• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analytical model for Rayleigh–Taylor instability in conical target conduction region

    2022-10-26 09:46:48ZhongYuanZhu朱仲源YunXingLiu劉云星YingJunLi李英駿andJieZhang張杰
    Chinese Physics B 2022年10期
    關鍵詞:張杰

    Zhong-Yuan Zhu(朱仲源) Yun-Xing Liu(劉云星) Ying-Jun Li(李英駿) and Jie Zhang(張杰)

    1School of Science,China University of Mining and Technology,Beijing 100083,China

    2Double-cone Ignition(DCI)Joint Team,State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing 100083,China

    3Double-cone Ignition(DCI)Joint Team,Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    Keywords: double-cone ignition,Rayleigh–Taylor instability,conical target conduction region

    1. Introduction

    In inertial confinement fusion (ICF)[1–10]schemes with directly driven conical and spherical targets, the Rayleigh–Taylor instability (RTI) imposes a fundamental constraint on the design parameters required for both of these ignition schemes.[11–14]Livescuet al.[15–17]studied RTI using direct numerical simulations. Yu and Ye[18]also adopted numerical simulations of hydrodynamic instabilities during direct-drive ICF implosion ignition based on the LARED-S program, but these were for the spherical target. In 1986, a formalism for the semi-analytical form of RTI in spherical geometry was developed by Gupta and Lawand.[19]In 1996, Sanz proposed a self-consistent analytical model for RTI in ICF.[20]Most of the works mentioned above are restricted to numerical simulations or only aim to study RTI in direct-drive spherical targets.In 2020, Zhang proposed a new ignition scheme,[21]i.e., the double-cone ignition scheme (Fig. 1). It is well known that during the direct drive of a spherical target pellet,the ablation front is unstable,affecting the central implosion ignition of the pellet. However,what is actually affected by RTI during laserirradiated conical targets is the compression process.[22,23]In 2022, Fang and Zhanget al.[24]conducted experimental and numerical simulations to study RTI in conical targets caused by factors such as the thickness of the target pellet, but their work ignored the effect of laser-plasma instability(LPI).

    Studies have been carried out on the heat conduction region. De Groot[25]proposed an analytical model of a planar plasma in 1992, which explicitly includes the temporal evolution of the heat conduction region. Models for the onedimensional resolution of the plasma in the conduction region in a planar target have been given by Chang and Li,[26–28]respectively. In 2020, Bettiet al.[29]also presented a semianalytical model of the hot spot and compressible shell,using analytical and simulation methods to study the physics of burn propagation in inertially confined plasmas. In Refs. [30–32],the parameters of the heat conduction region in the planar target have also been investigated experimentally[30]and numerically[31,32]by numerous researchers. Notably,in order to better analyze and solve the RTI of the compression process,the authors developed an analytical model of the plasma in the conduction zone instead of modeling the hydrodynamic instability of the ablation surface. Moreover, for the purpose of this paper, the parameters of the plasma (length, density,temperature,etc.) in the conduction zone are given below.

    Fig.1. (a)Schematic of the initial stage. The yellow line in this diagram is the drive laser;the two sides are composed of symmetrical metal walls;and the ignition assembly is placed in the center of the entire unit. (b)Schematic of the compression stage. As the compressed fuel is ejected at high speed and fused together,the ignition assembly ignites and triggers fusion.[33]

    The authors ignored the viscosity between the two metal walls and the fusion fuel. The incompressibility(i.e.,isobaric approximation) has been widely used in the analytical treatment of the ablation RTI at the ablation front over the past decades. The formula for the growth rate of RTI[34–36]at the ablation front in ICF is expressed as follows:

    wherekis the perturbed wave number; Atwood numberA=(ρ2-ρ1)/(ρ2+ρ1),gis the acceleration;Vais the ablation velocity;β ≈2–4 is expected in the direct-drive ablation;andLis the thickness of the fluid density layer. In combination with the specific parameters of the plasma obtained through the analytical model developed in this paper,it is necessary to analyze the RTI of the compression process in a conical target.This is the reason for and significance of the model described in this paper,and the analytical results are more intuitive than the numerical solutions.

