• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Propulsive performance of a passively flapping plate in a uniform flow*

    2015-11-24 05:28:03HANRui韓瑞ZHANGJie張杰CAOLei曹壘LUXiyun陸夕云
    關(guān)鍵詞:張杰

    HAN Rui (韓瑞), ZHANG Jie (張杰), CAO Lei (曹壘), LU Xi-yun (陸夕云)

    1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, Beijing 100085, China, E-mail: leicao@rcess.ac.cn

    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

    Propulsive performance of a passively flapping plate in a uniform flow*

    HAN Rui (韓瑞)1, ZHANG Jie (張杰)2, CAO Lei (曹壘)1, LU Xi-yun (陸夕云)2

    1.State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences, Beijing 100085, China, E-mail: leicao@rcess.ac.cn

    2. Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China

    Propulsive performance of a passively flapping plate in a uniform viscous flow has been studied numerically by means of a multiblock lattice Boltzmann method. The passively flapping plate is modeled by a rigid plate with a torsion spring acting about the pivot at the leading-edge of the plate, which is called a lumped-torsional-flexibility model. When the leading-edge is forced to take a vertical oscillation, the plate pitches passively due to the fluid-plate interaction. Based on our numerical simulations, various fundamental mechanisms dictating the propulsive performance, including the forces on the plate, power consumption, propulsive efficiency and vortical structures, have been studied. It is found that the torsional flexibility of the passively pitching plate can improve the propulsive performance. The results obtained in this study provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.

    propulsive performance, passively flapping plate, flapping-based locomotion, flexibility effect, propulsive efficiency

    Introduction

    A common strategy of flying or swimming animals for locomotion through a fluid is to employ their wings or fins to perform flapping motions[1-3]. The wings and fins are flexible and usually can generate the deformations during their flapping motions[4,5]. The deformations in turn affect the fluid dynamic forces[6,7]. Thus it is worth to understand the influence of flexibility on the flapping-based locomotion adopted by the swimming and flying animals.

    The wings and fins have complex structural behaviors which are mainly related to the internal distribution of the compliant components. The wings and fins can be twisted easily to form a passive pitching motion. Because the large flexibility of wings or fins is mainly concentrated on the narrow and short root regions, the torsional flexibility can be assumed to be lumped together and be modeled by a torsion spring[8]. The lumped-torsional-flexibility model has been used to investigate the influence of flexibility on the locomotion of a passively flapping flat plate. The simplified model can reasonably predict the dynamics due to the fluid-plate interaction.

    The flapping-based locomotion has attracted much attention due to the fundamental principles relevant to the swimming and flying animals. Extensive investigations with prescribed flapping motions have been carried out experimentally[9]and numerically[10,11]. In these studies the foil-like structures for modeling wings or fins are rigid rather than flexible and the flapping motions are prescribed rather than being passive. Recently, some studies on flapping flexible bodies have also been performed to analyze the effect of flexibility on the dynamic behaviors of the fluid-solid system[12-17].

    In this study, the propulsive performance of a passively flapping plate in a uniform viscous flow is investigated by solving the Navier-Stokes equations using a multiblock lattice Boltzmann method[6-8]. The flexibility of the plate is modeled by a lumped-torsional-flexibility model. The purpose of this study is to achieve an improved understanding of the mechanisms relevant to the flapping-based locomotion.

    Fig.1 Sketch of a flapping and passive pitching plate

    1. Physical problem and mathematical formulation

    To investigate the flexibility effect of flapping wings and fins in animal locomotion, a lumped-torsional-flexibility model is used as shown in Fig.1 for the diagram. The flexibility of a plate is modeled by a torsion spring at the leading-edge of the plate O. When the edge is forced to take a vertical oscillation in a uniform viscous flow with the free-stream velocityU ,the plate pitches passively due to the fluid-plate interaction. Here, the oscillation of the edgeO is represented as

    The incompressible Navier-Stokes equations are used to describe the flow dynamics which are given as

    whereu is the velocity,p the pressure,ρthe density of the fluid, andμthe dynamic viscosity. The passively pitching motion of the plate with a torsion spring is governed by[8]

    whereθrepresents the pitching angle,k denotes the spring stiffness, andIand Trare the moment of inertia of plate and the fluid moment with respect to the edgeO . The natural frequency of the plate-spring system is described as

    Based on the non-dimensionalized analysis, the dimensionless parameters are given as follows: the flapping amplitude A=A/cwithc being the length of the plate, the Reynolds number Re=ρUc/μ, the linear density ratio of the plate and the fluid D=ρl/ ρc, and the frequency ratio of the natural frequency and the flapping frequency F=fn/f , which is associated with the plate torsional flexibility[8].

