• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects*

    2015-11-24 05:28:16SALEEMNADEEM

    SALEEM S., NADEEM S.

    1. Department of Mathematics, COMSATS Institute of Information Technology, Attock 43600, Pakistan,E-mail: salmansaleem_33@hotmail.com

    2. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan

    Theoretical analysis of slip flow on a rotating cone with viscous dissipation effects*

    SALEEM S.1, NADEEM S.2

    1. Department of Mathematics, COMSATS Institute of Information Technology, Attock 43600, Pakistan,E-mail: salmansaleem_33@hotmail.com

    2. Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan

    This paper is concerned with the mutual effects of viscous dissipation and slip effects on a rotating vertical cone in a viscous fluid. Similarity solutions for rotating cone with wall temperature boundary conditions provides a system of nonlinear ordinary differential equations which have been treated by optimal homotopy analysis method (OHAM). The obtained analytical results in comparison with the numerical ones show a noteworthy accuracy for a special case. Effects for the velocities and temperature are revealed graphically and the tabulated values of the surface shear stresses and the heat transfer rate are entered in tables. From the study it is seen that the slip parameterγenhances the primary velocity while the secondary velocity reduces. Further it is observed that the heat transfer rateincreases with Eckert number Ec and Prandtl number Pr.

    mixed convection, incompressible flow, differential equations, slip effects, viscous dissipation

    Introduction

    A study which involves the equivalent participation of both forced and natural convection is termed as mixed convection. It plays a key role in atmospheric boundary layer flows, heat exchangers, solar collectors, nuclear reactors and in electronic equipment's. Such processes occur when the effects of buoyancy forces in forced convection or the effects of forced flow in natural convection become much more remarkable. The interaction of both convections is mostly noticeable in physical situations where the forced convection flow has low velocity or moderate and large temperature differences. In the concerned analysis, a rotating cone is placed in a Newtonian fluid with the axis of the cone being in line with the external flow is inspected. The mixed convective heat transfer problems with cones are generally used by automobile and chemical industries. Some important applications are design of canisters for nuclear waste disposal, nuclear reactor cooling system, etc.. Practically, the unsteady mixed convective flows do not give similarity solutions and for the last few years, various problems have been deliberated, where the non-similarities are taken into account. The unsteadiness and non-similarity in such type of flows is due to the free stream velocity,the body curvature, the surface mass transfer or even possibly due to all these effects. The crucial mathematical difficulties elaborate in finding non-similar solutions for such studies have bounded several researchers to confine their studies either to the steady nonsimilar flows or to the unsteady semi-similar or selfsimilar flows. A solution is recognized as self-similar if a system of partial differential equations can be reduced to a system of ordinary differential equations. If the similarity transformations are able to reduce the number of independent variables only, then the reduced equations are named semi-similar and the corresponding solutions are the semi-similar solutions. Hering and Grosh[1]studied steady mixed convection boundary layer flow from a vertical cone in an ambient fluid for the Prandtl number of air. Himasekhar et al.[2]carried out the similarity solution of the mixed convection boundary layer flow over a vertical rota-ting cone in an ambient fluid for a wide range of Prandtl numbers. A few years back, Anilkumar and Roy[3]obtained the self-similar solutions of unsteady mixed convection flow from a rotating cone in a rotating fluid. Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects were examined by Chamkha and Al-Mudhaf[4].The non-similar solution to study the effects of mass transfer (suction/injection)on the steady mixed convection boundary layer flow over a vertical permeable cone were presented by Ravindran et al.[5]. Also Nadeem and Saleem[6]explore the analytical study of mixed convection flow of non-Newtonian fluid on a rotating cone. Hall effects on unsteady flow due to noncoaxially rotating disk and a fluid at infinity were presented by Hayat et. al.[7]. Fluids revealing slip are significant in technological applications such as in the polishing of artificial heart valves and internal cavities. Slip also occurs on hydrophobic surfaces, particularly in micro- and nano-fluidics. Makinde and Osalsui[8]studies MHD steady flow in a channel with slip at the permeable boundaries. Ellahi et. al.[9]examined the study of generalized Couette flow of a third grade fluid with slip: the exact solutions. Some relevant studies on this phenomenon are given in Refs.[10-15]. The influence of variable viscosity and viscous dissipation on the non-Newtonian flow was explored by Hayat et. al.[16].

    In general it is challenging to handle nonlinear problems, especially in an analytical way. Perturbation techniques like variation of iteration method(VIM) and homotopy perturbation method (HPM)[17,18]were frequently used to get solutions of such mathematical investigation. These techniques are dependent on the small/large constraints, the supposed perturbation quantity. Unfortunately, many nonlinear physical situations in real life do not always have such nature of perturbation parameters. Additional, both of the perturbation techniques themselves cannot give a modest approach in order to adjust or control the region and rate of convergence series. Liao[19]presented an influential analytic technique to solve the nonlinear problems, explicitly the homotopy analysis method(HAM). It offers a suitable approach to control and regulate the convergence region and rate of approximation series, once required.

