• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical model for Rayleigh–Taylor instability in conical target conduction region

    2022-10-26 09:46:48ZhongYuanZhu朱仲源YunXingLiu劉云星YingJunLi李英駿andJieZhang張杰
    Chinese Physics B 2022年10期
    關鍵詞:張杰

    Zhong-Yuan Zhu(朱仲源) Yun-Xing Liu(劉云星) Ying-Jun Li(李英駿) and Jie Zhang(張杰)

    1School of Science,China University of Mining and Technology,Beijing 100083,China

    2Double-cone Ignition(DCI)Joint Team,State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing 100083,China

    3Double-cone Ignition(DCI)Joint Team,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: double-cone ignition,Rayleigh–Taylor instability,conical target conduction region

    1. Introduction

    In inertial confinement fusion (ICF)[1–10]schemes with directly driven conical and spherical targets, the Rayleigh–Taylor instability (RTI) imposes a fundamental constraint on the design parameters required for both of these ignition schemes.[11–14]Livescuet al.[15–17]studied RTI using direct numerical simulations. Yu and Ye[18]also adopted numerical simulations of hydrodynamic instabilities during direct-drive ICF implosion ignition based on the LARED-S program, but these were for the spherical target. In 1986, a formalism for the semi-analytical form of RTI in spherical geometry was developed by Gupta and Lawand.[19]In 1996, Sanz proposed a self-consistent analytical model for RTI in ICF.[20]Most of the works mentioned above are restricted to numerical simulations or only aim to study RTI in direct-drive spherical targets.In 2020, Zhang proposed a new ignition scheme,[21]i.e., the double-cone ignition scheme (Fig. 1). It is well known that during the direct drive of a spherical target pellet,the ablation front is unstable,affecting the central implosion ignition of the pellet. However,what is actually affected by RTI during laserirradiated conical targets is the compression process.[22,23]In 2022, Fang and Zhanget al.[24]conducted experimental and numerical simulations to study RTI in conical targets caused by factors such as the thickness of the target pellet, but their work ignored the effect of laser-plasma instability(LPI).

    Studies have been carried out on the heat conduction region. De Groot[25]proposed an analytical model of a planar plasma in 1992, which explicitly includes the temporal evolution of the heat conduction region. Models for the onedimensional resolution of the plasma in the conduction region in a planar target have been given by Chang and Li,[26–28]respectively. In 2020, Bettiet al.[29]also presented a semianalytical model of the hot spot and compressible shell,using analytical and simulation methods to study the physics of burn propagation in inertially confined plasmas. In Refs. [30–32],the parameters of the heat conduction region in the planar target have also been investigated experimentally[30]and numerically[31,32]by numerous researchers. Notably,in order to better analyze and solve the RTI of the compression process,the authors developed an analytical model of the plasma in the conduction zone instead of modeling the hydrodynamic instability of the ablation surface. Moreover, for the purpose of this paper, the parameters of the plasma (length, density,temperature,etc.) in the conduction zone are given below.

    Fig.1. (a)Schematic of the initial stage. The yellow line in this diagram is the drive laser;the two sides are composed of symmetrical metal walls;and the ignition assembly is placed in the center of the entire unit. (b)Schematic of the compression stage. As the compressed fuel is ejected at high speed and fused together,the ignition assembly ignites and triggers fusion.[33]

    The authors ignored the viscosity between the two metal walls and the fusion fuel. The incompressibility(i.e.,isobaric approximation) has been widely used in the analytical treatment of the ablation RTI at the ablation front over the past decades. The formula for the growth rate of RTI[34–36]at the ablation front in ICF is expressed as follows:

    wherekis the perturbed wave number; Atwood numberA=(ρ2-ρ1)/(ρ2+ρ1),gis the acceleration;Vais the ablation velocity;β ≈2–4 is expected in the direct-drive ablation;andLis the thickness of the fluid density layer. In combination with the specific parameters of the plasma obtained through the analytical model developed in this paper,it is necessary to analyze the RTI of the compression process in a conical target.This is the reason for and significance of the model described in this paper,and the analytical results are more intuitive than the numerical solutions.

    2. Analytical model and application

    Since the laser is uniformly irradiated on the spherical target,the polarization angle of the laser irradiation is 2π. However, in the conical target model, the angle becomes smaller compared to that of the former. The authors temporarily define this angle asθ,which ranges from 90°to 120°. Namely,the current study in this paper is two-dimensional(2D).

    In Ref. [26], Li gave a one-dimensional self-similar model based on the hydrodynamic behavior of a flat target.Based on research by previous scholars,this paper introduces the physical process of the conduction region in the direct driven conical target model(Fig.2),focusing on the fluid behavior and properties exhibited by the plasma in the conduction region.