    2. Numerical method and validation

    The governing equations of the fluid-plate problem are solved numerically by a multiblock lattice Boltzmann method, which provides an alternative method for solving viscous fluid flows. Details of the numerical method and its validation have been given in our previous work[8,10].

    Based on a variety of examinations, the computational domain used in the present study is chosen as -30c≤x≤30cand -15c≤y≤15cwith the finest lattice spacing of 0.005c in the region around the plate and the coarsest spacing of0.04c near the far boundaries. The time step is 0.005T with the flapping periodT . It is confirmed that the computed results are independent of the lattice spacing and computational domain size.

    In addition, the method and code used for this work have been validated carefully in our previous work described as follows. The numerical method has been applied with success to a wide range of flows,such as the propulsion of fishlike tail fins[3,10], and the locomotion of a passively flapping flat plate[6,8].

    3. Results and discussion

    We here present some typical results for the flow dynamics and propulsive performance of a passively flapping plate due to the fluid-plate interaction and discuss the connection of the results to the flappingbased locomotion of swimming and flying animals. Some quantities, such as the forces on the plate, the power consumption, the propulsive efficiency, the pitching angle, and vortex structures, are analyzed. Based on the measurements of animal locomotion, the governing parameters used here are chosen as the Strouhal number St =0.15-0.5, the frequency ratio F =1-10, the flapping amplitude A =0.3-0.7, the Reynolds number Re =1000and the density ratio D =1.

    3.1Thrust force of the passively flapping plate

    For the lumped-torsional-flexibility model in Fig.1, the plate generates a passive pitching motion due to a complicated interaction of the plate with the surrounding fluid flow. The forces exerting on the plate are responsible for the dynamic responses of the plate due to the fluid-plate interaction and are directlyrelated to the propulsive properties of the passive pitching plate. Based on our calculations, time-dependent forces will reach periodic state after two or three flapping cycles for all the cases considered here.

    Fig.2 Time-dependent force coefficients and pitching angle of the flapping plate for A =0.5,St =0.3and F=2.5

    To elucidate the dynamic behavior and the passive pitching motion of the plate, Fig.2 typically shows the thrust and lift coefficients and the pitching angle θduring one cycle after reaching the periodic state. Here, the thrust and lift coefficients are defined as, respectively,

    where -Fxand Fyrepresent the time-dependent thrust and lift acting on the plate due to pressure and viscous friction. The thrust and lift coefficients are shown in Fig.2(a). The positiveCTon most part of the period is formed which plays an essential role for the propulsion of the passive pitching plate. The variation ofCLis exhibited with its mean value over one period vanishing. It is also identified that CLvaries with the vortex shedding frequency from the flapping plate.

    For the model considered here, the passive pitching motion can be characterized by the pitching angle θ(t)as shown in Fig.1. The phase shiftφbetween the leading-edge oscillationyb(t)in Eq.(1) and the pitching angleθ(t)is an important parameter to understand the propulsive behavior. The profiles of yb(t )and θ(t)during one cycle are shown in Fig.2(b)and the phase shiftφ=70oapproximately is obtained. Thus, an advanced phase shift ofθ(t)with respect to yb(t)occurs, which is associated with the locomotion of the passive flapping plate[1].

    Fig.3 Mean thrust coefficientversus the frequency ratio F for several pairs of the flapping amplitudeAand the Strouhal numberSt

    Fig.4 Mean thrust coefficientand propulsive efficiencyη

    Based on a variety of simulations in a wide range of the parameters, the features of the mean thrust, the pitching angle and the phase shift are further discussed. Figure 3 shows the mean thrust coefficientversus the frequency ratioF for several pairs of flapping amplitudeA and frequencySt. For each pair ofAandSt, theincreases to its maximum in the range of F=3-6approximately, and then decreases gradually with the further increase ofF. From the profiles of A =0.5and St =0.2-0.5, theis enhanced with the increase ofSt. From the results of St =0.3and A =0.3, 0.5 and 0.7, thedecreases essentially with the increase ofA. The behaviors of the thrust evolution are associated with the pitching angle and the phase shift due to the fluid-plate interaction. Figure 4 shows the mean thrust coefficientversus the pitching angle and the phase shift for the calculated cases in Fig.3. It is identified that the higher mean thrust coefficientcorresponds to the region of the pitching angle=10o-20oand the phase shiftφ=70o-90o.

    Fig.5 Mean power coefficientand propulsive efficiency η versus the frequency ratio

    3.2Power consumption and propulsive efficiency

    The propulsive property is investigated in terms of the propulsive efficiency. The power required to produce the passive pitching motion of plate is described as

    Fig.6 Propulsive efficiencyηas function of the phase shiftφ and the pitching angle θrms

    Figure 5 shows the mean power coefficient and the propulsive efficiency. For each pair ofAandSt,the mean power coefficientin Fig.5(a) increases to its maximum in the range of F=5-7and decreases slightly with the further increase ofF, which is essentially consistent with the mean thrust coefficientin Fig.3. It means that a larger production of thrust needs a higher consumption of power. As shown inFig.5(b) for the propulsive efficiency η, a higher propulsive efficiency lies in F=1.5-4, corresponding to the range adopted by swimming animals which will be discussed below.