    Encouraged by all above findings, the main emphasis of the present paper is to examine the effects of slip on boundary layer flow over a rotating cone in a viscous fluid with viscous dissipation. The concerned nonlinear partial differential for rotating cone are transformed to system of nonlinear ordinary differential equations with proper similarity transformations and then solved by optimal homotopy analysis method(OHAM)[19-29]. Also the effects of related physical parameters on velocities, surface stress tensors, temperature and heat transfer rate are reported and discussed through graphs and tables.

    1. Analysis of the problem

    Consider the unsteady, axi-symmetric, incompressible viscous fluid flow of over a rotating cone in a Newtonian fluid. It is assumed that only the cone is in rotation with angular velocity which is a function of time. This develops unsteadiness in the flow field. Rectangular curvilinear coordinate system is taken to be fixed. Hereu,vandw be the components of velocity inx,yand z-directions, respectively. The temperature as well as concentration variations in the flow fluid are responsible for the existence of the buoyancy forces. The gravitygacts downward in the direction of axis of the cone. Moreover, the wall temperature Twand wall concentration Cware linear functions ofx , while the temperature T∞and concentrationC∞far away from the cone surface are taken to be constant. The physical model and coordinate system is shown in Fig.1.

    Fig.1 Physical model and coordinate system

    By using Boussinesq approximation and boundary layer theory, the governing momentum and energy equations are deliberated as:

    whereνis the kinematic viscosity,ρis the density,g is the gravity,α?is the semi-vertical angle of the cone,βis the volumetric coefficient of expansion for temperature,αis the thermal diffusivity and Cpspecific heat of the fluid.

    The boundary conditions appropriate to the viscous flow problem are stated below

    here Ωis the dimensionless angular velocity of the cone,T∞is the temperature far away from fluid,N is the velocity slip factor andt?is the dimensionless time.

    It is suitable to reduce system of partial differential equations in to nonlinear ordinary differential equations with the help of following similarity transformation[3].

    The Eq.(3) is trivially satisfied and Eqs.(4) and (7)takes the form

    here λis the mixed convection parameter,sis the unsteady parameter and the flow is accelerated for s>0and retarded for s<0,Pris the Prandtl number,Ecis the Eckert number andγis the slip parameter.

    The boundary conditions in non-dimensional form for the concerned flow problem are given as:

    The surface stress tensors in primary and seconddary directions for the present analysis are:

    or in dimensionless form

    The heat transfer coefficient in dimensionless form is stated as

    2. Optimal homotopy analysis procedure

    The solutions of the coupled nonlinear parabolic ordinary differential equations given in Eqs.(10)-(13)are carried out analytically by optimal homotopy analysis method (OHAM) which was established by Liao[12]. The following initial guesses and linear operators for velocity components and temperature fields are used f0,g0and θ0respectively is

    The standard procedure of homotopy analysis method can be follow as[19,29].

    Table 1 Local optimal convergence control paraments and total averaged squared residual errors using BVPh2.0

    Table 2 Individual averaged squared residual errors using optimal values at m =10from Table 1

    Generally homotopy analysis solutions involve the non-zero auxiliary parameters,andhich are helpful in finding the convergence-region and rate of the homotopy series solutions. In order to attain the optimal values of non-zero auxiliary parameters,andit is used here the so-called average residual error specified by[19].