    2. Analytical model and application

    Since the laser is uniformly irradiated on the spherical target,the polarization angle of the laser irradiation is 2π. However, in the conical target model, the angle becomes smaller compared to that of the former. The authors temporarily define this angle asθ,which ranges from 90°to 120°. Namely,the current study in this paper is two-dimensional(2D).

    In Ref. [26], Li gave a one-dimensional self-similar model based on the hydrodynamic behavior of a flat target.Based on research by previous scholars,this paper introduces the physical process of the conduction region in the direct driven conical target model(Fig.2),focusing on the fluid behavior and properties exhibited by the plasma in the conduction region.

    Fig. 2. Diagram of conical target conduction region. The authors define xa as the ablation surface and xc as the critical density surface. In addition,xc is the coordinate origin.

    When laser irradiates a solid target to generate plasma,the whole region is usually divided into three regions,[37,38]i.e.,the compression region,conduction region and corona region.The boundary between the conduction and corona regions is the critical density surface. The generation of the plasma conduction region of the laser-irradiated conical target consists of three steps. First,the laser acts on the critical density surface of plasma on the conical target,and is absorbed mainly in the corona region since it cannot enter the critical density surface.Plasma heats the conduction region via electron heat conduction. In the 2D case,the electron heat conduction model[39,40]is expressed as whereQris heat flux;Teis electron temperature;and the heat flux isQ=-κ?Te/?r, whereκis thermal conductivity andκ∝T5/2e. Therefore,the heat energy entering the conduction region through electron heat conduction is the main energy source for plasma generation. Second, the plasma generated by the ablation of the solid material flows away from the ablation surface.The mass of a conical target ablated in unit time is called an ablation rate and is represented by dm/dt.Third,the authors consider that the driving laser is a long pulse,the conduction region reaches a steady state, and the fluid behavior in the conduction region is steady. The electron heat conduction increases the temperature in the conduction region,while the ablation decreases the temperature and increases the density. The expansion of the plasma results in decreases in its temperature and density. Many factors cause the plasma in the conduction region to expand isobarically. Therefore, the authors adopted an isobaric assumption in this model.

    Considering that the authors mainly study the conduction region with electron densityne>ncaway from the target in space,it is heat conduction,expansion,ablation,and other factors in this region that lead to its equilibrium state. Therefore,plasma fluids can be seen as quasi-steady. As the laser is completely absorbed in the corona region, in the heat conduction region,Te?Ti,P ≈Pe, andQ ≈Qe(Teis the temperature of electrons;Tiis the temperature of ions;Peis the pressure of electrons; andQeis the electronic heat flux). At the same time, assuming that the laser irradiation uniformity is good,the authors consider that the fluid behavior in the conduction region conforms to the steady-state assumption. Then,the expression for the single-fluid,steady-state,and viscous-free hydrodynamic equations are as follows:

    whereρ,P, andu(v) are the density, pressure, and velocity,respectively, of the plasma;E=ε+(u2/2);εis the internal energy per unit mass;andQis the heat flux.

    In order to facilitate the use of the analysis results of the self-similar equation,the authors adopted convenient units,as shown in Table 1.

    Table 1. Normalized values for scaled variables.

    Fig. 3. Evolution of density of plasma as a function of the spatial location for different pulse widths. Laser pulse widths of 1 ns, 2 ns, and 3 ns were randomly selected. Driving laser power density I=3.0×1014 W/cm2.

    Due to Eq. (4) and the ideal gas condition, the authors consider the pressure formulaP=ρC2sin Ref. [25], and the pressure in the conduction region is constant atPc,

    Solution(11)for the density shows that the length of the plasma and the angleθof the conical target can affect the changing pattern of the density. Whenθis kept constant,the longer the length of the plasma, the slower the density decreases; whereas, whenLris kept constant, the larger theθ,the steeper the density decrease trend of the plasma in the conduction zone. Figure 3 shows that when the pulse time or laser intensity is properly enhanced, the width of the conduction zone becomes larger and the density of the plasma decreases slowly, which is favorable for reducing the effects caused by RTI.