    Fig.7 Instantaneous vorticity contours at t/T =0/4(left column) and 1/4 (right column) for A=0.5. Solid and dashed lines represent positive and negative values, respectively

    The increase ofFrepresents that the spring becomes stiffer in the plate-spring system in Eq.(4). Thus, the motion of the passive pitching plate tends to the rigid case at a large value ofF , such as F=10. As an example, considering the results forA=0.5 and St=0.3in Fig.5(b), the highest efficiency is about 0.44 atF=2.5and is enhanced by 267% with respect to the efficiency of the rigid model about 0.12. Thus, the torsional flexibility effect can remarkably improve the propulsive efficiency.

    The propulsive efficiency is associated with the phase shiftφand the pitching angle θrms[1]. Fig.6(a) shows the propulsive efficiencyηversus the phase shift φ. With the increase ofφ, the propulsive efficiencyηincreases to a peak and then decreases for a given pair ofAandSt . The higher efficiency is reached during φ=60o-80o. Moreover, Fig.6(b) shows the propulsive efficiencyηversus the pitching angle θrms. It is seen that high efficiency is generated for=10o-25oapproximately.

    3.3Vortex structures behind the flapping plate

    The vortex structure around the plate is closely associated with the dynamic characteristics of the plate[10,18]. We further discuss the vortex shedding to understand propulsive performance of the passive flapping plate. To neatly exhibit the flow patterns, Fig.7 shows the vorticity contours at instants t/T=0/4 and 1/4 forA =0.5with several pairs of StandF. The shear layer is generated along the surface and is gradually shed into the downstream of the plate to form concentrated vortices. As shown in Fig.7(a) forSt= 0.15, the separated shear layer due to its unstable character evolves into three positive and negative concen-trated vortices during one flapping cycle. With the increase ofSt , there exist two vortices with opposite sign shed downstream during one cycle as shown in Fig.7(d). Finally, a reverse von Kármán vortex street occurs in the wake of the plate, which induces a jetlike mean velocity profile in the wake and is of help in generation of the thrust.

    To analyze the effect of the frequency ratioF on the vortex structures, Figs.7(b)-7(d) show the vortex patterns for F =1.1, 2.5 and 4.0 with St=0.3. Usually, the lower frequency ratio means that the flexibility effect becomes more important. As shown in Fig.7(b)forF=1.1, the shear layer separated from the plate evolves into two positive and negative concentrated vortices during one flapping cycle. With the increase ofF, only two vortices with opposite sign are shed during one cycle in Fig.7(d) for F=4.0. In addition,with the evolution of the vortex structures forF=1.1,a reverse von Kármán vortex street is eventually formed in the somewhat far wake of the plate, which is responsible for the thrust generation.

    4. Concluding remarks

    The propulsive performance of a passively flapping plate in a uniform flow has been studied by means of a multiblock lattice Boltzmann method. We have investigated various mechanisms related to the dynamics of the flapping plate due to the fluid-plate interaction based on the results of the forces exerting on the plate, the power consumption, the propulsive efficiency, the pitching angle and vortex structures.

    Based on the simulations in a wide range of the parameters, the features of the mean thrust, the pitching angle and the phase shift are analyzed. It is found that the torsional flexibility of the passively pitching plat can improve the propulsive performance. The propulsive property is analyzed based on the propulsive efficiency. A larger production of thrust needs a higher consumption of power. In addition, the effects of the frequency ratio and Strouhal number on the vortex structure around the plate are investigated. The reverse von Kármán vortex street is closely associated with the propulsive behavior of the plate. The results obtained in this study can provide some physical insights into the understanding of the propulsive behaviors of swimming and flying animals.

    References

    [1]TRIANTAFYLLOU M. S., TRIANTA- FYLLOU G. S. and YUE D. K. P.Hydrodynamics of fishlike swimming[J]. Annual Review of Fluid Mechanics, 2000,32(1): 33-53.

    [2]WANG Z. J.Dissecting insect flight[J]. Annual Review of Fluid Mechanics, 2005, 37(1): 183-210.

    [3]LI Gao-jin, ZHU Luoding and LU Xi-yun. Numerical studies on locomotion performance of fishliketail fins[J]. Journal of Hydrodynamics, 2012, 24(4): 488-495.

    [4]COMBES S. A., DANIEL T. L. Flexural stiffness in insect wings. I. Scaling and the influence of wing venation[J]. Journal of Experimental Biology, 2003, 206:2979-2987.