    Fig. 2. Diagram of conical target conduction region. The authors define xa as the ablation surface and xc as the critical density surface. In addition,xc is the coordinate origin.

    When laser irradiates a solid target to generate plasma,the whole region is usually divided into three regions,[37,38]i.e.,the compression region,conduction region and corona region.The boundary between the conduction and corona regions is the critical density surface. The generation of the plasma conduction region of the laser-irradiated conical target consists of three steps. First,the laser acts on the critical density surface of plasma on the conical target,and is absorbed mainly in the corona region since it cannot enter the critical density surface.Plasma heats the conduction region via electron heat conduction. In the 2D case,the electron heat conduction model[39,40]is expressed as whereQris heat flux;Teis electron temperature;and the heat flux isQ=-κ?Te/?r, whereκis thermal conductivity andκ∝T5/2e. Therefore,the heat energy entering the conduction region through electron heat conduction is the main energy source for plasma generation. Second, the plasma generated by the ablation of the solid material flows away from the ablation surface.The mass of a conical target ablated in unit time is called an ablation rate and is represented by dm/dt.Third,the authors consider that the driving laser is a long pulse,the conduction region reaches a steady state, and the fluid behavior in the conduction region is steady. The electron heat conduction increases the temperature in the conduction region,while the ablation decreases the temperature and increases the density. The expansion of the plasma results in decreases in its temperature and density. Many factors cause the plasma in the conduction region to expand isobarically. Therefore, the authors adopted an isobaric assumption in this model.

    Considering that the authors mainly study the conduction region with electron densityne>ncaway from the target in space,it is heat conduction,expansion,ablation,and other factors in this region that lead to its equilibrium state. Therefore,plasma fluids can be seen as quasi-steady. As the laser is completely absorbed in the corona region, in the heat conduction region,Te?Ti,P ≈Pe, andQ ≈Qe(Teis the temperature of electrons;Tiis the temperature of ions;Peis the pressure of electrons; andQeis the electronic heat flux). At the same time, assuming that the laser irradiation uniformity is good,the authors consider that the fluid behavior in the conduction region conforms to the steady-state assumption. Then,the expression for the single-fluid,steady-state,and viscous-free hydrodynamic equations are as follows:

    whereρ,P, andu(v) are the density, pressure, and velocity,respectively, of the plasma;E=ε+(u2/2);εis the internal energy per unit mass;andQis the heat flux.

    In order to facilitate the use of the analysis results of the self-similar equation,the authors adopted convenient units,as shown in Table 1.

    Table 1. Normalized values for scaled variables.

    Fig. 3. Evolution of density of plasma as a function of the spatial location for different pulse widths. Laser pulse widths of 1 ns, 2 ns, and 3 ns were randomly selected. Driving laser power density I=3.0×1014 W/cm2.

    Due to Eq. (4) and the ideal gas condition, the authors consider the pressure formulaP=ρC2sin Ref. [25], and the pressure in the conduction region is constant atPc,

    Solution(11)for the density shows that the length of the plasma and the angleθof the conical target can affect the changing pattern of the density. Whenθis kept constant,the longer the length of the plasma, the slower the density decreases; whereas, whenLris kept constant, the larger theθ,the steeper the density decrease trend of the plasma in the conduction zone. Figure 3 shows that when the pulse time or laser intensity is properly enhanced, the width of the conduction zone becomes larger and the density of the plasma decreases slowly, which is favorable for reducing the effects caused by RTI.

    The pulsed laser energy is absorbed in the corona region and cannot enter the conduction region. According to the work of De Grootet al.,[42,43]ρu= dm/dt, which is the ablation rate equation. From Eq. (6) and the pressure equation, the authors obtainC2s˙m(1+(u2/2C2s))=-Qr. It is known thatE=ε+(1/2)u2andε= (3/2)meC2s, whileme=9.1×10-31g, which is so small that it can be ignored.The plasma fluid velocity in the conduction region is less than the velocity of sonic surface,which leads to 0≤(u2/C2s)≤1,resulting in at the same time, the authors focus on the boundary condition of the conduction region. Whenr=0,T ≈Tc(whereTcis the temperature of the corona region). Additionally, whenr=-Lr,T ≈0. Therefore,the solution for temperature is and since the origin of the coordinates is on the critical density surface,the value ofris considered to be in the range[-Lr,0].Then, the following results are obtained using the coordinate transformation of Eq.(19):where the value range ofr(cm)is[-Lr,0]and the value range ofθis between 90°and 120°. Equations (2) and (22) show that,when the driving laser intensity and pulse time are guaranteed to be constant, the larger the angleθ, the higher the temperature near the coronal region. Similarly,if the angleθis held constant,increasing the intensity of the drive laser will also lead to a higher temperature near the coronal region,i.e.,the temperature trend in the conduction zone will also become steeper.