    Fig.2 Variation of -f′(η)for λ

    3. Results and discussion

    Fig.3 Variation of -f′(η)for γ

    Fig.4 Variation of g(η)for λ

    Fig.5 Variation of g(η)forγ

    Fig.6 Variation of θ(η)forEc

    Fig.7 Variation of θ(η)for Pr

    Fig.8 Variation of -θ′(0)for λ

    This portion of study involves the graphical and numerical results of various significant parameters on velocities, temperature, surface stress coefficients and heat transfer coefficient. Such variations have been observed in Figs.2-7. Figure 2 is sketched to display the behavior of primary velocity -f′(η)for mixed convection parameterλin the presence of slip and no slip parameters. The positive buoyancy parameter acts like a favorable pressure gradient, with property to accelerate the fluid. It is expected from Fig.2 that -f′(η)and boundary layer thickness increases with increasing values ofλ, further it is noticed that the primary velocity -f′(η)has greater magnitude for γ=0.5(i.e., in the presence of slip parameter). The influence of slip parameterγon primary velocity -f′(η)is shown in Fig.3. It is devoted from the figure that-f′(η)enhances its magnitude with an increase inγ. The influence of mixed convection parameterλand slip parameterγis to reduce the secondary velocityg(η)respectively (See Fig.4 and 5). Moreover it is seen that the secondary velocityg(η)has least magnitude for γ=0.5(i.e., in the presence of slip parameter). Figure 6 is devoted to show the influence of Eckert numberEcon temperature θ(η). The figure shows that the temperatureθ(η)is anincreasing function of Ec. The influence of the Prandtl numberPron the temperature is drafted in Fig.7. It is clear from the respective figure that θ(η)as well as the thermal boundary layer thickness decrease forPr. Physically the fluid with higher Prandtl number has a lower thermal conductivity which effects in thinner thermal boundary layer and as a result heat transfer rate rises. For engineering phenomenon, the heat transfer rate must be small. This can be retained by keeping the low temperature difference between the surface and the free stream fluid, using a low Prandtl number fluid, keeping the surface at a constant temperature instead of at a constant heat flux, and by smearing the buoyancy force in the contrasting direction to that of forced flow. Figure 8 is sketched to observe the behavior of Nusselt number on mixed convection parameter λ. It is depicted that -θ′(0)decreases with increasingλ. In order to get the authentication of accuracy of the analytical scheme, a comparison of the present results equivalent to the surface stress coefficients and heat transfer coefficient for γ=s=Ec=0 with published literature of Chamkha et al.[4]and Himasekhar et al.[2]is presented and is found to be in remarkable agreement given in Table 3. Table 4 involves the numerical values of surface stress tensors for pertinent parameters. It is found from the table that the tangential surface stress tensor Cfxincreases for slip parameterγ, but the variation is just opposite for azimuthal surface stress tensor 0.5Cfy. Mixed convection parameterλand the unsteady parameterScause an increase in surface stress tensors in both directions (see Table 4). Table 5 depicts that as unsteady parameterSincreases from -0.5 to 0.5, heat transfer rate Nudecreases. Similar behavior is observed for Eckert number. Moreover, it is seen that the Prandtl numberPrenhances the variation of heat transfer rate Nu.

    Table 3 Comparison of values of Skin friction coefficients and heat transfer for s=γ=Ec=0

    Table 4 Values for surface shear stresses when Pr=1.0 and Ec=0.5

    Table 5 Values for reduced Nusselt number for interesting physical parameters

    4. Concluding remarks

    In this study we have deliberated the effects of slip on mixed convection flow of a fluid on a rotating cone in a viscous fluid with viscous dissipation. The non-linear partial differential equations are primarily reduced to a system of non-linear ordinary differential equation and then the solution is effectively carried out by optimal homotopy analysis method. The results shows that:

    (1) The primary velocity increases and secondary velocity decreases for both mixed convection parameterλand slip parameterγrespectively.

    (2) Surface stress tensor inx -direction Cfxenhances its magnitude for mixed convection parameterλand unsteady parameter s, but possess opposite variation for slip parameterγ.

    (3) Temperature field is an increasing function of Eckert numberEc.

    (4) The heat transfer rate Nuhas opposite variation Prandtl numberPr and Eckert number Ec.

    References

    [1]HERING R. G., GROSH R. J. Laminar free convection from a non-isothermal cone[J]. International Journal of Heat and Mass Transfer, 1962, 5(11): 1059-68.

    [2]HIMASEKHAR K., SARMA P. K. and JANARDHAN K. Laminar mixed convection from a vertical rotating cone[J]. International Communications in Heat and Mass Transfer, 1989, 16(1): 99-106.

    [3]ANILKUMAR D., ROY S. Unsteady mixed convection flow on a rotating cone in a rotating fluid[J]. Applied Mathematics and Computation, 2004, 155(2): 545-561.

    [4]CHAMKHA A. J., AL-MUDHAF A. Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects[J]. International Journal of Thermal Sciences, 2005,44(3): 267-276.

    [5]RAVINDRAN R., ROY S. and MOMONIAT E. Effects of injection (suction) on a steady mixed convection boundary layer flow over a vertical cone[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2009, 19(19): 432-444.

    [6]NADEEM S., SALEEM S. Analytical study of rotating non-Newtonian nanofluid on a rotating cone[J]. Journal of Thermophysics Heat Transfer, 2014, 28(2):295-302.

    [7]HAYAT T., ELLAHI R. and ASGHAR S. Hall effects on unsteady flow due to noncoaxially rotating disk and a fluid at infinity[J]. Chemical Engineering Commu- nications, 2008, 195(8): 958-976.

    [8]MAKINDE O. D., OSALSUI E. MHD steady flow in a channel with slip at the permeable boundaries[J]. Ro- manian Journal of Physics, 2006, 51: 319-328.

    [9]ELLAHI R., HAYAT T. and MAHOMED F. M. Generalized Couette flow of a third grade fluid with slip: The exact solutions[J]. Zeitschrift Für Naturforschung A, 2010, 65: 1071-1076.