    [5]COMBES S. A., DANIEL T. L. Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending[J]. Journal of Experimental Biology, 2003,206: 2987-2997.

    [6]HUA R., ZHU L. and LU X.Locomotion of a flapping flexible plate[J]. Physics of Fluids, 2013, 25(12):121901.

    [7]HUA R., ZHU L. and LU X. Dynamics of fluid flow over a circular flexible plate[J]. Journal of Fluid Mechanics, 2014, 759: 56-72.

    [8]ZHANG J., LIU N. and LU X. Locomotion of a passively flapping flat plate[J]. Journal of Fluid Mechanics,2010, 659: 43-68.

    [9]BIRCH J. M.,DICKINSON M. H.Spanwise flow and the attachment of the leading-edge vortex on insect wings[J]. Nature, 2001, 412(6848): 729-733.

    [10]LI G., LU X. Force and power of flapping plates in a fluid[J]. Journal of Fluid Mechanics, 2012, 712: 598-613.

    [11]WANG Ya-yun, HU Wen-rong and ZHANG Shi-dong. Performance of the bio-inspired leading edge protuberances on a static wing and a pitching wing[J]. Journal of Hydrodynamics, 2014, 26(6): 912-920.

    [12]HEATHCOTE S., GURSUL I. Flexible flapping airfoil propulsion at low Reynolds numbers[J]. AIAA Journal,2007, 45(5): 1066-1079.

    [13]HEATHCOTE S., WANG Z. and GURSUL I.Effect of spanwise flexibility on flapping wing propulsion[J]. Journal of Fluids and Structures, 2008, 24(2): 183-199.

    [14]MICHELIN S., SMITH S. G. L.Resonance and propulsion performance of a heaving flexible wing[J]. Physics of Fluids, 2009, 21(7): 429-445.

    [15]ELDREDGE J. D., TOOMEY J.and MEDINA A. On the roles of chord-wise flexibility in a flapping wing with hovering kinematics[J]. Journal of Fluid Mechanics, 2010, 659: 94-115.

    [16]FERREIRA SOUSA P. J., ALLEN J. J.Thrust efficiency of harmonically oscillating flexible flat plates[J]. Journal of Fluid Mechanics, 2011, 674: 43-66.

    [17]KANG C., AONO H. and CESNIK C. E. S. et al. Effects of fiexibility on the aerodynamic performance of flapping wings[J]. Journal of Fluid Mechanics, 2011,689: 32-74.

    [18]WU J., LUX. and ZHUANG L. Integral force acting on a body due to local flow structures[J]. Journal of Fluid Mechanics, 2007, 576: 265-286.

    (November 9, 2014, Revised April 15, 2015)

    * Project supported by the Natural Science Foundation of China (Grant No. 11372304), the 111 Project (Grant No. B07033).

    Biography: HAN Rui (1986-), Female, Ph. D.