    The pulsed laser energy is absorbed in the corona region and cannot enter the conduction region. According to the work of De Grootet al.,[42,43]ρu= dm/dt, which is the ablation rate equation. From Eq. (6) and the pressure equation, the authors obtainC2s˙m(1+(u2/2C2s))=-Qr. It is known thatE=ε+(1/2)u2andε= (3/2)meC2s, whileme=9.1×10-31g, which is so small that it can be ignored.The plasma fluid velocity in the conduction region is less than the velocity of sonic surface,which leads to 0≤(u2/C2s)≤1,resulting in at the same time, the authors focus on the boundary condition of the conduction region. Whenr=0,T ≈Tc(whereTcis the temperature of the corona region). Additionally, whenr=-Lr,T ≈0. Therefore,the solution for temperature is and since the origin of the coordinates is on the critical density surface,the value ofris considered to be in the range[-Lr,0].Then, the following results are obtained using the coordinate transformation of Eq.(19):where the value range ofr(cm)is[-Lr,0]and the value range ofθis between 90°and 120°. Equations (2) and (22) show that,when the driving laser intensity and pulse time are guaranteed to be constant, the larger the angleθ, the higher the temperature near the coronal region. Similarly,if the angleθis held constant,increasing the intensity of the drive laser will also lead to a higher temperature near the coronal region,i.e.,the temperature trend in the conduction zone will also become steeper.

    Since the authors only consider the plasma length between the critical density surface (coordinate origin) and the ablation surface, based on the physical model, whereLr=LrmaxandT=Tc, the authors are interested in the length of plasma fluid from the ablation surface to the critical density surface. The approximate analytical model can be expressed as follows:

    Equation (23) and figure 4 are the relationships between the plasma length and the time in the conduction region. As can be seen from Eq. (23), when the pulse time and angleθare guaranteed, the desired increase in plasma length can be achieved by enhancing the intensity of the driving laser. Similarly,the plasma length can also be regulated by adjusting the pulse time and angleθwhen the laser intensity is determined.It can also be seen from Fig. 4 that the larger the angleθof the conical target,the smaller the length of the plasma will be when the pulse width is certain.

    3. Verification and discussion

    To verify the accuracy of the analysis results,the authors compared the results in this paper with a simulation program.A single-temperature computational fluid dynamics program based on Euler’s equation was utilized,[48]and the control equation is as follows:

    whereρ,Vr,e,T, andPrepresent the density, velocity, total energy, temperature, and pressure, respectively.Sis the laser energy deposition term induced by inverse bremsstrahlung absorption. The Spitzer–Harm model[49]was used for the electron heat transfer, andKeis the heat transfer coefficient. The finite volume method (FVM) was used for the fluid solution,with a non-uniform sparse grid being set at locations away from the target to extend the computational domain. Moreover, a dynamic grid function was added to ensure that the flow field remains in the encrypted grid. To compare the analytical results, the above equation is solved in a spherical coordinate system, and a one-dimensional laser shot problem is calculated taking into account the shrinkage effect.

    The same conditions were set for the simulation and analysis model:driving laser power densityI=3.0×1014W/cm2,wavelengthλ=0.351 μm, and pulse widtht=1.0 ns. The comparison between the analysis results and the program simulation results is shown in Fig. 5, which includes the plasma density,temperature,pressure,and velocity in the conduction region of the conical target.

    It is obvious from Fig. 5 that the analytical model developed in this paper and the numerical simulation results are generally consistent, although they show a small deviation in terms of values. This can be explained and their trends are consistent. In the model of this paper, when the laser is incident from the right, it can be seen that the left side of the conduction region is the compression zone. Therefore,the authors assume that the ablation surface also has a width,which leads to the fact that the plasma density at the ablation surface is unequal to the density of the solid fuel(Fig.5(a)).

    In the analytical process, the temperature of the ablation surface is approximated as 0 keV for computational convenience. However, in Fig. 5(b), the authors combine the data given by the simulation results and compare the trend with the temperature simulation results, and find that they are in general agreement with each other. In the conduction region,the plasma temperature increases quickly initially and then slowly with the passage of time,and the authors approximate that the plasma temperature remains constant in the coronal region.