    [10] ELLAHI R., HAYAT T. and MAHOMED F. M. et al. Effects of slip on the non-linear flows of a third grade fluid[J]. Nonlinear Analysis: Real World Applicatio- ns, 2010, 11(1): 139-146.

    [11] MAKINDE O. D. Computational modeling of MHD unsteady flow and heat transfer towards flat plate with Navier slip and Newtonian heating[J]. Brazilian Jour- nal of Chemical Engineering, 2012, 29(1): 159-166.

    [12] HAJMOHAMMADI M. R.,NOURAZARS. S. On the insertion of a thin gas layer in micro cylindrical Couette flows involving power-law liquids[J]. International Journal of Heat and Mass Transfer, 2014, 75: 97-108.

    [13]HAJMOHAMMADI M. R.,NOURAZAR S. S. and CAMPOA. Analytical solution for two-phase flow between two rotating cylinders filled with power law liquid and a micro layer of gas[J]. Journal of Mechanical Science and Technology, 2014, 28(5): 1849- 1854.

    [14] KHAN W. A., KHAN Z. H. and RAHI M. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary[J]. Applied Nanoscience, 2014, 4(5):633-641.

    [15] QASIM M., KHAN Z. H. and KHAN W. A. et al. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux[J]. PLoS ONE, 2014, 9(1): e83930.

    [16] HAYAT T., ELLAHI R. and ASGHAR S. The influence of variable viscosity and viscous dissipation on the non-Newtonian flow: An analytical solution[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(3): 300-313.

    [17] KHAN Z. H.,RAHIM G. and KHAN W. A. Effect of variable thermal conductivity on heat transfer from a hollow sphere with heat generation using homotopy perturbation method[C]. ASME 2008, Heat Transfer Summer Conference. Jacksonville, Florida, USA,2008, 301-309.

    [18]RAHIM G., KHAN Z. H. and KHAN W. A. Heat transfer from solids with variable thermal conductivity and uniform internal heat generation using homotopy perturbation method[C]. ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. Jacksonville, Florida, USA, 2008, 1: 311-319.

    [19] LIAO S. An optimal homotopy-analysis approach for strongly nonlinear differential equations[J]. Communications in Nonlinear Science and Numerical Simula- tions, 2010, 15(8): 2003-2016.

    [20] NADEEM S., MEHMOOD R. and AKBAR N. S. Optimized analytical solution for oblique flow of a Casson-nano fluid with convective boundary conditions[J]. International Journal of Thermal Sciences,2014, 78(1): 90-100.

    [21]ABBASBANDY S. Homotopy analysis method for generalized Benjamin-Bona-Mahony equation[J]. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 2008, 58: 51-62.

    [22] ELLAHI R.The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions[ J]. Applied Mathemati- cal Modelling, 2013, 37(3): 1451-1467.

    [23] NADEEM S., HUSSAIN S. T. Heat transfer analysis of Williamson fluid over exponentially stretching surface[J]. Applied Mathematics and Mechanics (English Edition), 2014, 35(4): 489-502.

    [24] QASIM M., NOREEN S. Falkner-Skan flow of a maxwell fluid with heat transfer and magnetic field[J]. International Journal of Engineering Mathematics, 2013, Article ID 692827.

    [25] NADEEM S., SALEEM S. Unsteady mixed convection flow of nanofluid on a rotating cone with magnetic field[J]. Applied Nanoscience, 2013, 4(4): 405-414.

    [26]ELLAHI R., RAZA M. and VAFAI K. Series solutions of non-Newtonian nanofluids with Reynolds' model and Vogel's model by means of the homotopy analysis method[J]. Mathematical and Computer Modelling,2012, 55(7): 1876-1889.

    [27]HAJMOHAMMADI M. R.,NOURAZAR S. S. and MANESH A. H. Semi-analytical treatments of conjugate heat transfer[J]. Journal of Mechanical Engineering Science, 2012, 227: 492-503.

    [28] HAJMOHAMMADI M. R.,NOURAZARS. S. On the solution of characteristic value problems arising in linear stability analysis. Semi analytical approach[J]. Applied Mathematics and Computation, 2014, 239(2): 126-132.

    [29] NADEEM S., SALEEM S. Mixed convection flow of eyring-powell fluid along a rotating cone[J]. Results in Physics, 2014, 4: 54-62.