    Since the authors only consider the plasma length between the critical density surface (coordinate origin) and the ablation surface, based on the physical model, whereLr=LrmaxandT=Tc, the authors are interested in the length of plasma fluid from the ablation surface to the critical density surface. The approximate analytical model can be expressed as follows:

    Equation (23) and figure 4 are the relationships between the plasma length and the time in the conduction region. As can be seen from Eq. (23), when the pulse time and angleθare guaranteed, the desired increase in plasma length can be achieved by enhancing the intensity of the driving laser. Similarly,the plasma length can also be regulated by adjusting the pulse time and angleθwhen the laser intensity is determined.It can also be seen from Fig. 4 that the larger the angleθof the conical target,the smaller the length of the plasma will be when the pulse width is certain.

    3. Verification and discussion

    To verify the accuracy of the analysis results,the authors compared the results in this paper with a simulation program.A single-temperature computational fluid dynamics program based on Euler’s equation was utilized,[48]and the control equation is as follows:

    whereρ,Vr,e,T, andPrepresent the density, velocity, total energy, temperature, and pressure, respectively.Sis the laser energy deposition term induced by inverse bremsstrahlung absorption. The Spitzer–Harm model[49]was used for the electron heat transfer, andKeis the heat transfer coefficient. The finite volume method (FVM) was used for the fluid solution,with a non-uniform sparse grid being set at locations away from the target to extend the computational domain. Moreover, a dynamic grid function was added to ensure that the flow field remains in the encrypted grid. To compare the analytical results, the above equation is solved in a spherical coordinate system, and a one-dimensional laser shot problem is calculated taking into account the shrinkage effect.

    The same conditions were set for the simulation and analysis model:driving laser power densityI=3.0×1014W/cm2,wavelengthλ=0.351 μm, and pulse widtht=1.0 ns. The comparison between the analysis results and the program simulation results is shown in Fig. 5, which includes the plasma density,temperature,pressure,and velocity in the conduction region of the conical target.

    It is obvious from Fig. 5 that the analytical model developed in this paper and the numerical simulation results are generally consistent, although they show a small deviation in terms of values. This can be explained and their trends are consistent. In the model of this paper, when the laser is incident from the right, it can be seen that the left side of the conduction region is the compression zone. Therefore,the authors assume that the ablation surface also has a width,which leads to the fact that the plasma density at the ablation surface is unequal to the density of the solid fuel(Fig.5(a)).

    In the analytical process, the temperature of the ablation surface is approximated as 0 keV for computational convenience. However, in Fig. 5(b), the authors combine the data given by the simulation results and compare the trend with the temperature simulation results, and find that they are in general agreement with each other. In the conduction region,the plasma temperature increases quickly initially and then slowly with the passage of time,and the authors approximate that the plasma temperature remains constant in the coronal region.

    In Fig.5(c),the analytical results of the pressure and the simulation are in general agreement. In fact, the pressure decreases gradually and slowly from the ablation surface to the critical density surface, which can also be seen in the figure,but in the analysis, the authors approximate that it is an isobaric process,i.e.,the pressure remains essentially constant.

    Fig. 5. Density (a), temperature (b), pressure (c), and velocity (d) in the conduction region. It is noteworthy that the authors take the critical density surface as the coordinate origin.

    In the density model given in Eq.(12),adjusting the laser light intensity and pulse duration led to a change in the density gradient (Figs. 3 and 6), i.e., increasing the former two parameters reduces the gradient,but the effect is insignificant for the suppression ofγ. In other words,this adjustment in the proposed model has almost no effect on the Atwood number in Eq. (1). Therefore, the authors focus on the effect of the plasma length model on the RTI growth rate.

    The ablation velocityVain Eq. (1) can be treated as a constant.[50]According to the model in this paper, the linear growth curvesγinfluenced by wavelengthλand the length of the plasma in the conduction zone are shown in Fig.7.but it is negligible. In order to observe more clearly the effect of the change in laser intensity onγ, the growth rate curveγinfluenced by laser intensity is shown here separately(Fig.9).

    Fig. 6. Density curves at different laser intensities. The pulse width t=1.0 ns.

    Fig.7.Linear growth curves γ influenced by wavelength λ (a)and Lr(b).For the selection of acceleration g,the authors refer to the values in the numerical simulation of ablation RTI by Ye et al.,[51]where g=17.85 μm/ns2.Atwood number A ≈0.5,and according to the model in this paper,ρ1 ≈0.054 g/cm3 and ρ2 ≈0.158 g/cm3. In(b),the perturbation wave number k=2π/λ and λ =0.351 μm.

