合网站| 色哟哟哟哟哟哟| 国产av在哪里看| 欧美bdsm另类| 亚洲精品色激情综合| 男女边吃奶边做爰视频| 欧美一区二区亚洲| 亚洲国产精品成人综合色| 在现免费观看毛片| 非洲黑人性xxxx精品又粗又长| 日本撒尿小便嘘嘘汇集6| 中文字幕免费在线视频6| 又黄又爽又刺激的免费视频.| 在线播放无遮挡| 色5月婷婷丁香| 国产精品久久久久久久电影| 欧美+亚洲+日韩+国产| 看非洲黑人一级黄片| 日日撸夜夜添| 久久久久久久午夜电影| 国产黄色小视频在线观看| 久久久久九九精品影院| 亚洲国产精品成人久久小说 | 国产精品久久久久久久久免| 久久久久久久亚洲中文字幕| 麻豆一二三区av精品| 特级一级黄色大片| 亚洲av二区三区四区| 午夜福利高清视频| 亚洲国产精品sss在线观看| 91麻豆精品激情在线观看国产| 国产一区二区激情短视频| 亚洲高清免费不卡视频| 在线免费十八禁| 欧美极品一区二区三区四区| 中文字幕久久专区| 欧美日韩国产亚洲二区| 亚洲人成网站在线播放欧美日韩| 在线观看av片永久免费下载| 久久婷婷人人爽人人干人人爱| 99九九线精品视频在线观看视频| 一本一本综合久久| 欧美3d第一页| 国内精品久久久久精免费| 国产毛片a区久久久久| 精品人妻偷拍中文字幕| 国产 一区精品| 日韩三级伦理在线观看| 国产精品女同一区二区软件| 日韩欧美精品免费久久| 久久久国产成人免费| 亚洲成人久久爱视频| 校园春色视频在线观看| 精品久久久噜噜| 亚洲无线观看免费| 亚洲人成网站在线播放欧美日韩| 村上凉子中文字幕在线| 免费av毛片视频| 美女xxoo啪啪120秒动态图| 午夜福利视频1000在线观看| 中文字幕精品亚洲无线码一区| 欧美高清性xxxxhd video| 国产伦精品一区二区三区四那| 看免费成人av毛片| 国产高清视频在线播放一区| 黄片wwwwww| 综合色av麻豆| 午夜福利视频1000在线观看| 成年免费大片在线观看| 天堂影院成人在线观看| 免费av观看视频| 色哟哟哟哟哟哟| 少妇被粗大猛烈的视频| 麻豆国产97在线/欧美| 精品久久久久久久末码| 别揉我奶头~嗯~啊~动态视频| 成熟少妇高潮喷水视频| 亚洲av成人精品一区久久| 特级一级黄色大片| 精品一区二区三区人妻视频| 亚洲精品日韩av片在线观看| 久久精品国产清高在天天线| 少妇裸体淫交视频免费看高清| 禁无遮挡网站| 最新在线观看一区二区三区| 精品一区二区三区av网在线观看| 亚洲人成网站在线观看播放| 一个人看视频在线观看www免费| 一进一出抽搐gif免费好疼| 美女免费视频网站| 97在线视频观看| 18禁裸乳无遮挡免费网站照片| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 欧美激情久久久久久爽电影| 男人舔奶头视频| 在线免费观看的www视频| 日韩成人av中文字幕在线观看 | 亚洲色图av天堂| 天天躁夜夜躁狠狠久久av| www.色视频.com| 岛国在线免费视频观看| 亚洲欧美中文字幕日韩二区| 欧美极品一区二区三区四区| 亚洲人成网站在线观看播放| 在线a可以看的网站| av在线观看视频网站免费| 美女黄网站色视频| 一区二区三区四区激情视频 | 精品人妻熟女av久视频| 国产在视频线在精品| 国产探花极品一区二区| 不卡一级毛片| 18禁黄网站禁片免费观看直播| 久久精品综合一区二区三区| 俺也久久电影网| 人妻久久中文字幕网| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| 亚洲真实伦在线观看| 日日撸夜夜添| 国产精品精品国产色婷婷| 给我免费播放毛片高清在线观看| 日本黄色片子视频| av在线老鸭窝| 日韩精品中文字幕看吧| 亚洲一区二区三区色噜噜| 少妇被粗大猛烈的视频| 亚洲国产欧洲综合997久久,| 少妇猛男粗大的猛烈进出视频 | 国产精品无大码| 床上黄色一级片| 一区二区三区四区激情视频 | 一区二区三区免费毛片| 桃色一区二区三区在线观看| 看片在线看免费视频| 日本黄色视频三级网站网址| 少妇被粗大猛烈的视频| 