    (August 10, 2014, Revised September 25, 2014)

    * Biography: SALEEM S. (1986-), Male, Ph. D.,Assistant Professor

    99久久国产精品久久久| 又紧又爽又黄一区二区| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦 在线观看视频| 免费av毛片视频| 国产欧美日韩一区二区三| 亚洲,欧美精品.| 婷婷六月久久综合丁香| 12—13女人毛片做爰片一| 国产精品国产高清国产av| 在线观看舔阴道视频| 美国免费a级毛片| 一本综合久久免费| 老司机深夜福利视频在线观看| 国产亚洲精品综合一区在线观看 | 欧美日本亚洲视频在线播放| 国产一级毛片七仙女欲春2 | 人成视频在线观看免费观看| 亚洲无线在线观看| 亚洲欧美日韩无卡精品| 制服人妻中文乱码| 啦啦啦韩国在线观看视频| 国产激情欧美一区二区| 韩国av一区二区三区四区| 一本综合久久免费| 又黄又爽又免费观看的视频| 国产乱人伦免费视频| 色老头精品视频在线观看| 亚洲五月色婷婷综合| 精品欧美一区二区三区在线| 嫩草影院精品99| 国产一卡二卡三卡精品| 中文资源天堂在线| 国产激情久久老熟女| 长腿黑丝高跟| 国产精品久久久人人做人人爽| 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看 | 天天添夜夜摸| 午夜久久久久精精品| 亚洲无线在线观看| 99精品在免费线老司机午夜| 国产成人av教育| 久久婷婷人人爽人人干人人爱| 十分钟在线观看高清视频www| av有码第一页| 变态另类成人亚洲欧美熟女| 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 亚洲最大成人中文| 老鸭窝网址在线观看| 夜夜看夜夜爽夜夜摸| 夜夜躁狠狠躁天天躁| 免费人成视频x8x8入口观看| 日韩中文字幕欧美一区二区| 久久久久久久久免费视频了| 成在线人永久免费视频| 欧美日韩黄片免| 欧美中文综合在线视频| 免费搜索国产男女视频| 欧美成人午夜精品| 香蕉丝袜av| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 男人的好看免费观看在线视频 | 中文字幕最新亚洲高清| 1024视频免费在线观看| 男女床上黄色一级片免费看| 美女高潮喷水抽搐中文字幕| 亚洲精品中文字幕在线视频| 亚洲av中文字字幕乱码综合 | 久久午夜综合久久蜜桃| 51午夜福利影视在线观看| 精品国产亚洲在线| 中文字幕久久专区| 亚洲人成伊人成综合网2020| a级毛片a级免费在线| 亚洲真实伦在线观看| 亚洲国产精品合色在线| 久久久久久久久免费视频了| 无人区码免费观看不卡| 亚洲av成人av| 久久精品亚洲精品国产色婷小说| 搡老妇女老女人老熟妇| 成人三级做爰电影| 91字幕亚洲| 亚洲午夜理论影院| 97超级碰碰碰精品色视频在线观看| 国产亚洲精品久久久久5区| 99re在线观看精品视频| 亚洲中文字幕日韩| 色播在线永久视频| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 午夜成年电影在线免费观看| 99国产综合亚洲精品| 免费av毛片视频| 亚洲欧美日韩无卡精品| 女性被躁到高潮视频| 看免费av毛片| 国产v大片淫在线免费观看| 日本 欧美在线| 变态另类丝袜制服| 1024香蕉在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久九九精品二区国产 | 亚洲av日韩精品久久久久久密| 国产一区二区激情短视频| 少妇裸体淫交视频免费看高清 | www.999成人在线观看| 免费看美女性在线毛片视频| 日韩大码丰满熟妇| 国产精品永久免费网站| 99久久99久久久精品蜜桃| 亚洲熟女毛片儿| 男人舔女人下体高潮全视频| 在线免费观看的www视频| 精品国产乱码久久久久久男人| 久久精品91无色码中文字幕| 91字幕亚洲| 婷婷六月久久综合丁香| 久久久久久国产a免费观看| 欧美在线一区亚洲| 国产精品亚洲一级av第二区| 巨乳人妻的诱惑在线观看| 19禁男女啪啪无遮挡网站| 香蕉丝袜av| 最近在线观看免费完整版| 精品午夜福利视频在线观看一区| 两个人看的免费小视频| 成人永久免费在线观看视频| 久久婷婷成人综合色麻豆| 男女下面进入的视频免费午夜 | 高清毛片免费观看视频网站| 91麻豆精品激情在线观看国产| 欧美日韩中文字幕国产精品一区二区三区| 日本 欧美在线| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 757午夜福利合集在线观看| 一级a爱片免费观看的视频| 久久久水蜜桃国产精品网| 精品久久久久久久末码| 亚洲第一欧美日韩一区二区三区| 