    Fig. 8. Linear growth curves γ influenced by laser intensity (a), time (b),and angle θ of the conical target (c). In (a) and (b), the angle θ of the conical target is chosen to be 90°, and in (c), driving laser power density I=3.0×1014 W/cm2.

    Overall,γdecays asLrincreases; however,which of the two,laser intensity or pulse time width,has a more significant effect on the growth rateγwill be discussed here(Fig.8).

    Figure 8 shows that increasing the laser intensity and pulse duration or decreasing the angleθas appropriate can attenuate the RTI growth rate. It is worth noting that adjusting the laser pulse duration is more beneficial for attenuating the RTI growth rate,and changing the laser intensity has a limited impact onγ. The change in angleθalso has an effect onγ,

    When the laser intensity is adjusted aroundI= 3.0×1014W/cm2in the experiment, the change in the growth rateγis minimal(Fig.9). There is only a fractional change in the order of magnitude. Moreover, it is necessary to drastically change the laser intensity to suppress the growth rate,but it is much easier and more efficient to alter the pulse duration.

    Analytical solutions for the density, temperature, and length of the plasma are shown in Eqs. (12), (22), and (23),which are key works of this paper. Here the effect of the parameters in the proposed model on the RTI of the ablation surface is explicitly analyzed,emphasizing the significance of RTI analysis to the work in this paper. As the plasma length grows, the RTI caused by the density gradient is attenuated.When the angle of the conical target is 90°, appropriately increasing the pulse duration or increasing the laser intensity is beneficial to suppressing the growth rateγ. However, adjusting the pulse duration will be more efficient than changing the laser intensity.theoretical methods and mechanisms instead of only numerical solutions. The isobaric steady-state analytical model in the conduction region established in this paper demonstrates clear physical images and robust results, which are useful for analyzing the favorable conditions for attenuating RTI in a conical target.

    Fig.9. Partial enlargement of the growth rate curve γ. The baseline for the laser intensity is chosen here as I=3.0×1014 W/cm2,pulse width t=1.0 ns,and angle θ =90°.

    4. Summary

    In summary, an isobaric, steady-state model of a plasma fluid in the conduction zone is provided in this work to discuss and resolve the RTI present in the double-cone ignition scheme. Within the angle range of the conical target (90°–120°),the pulse width and laser intensity are appropriately increased when the angle is 90°,which is the most favorable for attenuating the RTI on the ablation surface,and increasing the pulse duration is more efficient than increasing the laser intensity and adjusting the angle(Fig.7). Notably,the study of the hydrodynamics of the plasma in the conical target conduction region using analytical methods has not been proposed at all in previous works.

    Equations(12)and(23)show that laser intensity and time also affect the density trend in the conduction zone:increasing the laser intensity and pulse duration leads to a smaller density gradient and a longer lengthLof the plasma. The temperature solution of the energy equation of the fluid dynamics model is shown in Eq. (22). Increasing the laser intensity and time also increases the temperature near the critical density surface,which can have an impact on the temperature trend in the conduction zone. The two-dimensional calibration relations for the length, pressure, and velocity models of the plasma fluid in the conduction zone are provided by Eqs. (23), (24), and(28). The adjustable parameters inLrprovide convenience for the analysis of RTI on the ablation surface in the conical target.It can be concluded that extending the pulse duration is a more practical approach than increasing the laser intensity. Clearly,compared with the numerical simulation of two-dimensional fluid mechanics, the method proposed in this paper provides

    Acknowledgment

    Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA 25051000 and XDA 25010100).