久久综合国产亚洲精品| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 九九在线视频观看精品| 日日啪夜夜撸| 国产精品一区二区三区四区久久| 精品免费久久久久久久清纯| 成年免费大片在线观看| 日日摸夜夜添夜夜添小说| 熟女电影av网| 18禁黄网站禁片免费观看直播| 欧美一区二区亚洲| 精品人妻熟女av久视频| 99热这里只有是精品50| 国产精品人妻久久久久久| 国产老妇女一区| 久久精品夜夜夜夜夜久久蜜豆| 俄罗斯特黄特色一大片| 精品人妻熟女av久视频| 成人美女网站在线观看视频| 精品一区二区三区视频在线观看免费| 草草在线视频免费看| av在线播放精品| 欧美丝袜亚洲另类| 国产av麻豆久久久久久久| 男人舔奶头视频| 日韩欧美三级三区| 国产精品久久久久久av不卡| 蜜桃亚洲精品一区二区三区| 国产精品人妻久久久久久| 中文字幕av成人在线电影| 久久99热这里只有精品18| av视频在线观看入口| 99久国产av精品| 婷婷亚洲欧美| 此物有八面人人有两片| 亚州av有码| 最近手机中文字幕大全| 女人被狂操c到高潮| 可以在线观看毛片的网站| 欧美三级亚洲精品| 美女黄网站色视频| 国产亚洲精品久久久com| 久久久a久久爽久久v久久| 欧美日韩综合久久久久久| 热99在线观看视频| 一级毛片我不卡| 真实男女啪啪啪动态图| 日本-黄色视频高清免费观看| 最新中文字幕久久久久| 狠狠狠狠99中文字幕| 麻豆精品久久久久久蜜桃| 天堂av国产一区二区熟女人妻| 22中文网久久字幕| 国产国拍精品亚洲av在线观看| 精品一区二区三区视频在线| 老师上课跳d突然被开到最大视频| 亚洲av五月六月丁香网| 午夜a级毛片| 一区二区三区四区激情视频 | 少妇熟女欧美另类| 日韩欧美在线乱码| 日日啪夜夜撸| 一级毛片久久久久久久久女| 狂野欧美白嫩少妇大欣赏| 国产在线精品亚洲第一网站| 亚洲电影在线观看av| 国产亚洲91精品色在线| 国产亚洲精品久久久com| 免费观看精品视频网站| 亚洲欧美精品自产自拍| 五月玫瑰六月丁香| 春色校园在线视频观看| 真实男女啪啪啪动态图| 国产极品精品免费视频能看的| 亚洲国产欧洲综合997久久,| 久久久国产成人免费| 欧美潮喷喷水| 在线观看av片永久免费下载| 亚洲国产欧美人成| 精品无人区乱码1区二区| 国产伦在线观看视频一区| 国产真实伦视频高清在线观看| 欧美性感艳星| 少妇熟女欧美另类| 国产精品99久久久久久久久| 国产真实伦视频高清在线观看| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 国产毛片a区久久久久| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 国内久久婷婷六月综合欲色啪| 在线观看66精品国产| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 中文在线观看免费www的网站| 亚洲中文字幕一区二区三区有码在线看| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| 婷婷精品国产亚洲av在线| 中国国产av一级| 一级av片app| 亚洲精品一卡2卡三卡4卡5卡| 久久99热这里只有精品18| 午夜福利视频1000在线观看| 精品一区二区三区av网在线观看| 精品一区二区三区视频在线观看免费| 少妇的逼好多水| 热99re8久久精品国产| 欧美日韩国产亚洲二区| 黄片wwwwww| 午夜老司机福利剧场| 免费观看精品视频网站| 亚洲精品日韩在线中文字幕 | 国产一区二区激情短视频| 一级黄片播放器| 亚洲色图av天堂| 一进一出好大好爽视频| 亚洲欧美日韩高清专用| 91在线观看av| 少妇被粗大猛烈的视频| 一边摸一边抽搐一进一小说| 丝袜喷水一区| 日本免费一区二区三区高清不卡| 国产精品爽爽va在线观看网站| 99热这里只有是精品在线观看| 久久亚洲国产成人精品v| 久久精品国产自在天天线| 亚洲精品国产av成人精品 | 波多野结衣高清作品| 少妇熟女欧美另类| 