欧美一级a爱片免费观看看 | 免费看a级黄色片| 天天添夜夜摸| 99久久精品国产亚洲精品| 亚洲国产日韩欧美精品在线观看 | 日本免费a在线| 成年人黄色毛片网站| 午夜久久久在线观看| 老熟妇乱子伦视频在线观看| 久久国产精品男人的天堂亚洲| 国产黄a三级三级三级人| 国产熟女午夜一区二区三区| 免费在线观看日本一区| 亚洲av五月六月丁香网| 欧美日本亚洲视频在线播放| 在线天堂中文资源库| a在线观看视频网站| 色av中文字幕| 日韩国内少妇激情av| 精品电影一区二区在线| 国产精品二区激情视频| a级毛片在线看网站| 99久久综合精品五月天人人| 人人妻人人看人人澡| 99久久久亚洲精品蜜臀av| 国产一卡二卡三卡精品| 啪啪无遮挡十八禁网站| 欧美一级毛片孕妇| 亚洲午夜理论影院| 久久久久亚洲av毛片大全| 国产三级黄色录像| 欧美色视频一区免费| 日韩欧美在线二视频| 999久久久精品免费观看国产| 久久香蕉国产精品| 成年女人毛片免费观看观看9| 一级黄色大片毛片| 免费看美女性在线毛片视频| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 人人澡人人妻人| 最好的美女福利视频网| 一本一本综合久久| 手机成人av网站| 欧美又色又爽又黄视频| 成在线人永久免费视频| 黄片播放在线免费| 久久国产精品男人的天堂亚洲| 给我免费播放毛片高清在线观看| 欧美国产精品va在线观看不卡| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 老司机在亚洲福利影院| 欧美性猛交╳xxx乱大交人| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 国产精品久久久久久人妻精品电影| 高潮久久久久久久久久久不卡| 国产亚洲精品第一综合不卡| 在线观看午夜福利视频| 亚洲av片天天在线观看| 亚洲激情在线av| 国产成人一区二区三区免费视频网站| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 久久午夜综合久久蜜桃| 亚洲国产精品sss在线观看| 国产亚洲av嫩草精品影院| 欧美乱色亚洲激情| 亚洲成av片中文字幕在线观看| 性欧美人与动物交配| 欧美成人午夜精品| 国产黄色小视频在线观看| 正在播放国产对白刺激| 国产亚洲精品第一综合不卡| 国产欧美日韩一区二区精品| 国语自产精品视频在线第100页| 88av欧美| 国产成人啪精品午夜网站| 久久精品人妻少妇| 男人操女人黄网站| 变态另类成人亚洲欧美熟女| 久久精品国产亚洲av香蕉五月| 国产精品 国内视频| 午夜免费鲁丝| 老熟妇仑乱视频hdxx| 变态另类丝袜制服| 免费在线观看成人毛片| 亚洲人成网站高清观看| 欧美精品啪啪一区二区三区| 18禁黄网站禁片免费观看直播| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 国产精品野战在线观看| 99久久久亚洲精品蜜臀av| 男女午夜视频在线观看| 亚洲欧洲精品一区二区精品久久久| 日本黄色视频三级网站网址| 日韩三级视频一区二区三区| 国产av又大| 高潮久久久久久久久久久不卡| 18禁观看日本| 亚洲九九香蕉| 日韩欧美在线二视频| 成人av一区二区三区在线看| 免费高清视频大片| av片东京热男人的天堂| 国产精品亚洲美女久久久| 99re在线观看精品视频| 18禁美女被吸乳视频| 一本精品99久久精品77| 精品电影一区二区在线| 一夜夜www| 国内精品久久久久精免费| 国产成人系列免费观看| 精品免费久久久久久久清纯| 欧美成人免费av一区二区三区| 久久 成人 亚洲| 少妇粗大呻吟视频| 免费高清视频大片| 午夜精品在线福利| 日本在线视频免费播放| 亚洲最大成人中文| 男人舔女人下体高潮全视频| 午夜福利在线观看吧| 日本一本二区三区精品| 99久久久亚洲精品蜜臀av| 欧美日韩中文字幕国产精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 热re99久久国产66热| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| 中出人妻视频一区二区| 久热爱精品视频在线9| 国产精品久久久人人做人人爽| 欧美乱妇无乱码| 精品高清国产在线一区| 欧美日本亚洲视频在线播放| 啪啪无遮挡十八禁网站| xxx96com| 久久久久亚洲av毛片大全| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 欧美国产精品va在线观看不卡| 成人免费观看视频高清| 一级毛片精品| 黄色视频不卡| 啦啦啦韩国在线观看视频| 午夜福利一区二区在线看| 久久久久国产一级毛片高清牌| 999久久久国产精品视频| 麻豆av在线久日| 少妇熟女aⅴ在线视频| 