    猜你喜歡
    張杰
    關于不等式選講中一道模擬題的多種解法探究
    張杰:架起北京與家鄉(xiāng)的橋梁
    華人時刊(2023年7期)2023-05-17 09:05:04
    這個老師有點“壞”
    Magnetohydrodynamic Kelvin–Helmholtz instability for finite-thickness fluid layers
    張杰演唱功夫主題神曲《我是來揍你的》
    青年歌聲(2019年2期)2019-02-21 01:17:30
    張杰藝術作品
    藝術評論(2017年5期)2017-06-14 09:56:30
    從2015年高考題看能量復習
    謎語兩則
    Propulsive performance of a passively flapping plate in a uniform flow*
    Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD
    精品日产1卡2卡| 国产精品人妻久久久久久| 国产片特级美女逼逼视频| 日日摸夜夜添夜夜爱| 乱人视频在线观看| 免费电影在线观看免费观看| 色哟哟哟哟哟哟| 亚洲欧美成人精品一区二区| 啦啦啦观看免费观看视频高清| 在线免费十八禁| 国产精品久久久久久av不卡| 九色成人免费人妻av| 村上凉子中文字幕在线| 国产一级毛片七仙女欲春2| 日韩在线高清观看一区二区三区| 国产在线精品亚洲第一网站| 女的被弄到高潮叫床怎么办| 亚洲国产色片| 免费人成视频x8x8入口观看| 欧美性猛交╳xxx乱大交人| 午夜免费男女啪啪视频观看| 国产日韩欧美在线精品| 99国产精品一区二区蜜桃av| 99久久中文字幕三级久久日本| 少妇丰满av| 熟女电影av网| 欧美激情久久久久久爽电影| 亚洲国产日韩欧美精品在线观看| 免费av观看视频| 国产精品人妻久久久久久| 日日摸夜夜添夜夜添av毛片| 99热这里只有是精品在线观看| 99久国产av精品国产电影| 日韩av在线大香蕉| 亚洲国产精品成人综合色| 99九九线精品视频在线观看视频| 综合色av麻豆| 亚洲自偷自拍三级| 国产高清激情床上av| 边亲边吃奶的免费视频| 少妇熟女aⅴ在线视频| 国产午夜精品一二区理论片| 男女那种视频在线观看| 欧美高清性xxxxhd video| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩高清专用| 亚洲av熟女| 久久久久久久午夜电影| 国产男人的电影天堂91| 我的女老师完整版在线观看| 国产伦精品一区二区三区视频9| eeuss影院久久| av免费观看日本| 99国产极品粉嫩在线观看| 99国产极品粉嫩在线观看| 国产av在哪里看| 国内精品美女久久久久久| 国产高清不卡午夜福利| 亚洲色图av天堂| 国产黄片美女视频| 精品不卡国产一区二区三区| 免费av不卡在线播放| 变态另类成人亚洲欧美熟女| 成年版毛片免费区| 成人高潮视频无遮挡免费网站| www.av在线官网国产| 国产白丝娇喘喷水9色精品| 搞女人的毛片| 欧美激情国产日韩精品一区| 欧美性感艳星| 中国国产av一级| 国产成人福利小说| 午夜a级毛片| 国产高清激情床上av| 精品久久久久久久久亚洲| 亚洲精品亚洲一区二区| 久久99精品国语久久久| 成人欧美大片| 国产成人精品一,二区 | 91精品国产九色| 精品无人区乱码1区二区| 在线免费观看不下载黄p国产| 国产美女午夜福利| 99久国产av精品国产电影| 给我免费播放毛片高清在线观看| 最近手机中文字幕大全| 国产精华一区二区三区| 乱系列少妇在线播放| av女优亚洲男人天堂| 成人av在线播放网站| 给我免费播放毛片高清在线观看| 1024手机看黄色片| 能在线免费观看的黄片| 国产麻豆成人av免费视频| 人妻系列 视频| 男人狂女人下面高潮的视频| 直男gayav资源| 亚洲在线自拍视频| 天堂影院成人在线观看| 乱码一卡2卡4卡精品| 国产探花在线观看一区二区| 欧美高清成人免费视频www| 亚洲精品乱码久久久v下载方式| 国产亚洲欧美98| 国产单亲对白刺激| 国产精品一二三区在线看| 夜夜夜夜夜久久久久| 夜夜夜夜夜久久久久| 如何舔出高潮| 亚洲天堂国产精品一区在线| 国产成人精品一,二区 | 国产真实伦视频高清在线观看| 国产女主播在线喷水免费视频网站 | 国产大屁股一区二区在线视频| 欧美成人精品欧美一级黄| 别揉我奶头 嗯啊视频| 免费黄网站久久成人精品| 亚洲国产精品久久男人天堂| 蜜桃久久精品国产亚洲av| 国产精品蜜桃在线观看 | 欧美成人免费av一区二区三区| 一本久久中文字幕| 最近中文字幕高清免费大全6| 欧美精品国产亚洲| 久久久久久久久久黄片| 婷婷色综合大香蕉| 亚洲真实伦在线观看| 久久欧美精品欧美久久欧美| 国内少妇人妻偷人精品xxx网站| 久久欧美精品欧美久久欧美| 免费看a级黄色片| 