国产精品一区二区三区四区免费观看 | 日韩精品有码人妻一区| 最后的刺客免费高清国语| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 狠狠狠狠99中文字幕| 国产又黄又爽又无遮挡在线| 寂寞人妻少妇视频99o| 成年女人永久免费观看视频| 中文字幕精品亚洲无线码一区| 免费无遮挡裸体视频| 99久久精品热视频| 日韩亚洲欧美综合| 亚洲精华国产精华液的使用体验 | 身体一侧抽搐| 久久婷婷人人爽人人干人人爱| 久久九九热精品免费| 久久精品国产99精品国产亚洲性色| 三级经典国产精品| 精品午夜福利在线看| 欧美色欧美亚洲另类二区| 一个人看的www免费观看视频| 婷婷精品国产亚洲av在线| 欧美日韩乱码在线| 国产乱人偷精品视频| 99久久久亚洲精品蜜臀av| 偷拍熟女少妇极品色| 国产av一区在线观看免费| 国产av在哪里看| 性插视频无遮挡在线免费观看| 成人综合一区亚洲| 网址你懂的国产日韩在线| 国产黄a三级三级三级人| 最新在线观看一区二区三区| 国产视频一区二区在线看| 丰满乱子伦码专区| 蜜桃亚洲精品一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 成人综合一区亚洲| 欧美+亚洲+日韩+国产| 99久久无色码亚洲精品果冻| 精品国内亚洲2022精品成人| 美女大奶头视频| 高清毛片免费观看视频网站| 中文资源天堂在线| 精品乱码久久久久久99久播| 日本黄色片子视频| 你懂的网址亚洲精品在线观看 | 国产av麻豆久久久久久久| 久久人人精品亚洲av| 午夜福利在线观看吧| 在线国产一区二区在线| 99久久精品热视频| 少妇人妻精品综合一区二区 | 成人综合一区亚洲| 蜜臀久久99精品久久宅男| 男人的好看免费观看在线视频| 91久久精品国产一区二区成人| 国产淫片久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 黑人高潮一二区| 欧美丝袜亚洲另类| 免费av不卡在线播放| 成人特级av手机在线观看| 国产大屁股一区二区在线视频| 亚洲精品日韩在线中文字幕 | 给我免费播放毛片高清在线观看| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 色av中文字幕| 22中文网久久字幕| 18禁在线无遮挡免费观看视频 | 在线免费观看的www视频| 国产精品伦人一区二区| 22中文网久久字幕| 少妇猛男粗大的猛烈进出视频 | 欧美潮喷喷水| 亚洲av中文字字幕乱码综合| 欧美+亚洲+日韩+国产| 国产成人a∨麻豆精品| 国产在线男女| 久久中文看片网| 国产精品伦人一区二区| 久久久久久九九精品二区国产| av卡一久久| 亚洲性久久影院| 精品午夜福利在线看| 校园春色视频在线观看| 国产av在哪里看| 麻豆成人午夜福利视频| 色综合亚洲欧美另类图片| 久久精品国产亚洲网站| 午夜福利在线观看免费完整高清在 | 亚洲欧美精品自产自拍| 男女之事视频高清在线观看| 国产伦精品一区二区三区四那| 久久精品国产清高在天天线| 久久99热6这里只有精品| 国产高清视频在线播放一区| 亚洲精品久久国产高清桃花| 亚洲av五月六月丁香网| a级毛片免费高清观看在线播放| 日韩欧美国产在线观看| av在线观看视频网站免费| 最近在线观看免费完整版| 老熟妇乱子伦视频在线观看| 成人漫画全彩无遮挡| 免费观看精品视频网站| www.色视频.com| 成人二区视频| 亚洲精品亚洲一区二区| 俺也久久电影网| 看免费成人av毛片| 激情 狠狠 欧美| 成人综合一区亚洲| 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 欧美三级亚洲精品| 91久久精品国产一区二区成人| 国产伦一二天堂av在线观看| 欧美精品国产亚洲| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 永久网站在线| 少妇猛男粗大的猛烈进出视频 | 人妻少妇偷人精品九色| 人人妻人人澡人人爽人人夜夜 | 亚洲熟妇熟女久久| 亚洲人成网站在线播| 午夜福利18| 久久精品夜色国产| 人妻夜夜爽99麻豆av| 六月丁香七月| 又黄又爽又免费观看的视频| av在线天堂中文字幕| 在线国产一区二区在线| 女生性感内裤真人,穿戴方法视频| 十八禁国产超污无遮挡网站| 午夜影院日韩av| 夜夜爽天天搞| 天堂网av新在线| 精品一区二区三区视频在线观看免费| 久久婷婷人人爽人人干人人爱| 国产高清有码在线观看视频| 欧美成人精品欧美一级黄| 人人妻人人看人人澡| 日韩一本色道免费dvd| 国产一区二区在线av高清观看| 又爽又黄无遮挡网站| 国产精品一区二区性色av| 欧美zozozo另类| 色5月婷婷丁香| 久久久久久大精品| a级一级毛片免费在线观看| 丰满人妻一区二区三区视频av| 晚上一个人看的免费电影| 日韩欧美精品v在线| 99热6这里只有精品| 男女啪啪激烈高潮av片| 狂野欧美白嫩少妇大欣赏| 日本免费一区二区三区高清不卡| 亚洲四区av| 欧美三级亚洲精品| 日韩高清综合在线| 国产高清不卡午夜福利| 日韩av在线大香蕉| 亚洲最大成人中文| 国产精品女同一区二区软件| 日日摸夜夜添夜夜添av毛片| 久久久久久久午夜电影| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲三级黄色毛片| 国产欧美日韩精品亚洲av| 人妻丰满熟妇av一区二区三区| 国产亚洲91精品色在线| 久久精品国产亚洲av天美| 久久精品夜夜夜夜夜久久蜜豆| 极品教师在线视频| 五月伊人婷婷丁香| 免费看av在线观看网站| 亚洲国产精品sss在线观看| 免费看av在线观看网站| 日本与韩国留学比较| 久久99热6这里只有精品| 亚洲精品一区av在线观看| 免费在线观看成人毛片| 午夜福利在线在线| 成年免费大片在线观看| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 午夜福利18| 老司机午夜福利在线观看视频| 国产 一区精品| 国产v大片淫在线免费观看| 搡老岳熟女国产| 晚上一个人看的免费电影| 精品久久久久久久久亚洲| 极品教师在线视频| 自拍偷自拍亚洲精品老妇| 国产视频内射| 人人妻人人澡欧美一区二区| 日本撒尿小便嘘嘘汇集6| 亚洲真实伦在线观看| 久久久国产成人精品二区| 五月伊人婷婷丁香| 欧美另类亚洲清纯唯美| 久久精品国产自在天天线| 亚洲精品乱码久久久v下载方式| 菩萨蛮人人尽说江南好唐韦庄 | 欧美区成人在线视频| 午夜福利视频1000在线观看| 国产成人精品久久久久久| 在线免费十八禁| 又粗又爽又猛毛片免费看| 国产成人aa在线观看| 欧美+亚洲+日韩+国产| 97超级碰碰碰精品色视频在线观看| 人人妻,人人澡人人爽秒播| 女人被狂操c到高潮| 欧美日韩精品成人综合77777| 蜜桃久久精品国产亚洲av| 高清日韩中文字幕在线| 国产在线精品亚洲第一网站| 天堂动漫精品| 成人欧美大片| a级毛片免费高清观看在线播放| 亚洲精华国产精华液的使用体验 | 国产成人福利小说| 午夜视频国产福利| 深爱激情五月婷婷| 又黄又爽又免费观看的视频| 亚洲精品影视一区二区三区av| 亚洲精品一卡2卡三卡4卡5卡| 国产精华一区二区三区| 日韩欧美 国产精品| 午夜激情福利司机影院| 精品人妻视频免费看| 中文字幕免费在线视频6| 精品一区二区免费观看| 精品久久久久久久久久免费视频| 亚洲一级一片aⅴ在线观看| 久久久精品大字幕| 国产黄a三级三级三级人| 日韩欧美在线乱码| 免费观看人在逋| 欧美不卡视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 1000部很黄的大片| 秋霞在线观看毛片| 村上凉子中文字幕在线| 内地一区二区视频在线| 在线免费观看的www视频| 国产欧美日韩精品一区二区| 国产精品女同一区二区软件| 亚洲av五月六月丁香网| 国产成人影院久久av| 国产精品一区二区性色av| 男人和女人高潮做爰伦理| 午夜福利高清视频| 日本黄色片子视频| 久久这里只有精品中国| 日本成人三级电影网站| 麻豆成人午夜福利视频|