美女高潮到喷水免费观看| 久久国产精品人妻蜜桃| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 18禁黄网站禁片免费观看直播| aaaaa片日本免费| 久久久久久人人人人人| av福利片在线| 成人永久免费在线观看视频| 99热只有精品国产| 亚洲国产精品久久男人天堂| av欧美777| 夜夜夜夜夜久久久久| 男人舔女人的私密视频| tocl精华| 一级黄色大片毛片| 夜夜爽天天搞| 欧美日韩精品网址| a级毛片在线看网站| 在线十欧美十亚洲十日本专区| 露出奶头的视频| 精品国内亚洲2022精品成人| 天堂动漫精品| 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 亚洲男人天堂网一区| www.熟女人妻精品国产| 久久精品国产亚洲av香蕉五月| 成人三级做爰电影| 男女下面进入的视频免费午夜 | 久久久久免费精品人妻一区二区 | 国产又黄又爽又无遮挡在线| 国产精品免费一区二区三区在线| 欧美大码av| 国内揄拍国产精品人妻在线 | 韩国精品一区二区三区| 美女 人体艺术 gogo| 久久久久久人人人人人| 国产极品粉嫩免费观看在线| 最近最新中文字幕大全免费视频| 最近最新中文字幕大全电影3 | 欧美人与性动交α欧美精品济南到| 一级a爱视频在线免费观看| 欧美在线一区亚洲| 国产精品1区2区在线观看.| 久久久久久久精品吃奶| 777久久人妻少妇嫩草av网站| 男女之事视频高清在线观看| 亚洲最大成人中文| 国产精品久久久久久人妻精品电影| 少妇熟女aⅴ在线视频| 性色av乱码一区二区三区2| 搡老熟女国产l中国老女人| or卡值多少钱| av电影中文网址| 黑丝袜美女国产一区| 波多野结衣巨乳人妻| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 日韩大尺度精品在线看网址| 久久婷婷人人爽人人干人人爱| 免费在线观看亚洲国产| 亚洲熟女毛片儿| 搡老妇女老女人老熟妇| 亚洲av成人一区二区三| 午夜免费观看网址| www国产在线视频色| 97碰自拍视频| 18美女黄网站色大片免费观看| 精品高清国产在线一区| 久久精品夜夜夜夜夜久久蜜豆 | 国产成人av教育| 不卡av一区二区三区| 老汉色∧v一级毛片| 一夜夜www| 看免费av毛片| 一级a爱片免费观看的视频| 一进一出抽搐动态| 男女那种视频在线观看| 人人妻人人澡欧美一区二区| 这个男人来自地球电影免费观看| 国产亚洲精品综合一区在线观看 | 老司机深夜福利视频在线观看| 美女大奶头视频| 亚洲黑人精品在线| 成人精品一区二区免费| 亚洲国产欧洲综合997久久, | 日韩免费av在线播放| av有码第一页| 一本精品99久久精品77| 99re在线观看精品视频| 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区| 成人亚洲精品一区在线观看| 怎么达到女性高潮| av欧美777| 给我免费播放毛片高清在线观看| 成熟少妇高潮喷水视频| 日韩精品青青久久久久久| 午夜精品在线福利| 女同久久另类99精品国产91| 精品免费久久久久久久清纯| 人人妻人人看人人澡| 国产黄a三级三级三级人| 男女那种视频在线观看| 久久精品国产亚洲av香蕉五月| 十分钟在线观看高清视频www| 每晚都被弄得嗷嗷叫到高潮| 听说在线观看完整版免费高清| 久久人妻av系列| 99re在线观看精品视频| 99精品久久久久人妻精品| 国产精品99久久99久久久不卡| 天天添夜夜摸| 看片在线看免费视频| 亚洲久久久国产精品| 日韩欧美国产在线观看| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 亚洲三区欧美一区| 最近最新中文字幕大全免费视频| 久久久久久久久免费视频了| 在线永久观看黄色视频| 免费看日本二区| 国内少妇人妻偷人精品xxx网站 | 丝袜在线中文字幕| 久久久久久久精品吃奶| 在线观看舔阴道视频| 亚洲精品美女久久久久99蜜臀| 脱女人内裤的视频| 国产熟女xx| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品亚洲一区二区| 久久九九热精品免费| 久久精品91蜜桃| 一级作爱视频免费观看| 国产av在哪里看| 精品午夜福利视频在线观看一区| 午夜免费观看网址| 黄色毛片三级朝国网站| 叶爱在线成人免费视频播放| 777久久人妻少妇嫩草av网站| 一本久久中文字幕| 久久精品人妻少妇| 91麻豆av在线| 久热这里只有精品99| 制服人妻中文乱码| 亚洲熟妇中文字幕五十中出| 欧美另类亚洲清纯唯美| 久久国产精品男人的天堂亚洲| 亚洲欧美激情综合另类| 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 日韩精品中文字幕看吧| 