精华霜和精华液先用哪个| 久久99蜜桃精品久久| 黄片无遮挡物在线观看| 免费看a级黄色片| 久久精品久久久久久噜噜老黄 | 国产亚洲5aaaaa淫片| 欧美精品一区二区大全| 色哟哟哟哟哟哟| 亚洲欧美精品专区久久| 日本色播在线视频| 热99在线观看视频| 国产精品国产三级国产av玫瑰| 国产一区二区亚洲精品在线观看| 乱人视频在线观看| 久久6这里有精品| 日韩高清综合在线| 精品人妻熟女av久视频| 久久草成人影院| 欧洲精品卡2卡3卡4卡5卡区| av黄色大香蕉| 国产精品电影一区二区三区| 99精品在免费线老司机午夜| 色5月婷婷丁香| www.av在线官网国产| 我的老师免费观看完整版| 国产精品福利在线免费观看| 热99在线观看视频| 亚洲av成人av| 我要看日韩黄色一级片| 岛国在线免费视频观看| 丝袜美腿在线中文| 亚洲欧美清纯卡通| 少妇的逼好多水| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 爱豆传媒免费全集在线观看| 国产一区二区亚洲精品在线观看| 一个人免费在线观看电影| 最近手机中文字幕大全| 乱系列少妇在线播放| 亚洲av不卡在线观看| 亚洲丝袜综合中文字幕| 国产午夜精品一二区理论片| 色综合色国产| 成年女人看的毛片在线观看| 国产三级在线视频| 少妇丰满av| 国产黄a三级三级三级人| 69人妻影院| 一区二区三区四区激情视频 | 啦啦啦观看免费观看视频高清| 免费av观看视频| 悠悠久久av| 欧美bdsm另类| 波多野结衣高清作品| 国产精品精品国产色婷婷| 91久久精品国产一区二区成人| 亚洲婷婷狠狠爱综合网| 久99久视频精品免费| a级毛色黄片| 国产91av在线免费观看| 国产精品野战在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av二区三区四区| 午夜爱爱视频在线播放| 校园春色视频在线观看| 久久鲁丝午夜福利片| 亚洲精华国产精华液的使用体验 | 国产成人91sexporn| 久久精品影院6| 校园人妻丝袜中文字幕| 高清毛片免费观看视频网站| 亚洲最大成人手机在线| 又爽又黄无遮挡网站| 亚洲美女搞黄在线观看| 观看免费一级毛片| 免费一级毛片在线播放高清视频| 国产成人一区二区在线| 国产极品精品免费视频能看的| 亚洲精品自拍成人| 国产成人91sexporn| 听说在线观看完整版免费高清| 午夜老司机福利剧场| 欧美xxxx性猛交bbbb| 日本三级黄在线观看| 在线国产一区二区在线| 插逼视频在线观看| 大型黄色视频在线免费观看| 亚洲综合色惰| 乱人视频在线观看| 久久久色成人| 国产在视频线在精品| 婷婷亚洲欧美| 蜜臀久久99精品久久宅男| 午夜a级毛片| 国产一区二区在线av高清观看| 好男人视频免费观看在线| 国产单亲对白刺激| 国产亚洲av片在线观看秒播厂 | 午夜福利高清视频| 久久国产乱子免费精品| 丰满乱子伦码专区| 色播亚洲综合网| 亚洲成a人片在线一区二区| 亚洲人成网站高清观看| 欧美不卡视频在线免费观看| 亚洲精品日韩在线中文字幕 | 真实男女啪啪啪动态图| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 久久精品久久久久久久性| 又黄又爽又刺激的免费视频.| 国语自产精品视频在线第100页| 亚洲精品乱码久久久久久按摩| 长腿黑丝高跟| 日本一二三区视频观看| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 日韩一本色道免费dvd| 日韩欧美一区二区三区在线观看| 精品免费久久久久久久清纯| 99热6这里只有精品| 欧美潮喷喷水| 国产成人精品久久久久久| 草草在线视频免费看| 乱人视频在线观看| 乱系列少妇在线播放| 亚洲人成网站高清观看| 亚洲成人av在线免费| 一进一出抽搐动态| 久久久色成人| 在线播放国产精品三级| 国产成人freesex在线| 2022亚洲国产成人精品| 国产亚洲91精品色在线| 六月丁香七月| 成年av动漫网址| 九草在线视频观看| 国产一区二区在线观看日韩| 偷拍熟女少妇极品色| 国产亚洲欧美98| 老女人水多毛片| 三级经典国产精品| 成人三级黄色视频| 日韩强制内射视频| 国产精品一区www在线观看| 久久人妻av系列| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 淫秽高清视频在线观看| 成人av在线播放网站| 真实男女啪啪啪动态图| h日本视频在线播放| 亚洲国产精品sss在线观看| 成年女人永久免费观看视频| 精品欧美国产一区二区三| 又黄又爽又刺激的免费视频.