    LU Xi-yun, E-mail: xlu@ustc.edu.cn

    猜你喜歡
    張杰
    關(guān)于不等式選講中一道模擬題的多種解法探究
    張杰:架起北京與家鄉(xiāng)的橋梁
    這個(gè)老師有點(diǎn)“壞”
    Magnetohydrodynamic Kelvin–Helmholtz instability for finite-thickness fluid layers
    Analytical model for Rayleigh–Taylor instability in conical target conduction region
    張杰演唱功夫主題神曲《我是來(lái)揍你的》
    青年歌聲(2019年2期)2019-02-21 01:17:30
    張杰藝術(shù)作品
    從2015年高考題看能量復(fù)習(xí)
    謎語(yǔ)兩則
    Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD
    青春草国产在线视频| 男女无遮挡免费网站观看| 婷婷色av中文字幕| 亚洲国产欧美日韩在线播放| 日韩欧美精品免费久久| 大片免费播放器 马上看| 欧美精品亚洲一区二区| 国产精品99久久99久久久不卡 | 成人免费观看视频高清| 国产精品一区二区在线观看99| 久久久国产欧美日韩av| 丝瓜视频免费看黄片| 女人被躁到高潮嗷嗷叫费观| 亚洲国产成人一精品久久久| 在线亚洲精品国产二区图片欧美| 亚洲国产毛片av蜜桃av| 狠狠精品人妻久久久久久综合| 亚洲专区中文字幕在线 | 波多野结衣一区麻豆| 日韩制服骚丝袜av| 天天躁日日躁夜夜躁夜夜| 久久久久久久国产电影| 亚洲av电影在线进入| 99香蕉大伊视频| 精品第一国产精品| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频| 九草在线视频观看| 亚洲成人av在线免费| 美女午夜性视频免费| 国产野战对白在线观看| 欧美变态另类bdsm刘玥| 波多野结衣av一区二区av| 欧美av亚洲av综合av国产av | 精品一区二区免费观看| 爱豆传媒免费全集在线观看| av网站在线播放免费| √禁漫天堂资源中文www| 亚洲av成人精品一二三区| 亚洲美女视频黄频| 免费在线观看黄色视频的| 99香蕉大伊视频| av片东京热男人的天堂| 女人精品久久久久毛片| 少妇人妻久久综合中文| 国产97色在线日韩免费| 男女边吃奶边做爰视频| 久久久久精品国产欧美久久久 | 国产高清不卡午夜福利| 一本一本久久a久久精品综合妖精| 18禁国产床啪视频网站| 亚洲精品一区蜜桃| 亚洲国产精品国产精品| 韩国精品一区二区三区| h视频一区二区三区| 国产女主播在线喷水免费视频网站| 亚洲av成人精品一二三区| 亚洲精品乱久久久久久| av又黄又爽大尺度在线免费看| √禁漫天堂资源中文www| 国产亚洲午夜精品一区二区久久| xxxhd国产人妻xxx| 99热全是精品| 宅男免费午夜| 欧美日韩一级在线毛片| 欧美乱码精品一区二区三区| 国产亚洲精品第一综合不卡| 美女午夜性视频免费| 天天影视国产精品| 精品一区二区三卡| 国产日韩欧美在线精品| 在线观看免费视频网站a站| 国产福利在线免费观看视频| 制服人妻中文乱码| 中文字幕制服av| 亚洲精品美女久久av网站| 电影成人av| 另类亚洲欧美激情| 久久精品亚洲av国产电影网| 黄色一级大片看看| 成年av动漫网址| 免费在线观看视频国产中文字幕亚洲 | 极品少妇高潮喷水抽搐| 亚洲欧美一区二区三区久久| av片东京热男人的天堂| 欧美日韩视频高清一区二区三区二| 少妇人妻精品综合一区二区| 欧美激情 高清一区二区三区| 午夜福利网站1000一区二区三区| 国产人伦9x9x在线观看| 亚洲精品在线美女| 熟女av电影| 久久久久久久久久久久大奶| 免费av中文字幕在线| 午夜激情av网站| 国产精品久久久av美女十八| a级毛片在线看网站| 又粗又硬又长又爽又黄的视频| 亚洲欧美清纯卡通| 精品人妻在线不人妻| 久久久久久久久久久久大奶| 成人漫画全彩无遮挡| 日韩一区二区三区影片| 黄色视频不卡| 最近最新中文字幕免费大全7| 天天躁日日躁夜夜躁夜夜| 97在线人人人人妻| 免费观看人在逋| 国产成人欧美在线观看 | 国产亚洲精品第一综合不卡| 男的添女的下面高潮视频| 一边亲一边摸免费视频| 亚洲三区欧美一区| 黄色视频不卡| 国产一区亚洲一区在线观看| 亚洲五月色婷婷综合| 国产不卡av网站在线观看| 又大又爽又粗| 国精品久久久久久国模美| 国产爽快片一区二区三区| 黄色一级大片看看| 亚洲国产欧美在线一区| 国产亚洲av高清不卡| 一本一本久久a久久精品综合妖精| 国产精品成人在线| 热re99久久国产66热| 男女午夜视频在线观看| a级毛片在线看网站| 精品一区在线观看国产| 欧美成人精品欧美一级黄| 国产成人精品福利久久| 一本—道久久a久久精品蜜桃钙片| 欧美人与性动交α欧美软件| 宅男免费午夜| 