久久久精品欧美日韩精品| 真人做人爱边吃奶动态| 国产精品二区激情视频| 日韩欧美在线二视频| 中文字幕人妻丝袜一区二区| 男人的好看免费观看在线视频 | 成年版毛片免费区| 搡老妇女老女人老熟妇| 亚洲国产日韩欧美精品在线观看 | 欧美日韩福利视频一区二区| 久久香蕉精品热| 麻豆av在线久日| 岛国视频午夜一区免费看| 国产av一区在线观看免费| 99re在线观看精品视频| 成年女人毛片免费观看观看9| 亚洲精品在线观看二区| 国产极品粉嫩免费观看在线| 老熟妇仑乱视频hdxx| 亚洲色图 男人天堂 中文字幕| 日本黄色视频三级网站网址| 俺也久久电影网| 日本成人三级电影网站| 亚洲七黄色美女视频| 在线观看舔阴道视频| 久久香蕉国产精品| 久久精品亚洲精品国产色婷小说| 18美女黄网站色大片免费观看| 亚洲国产欧美日韩在线播放| e午夜精品久久久久久久| 一a级毛片在线观看| 最新美女视频免费是黄的| 久久久国产精品麻豆| 亚洲国产精品合色在线| 国产av又大| 亚洲美女黄片视频| 黄色丝袜av网址大全| 国产黄a三级三级三级人| 熟妇人妻久久中文字幕3abv| 一区二区三区精品91| 久久久久亚洲av毛片大全| 国产激情久久老熟女| www.999成人在线观看| av电影中文网址| 一边摸一边抽搐一进一小说| 嫩草影视91久久| 亚洲avbb在线观看| 黄色视频不卡| 欧美日韩瑟瑟在线播放| 国产av又大| 波多野结衣av一区二区av| 一本精品99久久精品77| 成在线人永久免费视频| 国产亚洲av高清不卡| 午夜老司机福利片| 日韩精品免费视频一区二区三区| 国产99久久九九免费精品| 男女之事视频高清在线观看| 在线观看www视频免费| 老司机午夜十八禁免费视频| 精品国产美女av久久久久小说| 一级毛片高清免费大全| 啪啪无遮挡十八禁网站| 亚洲专区中文字幕在线| 亚洲男人的天堂狠狠| 99在线人妻在线中文字幕| 天天一区二区日本电影三级| 男人操女人黄网站| 国产一区在线观看成人免费| 日韩大尺度精品在线看网址| 亚洲七黄色美女视频| 午夜激情av网站| 亚洲精品久久国产高清桃花| 日韩中文字幕欧美一区二区| 给我免费播放毛片高清在线观看| 99久久久亚洲精品蜜臀av| 国产成人一区二区三区免费视频网站| 无遮挡黄片免费观看| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 亚洲avbb在线观看| 精品乱码久久久久久99久播| 久久久久久久久免费视频了| 19禁男女啪啪无遮挡网站| 免费在线观看成人毛片| 91在线观看av| 亚洲av熟女| 国产亚洲精品久久久久久毛片| 一级作爱视频免费观看| 2021天堂中文幕一二区在线观 | 一级a爱视频在线免费观看| 两性夫妻黄色片| 自线自在国产av| e午夜精品久久久久久久| 国产真人三级小视频在线观看| 成人亚洲精品av一区二区| 亚洲,欧美精品.| 日日爽夜夜爽网站| 亚洲九九香蕉| 婷婷精品国产亚洲av| 18禁裸乳无遮挡免费网站照片 | 视频区欧美日本亚洲| 国产亚洲精品av在线| 人成视频在线观看免费观看| 一二三四在线观看免费中文在| 18美女黄网站色大片免费观看| 亚洲专区字幕在线| 久久精品91无色码中文字幕| 国产亚洲精品av在线| 免费搜索国产男女视频| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 精品电影一区二区在线| 国产单亲对白刺激| 国产av在哪里看| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 精品久久久久久久久久免费视频| 啦啦啦 在线观看视频| 看黄色毛片网站| 叶爱在线成人免费视频播放| 少妇熟女aⅴ在线视频| 欧美成人一区二区免费高清观看 | 欧美日韩一级在线毛片| 午夜免费成人在线视频| 成人三级做爰电影| 欧美激情 高清一区二区三区| 久久青草综合色| 亚洲av日韩精品久久久久久密| 日韩国内少妇激情av| 国产精品久久视频播放| 999精品在线视频| 久久久精品国产亚洲av高清涩受| 91成人精品电影| 国产久久久一区二区三区| 美女高潮喷水抽搐中文字幕| 国产1区2区3区精品| 亚洲av电影在线进入| 欧美日韩瑟瑟在线播放| 久久久久九九精品影院| 天天躁夜夜躁狠狠躁躁| 久久久国产成人精品二区| 少妇被粗大的猛进出69影院| 国产99久久九九免费精品| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网| 精品欧美国产一区二区三| 亚洲av成人不卡在线观看播放网| 国产单亲对白刺激| 亚洲激情在线av| 亚洲av中文字字幕乱码综合 | 黄色a级毛片大全视频| 亚洲av电影在线进入| 欧美日韩黄片免| 欧美国产日韩亚洲一区| 黄频高清免费视频| 自线自在国产av| 精品久久久久久久久久免费视频| 亚洲黑人精品在线| 亚洲美女黄片视频| 久久 成人 亚洲|