| 亚洲av二区三区四区| av免费观看日本| 国产精品精品国产色婷婷| 久99久视频精品免费| 天堂网av新在线| 亚洲国产高清在线一区二区三| 波多野结衣高清作品| 亚洲成人久久爱视频| 欧美成人精品欧美一级黄| 国产片特级美女逼逼视频| 午夜免费男女啪啪视频观看| 久久草成人影院| 91精品一卡2卡3卡4卡| 22中文网久久字幕| 久久人人爽人人爽人人片va| 毛片女人毛片| 亚洲欧美日韩高清在线视频| 国产精品一区二区性色av| av又黄又爽大尺度在线免费看 | 99久久精品热视频| 亚洲av熟女| 国产v大片淫在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 只有这里有精品99| 欧美性猛交╳xxx乱大交人| 国产日本99.免费观看| 国产伦理片在线播放av一区 | 国产精品一区二区三区四区久久| 一级毛片我不卡| av黄色大香蕉| 日本黄色视频三级网站网址| 美女国产视频在线观看| 日韩成人av中文字幕在线观看| 夜夜夜夜夜久久久久| 国产伦理片在线播放av一区 | 欧美一区二区亚洲| 久久久国产成人精品二区| 熟妇人妻久久中文字幕3abv| 91av网一区二区| 青春草亚洲视频在线观看| 久久99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 国产亚洲5aaaaa淫片| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 国产黄片美女视频| 日韩中字成人| 亚洲av第一区精品v没综合| 亚洲精品乱码久久久v下载方式| 一级黄色大片毛片| 国产精品国产三级国产av玫瑰| 麻豆国产av国片精品| 赤兔流量卡办理| 亚洲国产精品sss在线观看| 最近中文字幕高清免费大全6| 极品教师在线视频| 色综合色国产| 婷婷六月久久综合丁香| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 亚洲成人久久性| 欧美性感艳星| 中出人妻视频一区二区| 国产黄片美女视频| 黑人高潮一二区| 1024手机看黄色片| 国产成人午夜福利电影在线观看| 日产精品乱码卡一卡2卡三| 欧美一区二区亚洲| 欧美3d第一页| 色综合色国产| 国产亚洲91精品色在线| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| 久久这里只有精品中国| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 少妇人妻一区二区三区视频| 毛片一级片免费看久久久久| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 欧美日韩乱码在线| 久久久久久久久久久丰满| 日本-黄色视频高清免费观看| 有码 亚洲区| 欧美色欧美亚洲另类二区| 白带黄色成豆腐渣| 中文精品一卡2卡3卡4更新| 免费在线观看成人毛片| 国产精品人妻久久久久久| 国产精品.久久久| 91午夜精品亚洲一区二区三区| 日本免费a在线| 99热这里只有精品一区| 一区二区三区高清视频在线| 舔av片在线| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产高清在线一区二区三| 亚洲国产欧美人成| 又爽又黄无遮挡网站| 国产老妇女一区| 听说在线观看完整版免费高清| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩无卡精品| 丰满乱子伦码专区| 成人亚洲精品av一区二区| 高清午夜精品一区二区三区 | 亚洲精品456在线播放app| 变态另类成人亚洲欧美熟女| 天堂√8在线中文| 熟女人妻精品中文字幕| 欧美人与善性xxx| 久久99热这里只有精品18| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 美女黄网站色视频| 国产精品一区www在线观看| 伦精品一区二区三区| 国产精品国产三级国产av玫瑰| 日本撒尿小便嘘嘘汇集6| 欧美日韩综合久久久久久| 精品久久国产蜜桃| 一级av片app| 夜夜看夜夜爽夜夜摸| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 22中文网久久字幕| 夜夜爽天天搞| 国内精品久久久久精免费| 亚洲精品乱码久久久久久按摩| 毛片一级片免费看久久久久| 观看免费一级毛片| 2021天堂中文幕一二区在线观| 亚洲高清免费不卡视频| 精品久久久久久久人妻蜜臀av| av免费观看日本| 禁无遮挡网站| 中国美白少妇内射xxxbb| 久久久成人免费电影| 国产人妻一区二区三区在| 伦精品一区二区三区| 丰满人妻一区二区三区视频av| 国产日本99.