亚洲国产av新网站| av女优亚洲男人天堂| 亚洲人成网站在线观看播放| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 日韩 欧美 亚洲 中文字幕| 国产女主播在线喷水免费视频网站| 国产成人啪精品午夜网站| 最近的中文字幕免费完整| 免费在线观看完整版高清| 亚洲美女黄色视频免费看| 久久97久久精品| 久久精品国产a三级三级三级| 人体艺术视频欧美日本| 欧美另类一区| 亚洲精品国产av蜜桃| 欧美最新免费一区二区三区| 免费av中文字幕在线| 啦啦啦啦在线视频资源| 99精国产麻豆久久婷婷| 大片电影免费在线观看免费| 999精品在线视频| 伦理电影大哥的女人| 性少妇av在线| 在线免费观看不下载黄p国产| 国产毛片在线视频| 日韩大片免费观看网站| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 最黄视频免费看| av国产久精品久网站免费入址| 无遮挡黄片免费观看| 国产成人精品久久二区二区91 | 国产一区有黄有色的免费视频| 欧美在线一区亚洲| 丁香六月欧美| 国产av一区二区精品久久| 在线观看免费日韩欧美大片| 国产免费一区二区三区四区乱码| 午夜免费观看性视频| 国产精品无大码| 久久 成人 亚洲| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 国产高清国产精品国产三级| 国产深夜福利视频在线观看| a级毛片在线看网站| 最近中文字幕高清免费大全6| 韩国精品一区二区三区| 国产黄色免费在线视频| 99久久99久久久精品蜜桃| 欧美在线黄色| 别揉我奶头~嗯~啊~动态视频 | 国精品久久久久久国模美| 日本91视频免费播放| 精品福利永久在线观看| 久久国产亚洲av麻豆专区| 丝袜喷水一区| 午夜日本视频在线| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 大香蕉久久成人网| 国产精品熟女久久久久浪| 亚洲精品一二三| 99热国产这里只有精品6| 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 国产激情久久老熟女| 久久久久久免费高清国产稀缺| 成人亚洲精品一区在线观看| 久久久精品94久久精品| 97在线人人人人妻| 一区在线观看完整版| 美国免费a级毛片| 另类亚洲欧美激情| 国产精品人妻久久久影院| 日韩中文字幕欧美一区二区 | 亚洲国产看品久久| 日本一区二区免费在线视频| 秋霞在线观看毛片| 大话2 男鬼变身卡| 亚洲婷婷狠狠爱综合网| 亚洲国产精品999| 国产一区二区在线观看av| 亚洲欧美精品综合一区二区三区| 成人亚洲欧美一区二区av| 精品一区在线观看国产| 国产精品久久久av美女十八| 看非洲黑人一级黄片| 久久精品亚洲熟妇少妇任你| 国产免费现黄频在线看| 久久ye,这里只有精品| 日韩制服丝袜自拍偷拍| 美女高潮到喷水免费观看| 母亲3免费完整高清在线观看| 亚洲婷婷狠狠爱综合网| 国产爽快片一区二区三区| www.av在线官网国产| 国产一区二区三区av在线| 国产视频首页在线观看| 9热在线视频观看99| 成年动漫av网址| 国产成人精品久久二区二区91 | 久久久久久久精品精品| 天堂俺去俺来也www色官网| 熟女av电影| 久久天躁狠狠躁夜夜2o2o | 最近最新中文字幕免费大全7| av在线播放精品| 一级a爱视频在线免费观看| 最近2019中文字幕mv第一页| 一级a爱视频在线免费观看| 狠狠精品人妻久久久久久综合| 成人午夜精彩视频在线观看| 18禁国产床啪视频网站| 男女下面插进去视频免费观看| 我的亚洲天堂| 午夜福利一区二区在线看| 视频区图区小说| 少妇 在线观看| 最近中文字幕2019免费版| 欧美日韩视频高清一区二区三区二| 午夜影院在线不卡| 国产极品粉嫩免费观看在线| 韩国高清视频一区二区三区| 天天躁夜夜躁狠狠久久av| 卡戴珊不雅视频在线播放| 国产午夜精品一二区理论片| av又黄又爽大尺度在线免费看| 如何舔出高潮| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 90打野战视频偷拍视频| 日本av手机在线免费观看| 欧美97在线视频| 精品国产乱码久久久久久小说| 下体分泌物呈黄色| 免费观看人在逋| 亚洲,一卡二卡三卡| 国产av一区二区精品久久| 中国三级夫妇交换| 国产精品久久久久久精品电影小说| 一边摸一边抽搐一进一出视频| 国产亚洲午夜精品一区二区久久| 久久精品亚洲av国产电影网| 亚洲美女黄色视频免费看| 欧美日韩一区二区视频在线观看视频在线| 亚洲第一区二区三区不卡| 国产 一区精品| 99精品久久久久人妻精品| 成人漫画全彩无遮挡| 国产一级毛片在线| 久久久国产精品麻豆| 亚洲国产av新网站| 婷婷色综合www| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看 | 一级爰片在线观看| 免费观看av网站的网址| 2018国产大陆天天弄谢| 欧美精品亚洲一区二区| www.av在线官网国产| 亚洲精品乱久久久久久| 亚洲欧美激情在线| 日本黄色日本黄色录像| 少妇人妻 视频| 欧美乱码精品一区二区三区| 亚洲第一av免费看| 男的添女的下面高潮视频| 久久精品久久精品一区二区三区| 自线自在国产av| av网站免费在线观看视频| 少妇被粗大猛烈的视频| 日韩欧美精品免费久久| 在线观看免费视频网站a站| 又大又爽又粗| 久久青草综合色| 三上悠亚av全集在线观看| 国产女主播在线喷水免费视频网站| 久久久精品94久久精品| 中文字幕制服av| 亚洲成人av在线免费| 少妇人妻久久综合中文| 欧美 亚洲 国产 日韩一| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91 | 777久久人妻少妇嫩草av网站| 久久久久精品人妻al黑| 最新的欧美精品一区二区| 国产成人av激情在线播放| 亚洲专区中文字幕在线 | 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 久久午夜综合久久蜜桃| 建设人人有责人人尽责人人享有的| videos熟女内射| 亚洲精品自拍成人| 日韩成人av中文字幕在线观看| 亚洲图色成人| av.在线天堂| 免费av中文字幕在线| 午夜精品国产一区二区电影| 国产福利在线免费观看视频| 人人妻人人添人人爽欧美一区卜| 欧美成人午夜精品| 国产不卡av网站在线观看| 国产精品国产三级专区第一集| 人人妻人人添人人爽欧美一区卜| 国产精品久久久久久久久免| 欧美最新免费一区二区三区| 91成人精品电影| 日本黄色日本黄色录像| 国产精品亚洲av一区麻豆 | 亚洲成人国产一区在线观看 | 日本av免费视频播放| netflix在线观看网站| 无遮挡黄片免费观看| 成人毛片60女人毛片免费| 国产成人av激情在线播放| 国产在线一区二区三区精| 最近最新中文字幕大全免费视频 | 中文精品一卡2卡3卡4更新| 精品国产超薄肉色丝袜足j| 不卡视频在线观看欧美| 狂野欧美激情性xxxx| 激情视频va一区二区三区| 国产成人精品在线电影| 久久久国产一区二区| 国产精品一二三区在线看| 精品国产一区二区三区久久久樱花| 国产亚洲欧美精品永久| 国产精品久久久久久久久免| 国产福利在线免费观看视频| av天堂久久9| 午夜福利视频在线观看免费| 最近最新中文字幕大全免费视频 | 爱豆传媒免费全集在线观看| 国产片特级美女逼逼视频| 久久久欧美国产精品| 亚洲精品aⅴ在线观看| 2018国产大陆天天弄谢| 久久久久国产精品人妻一区二区| 国产不卡av网站在线观看| 哪个播放器可以免费观看大片| 久久青草综合色| 人人妻,人人澡人人爽秒播 | 青春草视频在线免费观看| 国产精品成人在线| 久久97久久精品| 亚洲av在线观看美女高潮| 婷婷色麻豆天堂久久| 卡戴珊不雅视频在线播放| 免费少妇av软件| 日韩伦理黄色片| 免费黄色在线免费观看| 国产又色又爽无遮挡免| 欧美日韩成人在线一区二区| 人人澡人人妻人| 久久久久久久大尺度免费视频| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 一级a爱视频在线免费观看| 深夜精品福利| 69精品国产乱码久久久| 国产1区2区3区精品| av在线app专区| av网站免费在线观看视频| 两个人看的免费小视频| 999精品在线视频| 久久精品人人爽人人爽视色| 各种免费的搞黄视频| 九色亚洲精品在线播放| 波野结衣二区三区在线| 国产成人啪精品午夜网站| 韩国av在线不卡| 看免费成人av毛片| 亚洲精品乱久久久久久| 国产精品一区二区精品视频观看| 人妻一区二区av| 日韩伦理黄色片| 国产精品熟女久久久久浪| 1024香蕉在线观看| 亚洲av男天堂| 9热在线视频观看99| 看免费成人av毛片| 欧美中文综合在线视频| 亚洲一区中文字幕在线| 精品少妇黑人巨大在线播放| 日韩中文字幕视频在线看片| 悠悠久久av| 大陆偷拍与自拍| 在线观看国产h片| 国产精品麻豆人妻色哟哟久久| 91aial.com中文字幕在线观看| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 久久久久人妻精品一区果冻| av在线老鸭窝| 亚洲免费av在线视频| 精品国产一区二区三区四区第35| 人成视频在线观看免费观看| 777久久人妻少妇嫩草av网站| 亚洲精品久久久久久婷婷小说| 亚洲精品中文字幕在线视频| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 国产亚洲最大av| 国产探花极品一区二区| 精品卡一卡二卡四卡免费| 香蕉丝袜av| 成年人午夜在线观看视频| 色精品久久人妻99蜜桃| 久久精品久久久久久久性| 99精品久久久久人妻精品| 极品少妇高潮喷水抽搐| 欧美国产精品一级二级三级| 成人午夜精彩视频在线观看| 国产亚洲欧美精品永久| 欧美国产精品va在线观看不卡| 老汉色∧v一级毛片| 亚洲av欧美aⅴ国产| 五月天丁香电影| 黄频高清免费视频| 国产成人a∨麻豆精品| 国产在线视频一区二区| 