免费观看| 日本成人三级电影网站| 九九热线精品视视频播放| 内地一区二区视频在线| 国内少妇人妻偷人精品xxx网站| 男女视频在线观看网站免费| 亚洲av中文字字幕乱码综合| 看非洲黑人一级黄片| 麻豆国产av国片精品| 不卡视频在线观看欧美| 久久中文看片网| 久99久视频精品免费| 在线观看66精品国产| 国产视频首页在线观看| 高清毛片免费看| 1000部很黄的大片| 91久久精品国产一区二区成人| 99精品在免费线老司机午夜| 成人国产麻豆网| 日本撒尿小便嘘嘘汇集6| 亚洲国产高清在线一区二区三| or卡值多少钱| 国产在线精品亚洲第一网站| 久久国产乱子免费精品| 亚洲国产色片| 成年版毛片免费区| 狂野欧美激情性xxxx在线观看| 高清在线视频一区二区三区 | 久久久久性生活片| 一个人看的www免费观看视频| 色综合站精品国产| 国产高清三级在线| 一区福利在线观看| 在线免费观看不下载黄p国产| 欧美最新免费一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲三级黄色毛片| 日韩欧美一区二区三区在线观看| 非洲黑人性xxxx精品又粗又长| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 看黄色毛片网站| 我的女老师完整版在线观看| 久久精品国产99精品国产亚洲性色| 午夜福利高清视频| 亚洲精品久久国产高清桃花| 欧美激情国产日韩精品一区| 变态另类丝袜制服| 国产综合懂色| 黄片wwwwww| 麻豆乱淫一区二区| 99久久久亚洲精品蜜臀av| 99riav亚洲国产免费| 日本熟妇午夜| 最近视频中文字幕2019在线8| 国产在线精品亚洲第一网站| 在线观看一区二区三区| 人妻系列 视频| 精品一区二区三区人妻视频| 夜夜爽天天搞| 国产精品乱码一区二三区的特点| 淫秽高清视频在线观看| 久久久精品大字幕| 亚洲综合色惰| 如何舔出高潮| 深夜a级毛片| 99热全是精品| 国产女主播在线喷水免费视频网站 | 乱系列少妇在线播放| 插逼视频在线观看| 性插视频无遮挡在线免费观看| 搞女人的毛片| a级毛片a级免费在线| 国产精品麻豆人妻色哟哟久久 | 99久久人妻综合| 国产一区二区三区av在线 | 人妻夜夜爽99麻豆av| 一本久久精品| 一级黄色大片毛片| 日日摸夜夜添夜夜爱| 欧美日韩国产亚洲二区| 亚洲无线在线观看| 99热精品在线国产| 国产一区亚洲一区在线观看| 99热网站在线观看| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 亚洲va在线va天堂va国产| 国产白丝娇喘喷水9色精品| 久久久精品欧美日韩精品| 国产探花在线观看一区二区| 久久中文看片网| 久久精品国产亚洲av天美| 国产精品福利在线免费观看| 一进一出抽搐动态| 悠悠久久av| 国产老妇伦熟女老妇高清| 亚洲人成网站在线播放欧美日韩| 日本一二三区视频观看| 欧美不卡视频在线免费观看| 国产精品女同一区二区软件| 精品久久久久久久人妻蜜臀av| 色哟哟·www| 99精品在免费线老司机午夜| 亚洲国产欧美在线一区| 天堂网av新在线| 黑人高潮一二区| 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 欧美极品一区二区三区四区| av免费观看日本| 国产精品伦人一区二区| 欧美日韩在线观看h| 桃色一区二区三区在线观看| 亚洲av中文av极速乱| 国产片特级美女逼逼视频| 你懂的网址亚洲精品在线观看 | 黄色视频,在线免费观看| 赤兔流量卡办理| 一级毛片电影观看 | 三级毛片av免费| 亚洲精品亚洲一区二区| 最近2019中文字幕mv第一页| 欧美精品一区二区大全| 午夜爱爱视频在线播放| 永久网站在线| 麻豆国产av国片精品| 三级国产精品欧美在线观看| 国产亚洲av嫩草精品影院| 欧美日韩综合久久久久久| 男女视频在线观看网站免费| 亚洲经典国产精华液单| 两个人视频免费观看高清| www.av在线官网国产| 欧美日韩乱码在线| 伊人久久精品亚洲午夜| 久久6这里有精品| 成年版毛片免费区| 毛片一级片免费看久久久久| 婷婷亚洲欧美| 丝袜美腿在线中文| 网址你懂的国产日韩在线| videossex国产| 亚洲中文字幕日韩| 国产成人影院久久av| 亚洲欧美精品自产自拍| 午夜免费激情av| 永久网站在线| 亚洲最大成人手机在线| 国产精品一区二区性色av| 麻豆国产av国片精品| 日韩欧美 国产精品| 亚洲欧美中文字幕日韩二区| 日韩av不卡免费在线播放| 美女 人体艺术 gogo| 国产亚洲5aaaaa淫片| 成人二区视频| 久久精品国产自在天天线| 国产av一区在线观看免费| 在线免费观看的www视频| 国产色婷婷99| 亚洲内射少妇av| 欧美变态另类bdsm刘玥| 乱人视频在线观看| 久久久久久久久久成人| 亚洲七黄色美女视频| 亚洲国产精品合色在线| 少妇猛男粗大的猛烈进出视频 | 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 国产精品久久久久久久电影| 免费观看的影片在线观看| 国内精品美女久久久久久| 麻豆成人午夜福利视频| 99国产极品粉嫩在线观看| 又爽又黄无遮挡网站| 26uuu在线亚洲综合色| 精品久久久久久久久久久久久| 色吧在线观看| 啦啦啦观看免费观看视频高清| 国产精品三级大全| 国产伦在线观看视频一区| 毛片一级片免费看久久久久|