我的亚洲天堂| 欧美黑人精品巨大| 啦啦啦在线观看免费高清www| 无遮挡黄片免费观看| 国产成人91sexporn| 老熟女久久久| 午夜老司机福利片| 晚上一个人看的免费电影| 色精品久久人妻99蜜桃| 中文字幕精品免费在线观看视频| 岛国毛片在线播放| 久久久久久久久免费视频了| 国产午夜精品一二区理论片| 中文精品一卡2卡3卡4更新| 无遮挡黄片免费观看| 狂野欧美激情性xxxx| kizo精华| 国产免费一区二区三区四区乱码| 久久久久久久久久久久大奶| 晚上一个人看的免费电影| 成人国产av品久久久| 亚洲自偷自拍图片 自拍| 电影成人av| 婷婷色av中文字幕| 亚洲免费av在线视频| 午夜福利一区二区在线看| 一区二区三区四区激情视频| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 少妇人妻 视频| 久久狼人影院| 亚洲 欧美一区二区三区| 狠狠婷婷综合久久久久久88av| 亚洲欧美一区二区三区国产| 69精品国产乱码久久久| 久久久久久人人人人人| 观看av在线不卡| 亚洲国产欧美网| 婷婷色av中文字幕| 亚洲av国产av综合av卡| av女优亚洲男人天堂| 夫妻性生交免费视频一级片| 啦啦啦视频在线资源免费观看| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 巨乳人妻的诱惑在线观看| 亚洲国产av影院在线观看| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 99久国产av精品国产电影| 男女之事视频高清在线观看 | 1024视频免费在线观看| 欧美人与性动交α欧美软件| 欧美激情高清一区二区三区 | 在线精品无人区一区二区三| 久久午夜综合久久蜜桃| 另类亚洲欧美激情| 国产亚洲最大av| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 日日啪夜夜爽| 菩萨蛮人人尽说江南好唐韦庄| 国产深夜福利视频在线观看| 99热网站在线观看| 少妇被粗大的猛进出69影院| 大片免费播放器 马上看| 日韩一本色道免费dvd| 九九爱精品视频在线观看| 男女边吃奶边做爰视频| 成人亚洲精品一区在线观看| 最近的中文字幕免费完整| 久久久精品国产亚洲av高清涩受| 少妇被粗大的猛进出69影院| 青春草亚洲视频在线观看| 国产精品久久久人人做人人爽| 久久久久人妻精品一区果冻| 熟女av电影| 欧美久久黑人一区二区| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 999久久久国产精品视频| 国产精品偷伦视频观看了| 国产无遮挡羞羞视频在线观看| 男人操女人黄网站| 亚洲国产成人一精品久久久| 99热国产这里只有精品6| 黑人巨大精品欧美一区二区蜜桃| 视频区图区小说| 亚洲伊人色综图| 少妇人妻 视频| 中文字幕制服av| 欧美日韩福利视频一区二区| 欧美 日韩 精品 国产| 国产极品粉嫩免费观看在线| 久久久精品区二区三区| 中文天堂在线官网| 美女国产高潮福利片在线看| 人成视频在线观看免费观看| 欧美日韩av久久| 大话2 男鬼变身卡| 成年人午夜在线观看视频| 国产福利在线免费观看视频| 一级黄片播放器| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 欧美人与性动交α欧美精品济南到| 人妻人人澡人人爽人人| 高清视频免费观看一区二区| 黄片播放在线免费| 欧美日本中文国产一区发布| 久久精品久久精品一区二区三区| 九草在线视频观看| 9色porny在线观看| 久久久久精品人妻al黑| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 无限看片的www在线观看| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 欧美精品人与动牲交sv欧美| 999久久久国产精品视频| 国产片内射在线| 中文字幕另类日韩欧美亚洲嫩草| 妹子高潮喷水视频| 中文精品一卡2卡3卡4更新| 日韩熟女老妇一区二区性免费视频| 久久人人爽人人片av| 国产一区亚洲一区在线观看| 亚洲中文av在线| 一二三四在线观看免费中文在| 一级毛片 在线播放| 亚洲精品美女久久av网站| 九色亚洲精品在线播放| 七月丁香在线播放| 在线天堂中文资源库| 老司机在亚洲福利影院| 极品人妻少妇av视频| 中文字幕人妻丝袜一区二区 | 中文字幕人妻丝袜制服| 中文字幕制服av| 国产精品一区二区在线不卡| 久久人妻熟女aⅴ| 女的被弄到高潮叫床怎么办| 亚洲欧洲精品一区二区精品久久久 | 哪个播放器可以免费观看大片| 亚洲精品久久成人aⅴ小说| 天天躁日日躁夜夜躁夜夜| 日本午夜av视频| 国产精品国产av在线观看| 不卡av一区二区三区| 亚洲美女视频黄频| 在线精品无人区一区二区三| 狂野欧美激情性bbbbbb| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女毛片av久久网站|