    In Fig.5(c),the analytical results of the pressure and the simulation are in general agreement. In fact, the pressure decreases gradually and slowly from the ablation surface to the critical density surface, which can also be seen in the figure,but in the analysis, the authors approximate that it is an isobaric process,i.e.,the pressure remains essentially constant.

    Fig. 5. Density (a), temperature (b), pressure (c), and velocity (d) in the conduction region. It is noteworthy that the authors take the critical density surface as the coordinate origin.

    In the density model given in Eq.(12),adjusting the laser light intensity and pulse duration led to a change in the density gradient (Figs. 3 and 6), i.e., increasing the former two parameters reduces the gradient,but the effect is insignificant for the suppression ofγ. In other words,this adjustment in the proposed model has almost no effect on the Atwood number in Eq. (1). Therefore, the authors focus on the effect of the plasma length model on the RTI growth rate.

    The ablation velocityVain Eq. (1) can be treated as a constant.[50]According to the model in this paper, the linear growth curvesγinfluenced by wavelengthλand the length of the plasma in the conduction zone are shown in Fig.7.but it is negligible. In order to observe more clearly the effect of the change in laser intensity onγ, the growth rate curveγinfluenced by laser intensity is shown here separately(Fig.9).

    Fig. 6. Density curves at different laser intensities. The pulse width t=1.0 ns.

    Fig.7.Linear growth curves γ influenced by wavelength λ (a)and Lr(b).For the selection of acceleration g,the authors refer to the values in the numerical simulation of ablation RTI by Ye et al.,[51]where g=17.85 μm/ns2.Atwood number A ≈0.5,and according to the model in this paper,ρ1 ≈0.054 g/cm3 and ρ2 ≈0.158 g/cm3. In(b),the perturbation wave number k=2π/λ and λ =0.351 μm.

    Fig. 8. Linear growth curves γ influenced by laser intensity (a), time (b),and angle θ of the conical target (c). In (a) and (b), the angle θ of the conical target is chosen to be 90°, and in (c), driving laser power density I=3.0×1014 W/cm2.

    Overall,γdecays asLrincreases; however,which of the two,laser intensity or pulse time width,has a more significant effect on the growth rateγwill be discussed here(Fig.8).

    Figure 8 shows that increasing the laser intensity and pulse duration or decreasing the angleθas appropriate can attenuate the RTI growth rate. It is worth noting that adjusting the laser pulse duration is more beneficial for attenuating the RTI growth rate,and changing the laser intensity has a limited impact onγ. The change in angleθalso has an effect onγ,

    When the laser intensity is adjusted aroundI= 3.0×1014W/cm2in the experiment, the change in the growth rateγis minimal(Fig.9). There is only a fractional change in the order of magnitude. Moreover, it is necessary to drastically change the laser intensity to suppress the growth rate,but it is much easier and more efficient to alter the pulse duration.

    Analytical solutions for the density, temperature, and length of the plasma are shown in Eqs. (12), (22), and (23),which are key works of this paper. Here the effect of the parameters in the proposed model on the RTI of the ablation surface is explicitly analyzed,emphasizing the significance of RTI analysis to the work in this paper. As the plasma length grows, the RTI caused by the density gradient is attenuated.When the angle of the conical target is 90°, appropriately increasing the pulse duration or increasing the laser intensity is beneficial to suppressing the growth rateγ. However, adjusting the pulse duration will be more efficient than changing the laser intensity.theoretical methods and mechanisms instead of only numerical solutions. The isobaric steady-state analytical model in the conduction region established in this paper demonstrates clear physical images and robust results, which are useful for analyzing the favorable conditions for attenuating RTI in a conical target.

    Fig.9. Partial enlargement of the growth rate curve γ. The baseline for the laser intensity is chosen here as I=3.0×1014 W/cm2,pulse width t=1.0 ns,and angle θ =90°.

    4. Summary

    In summary, an isobaric, steady-state model of a plasma fluid in the conduction zone is provided in this work to discuss and resolve the RTI present in the double-cone ignition scheme. Within the angle range of the conical target (90°–120°),the pulse width and laser intensity are appropriately increased when the angle is 90°,which is the most favorable for attenuating the RTI on the ablation surface,and increasing the pulse duration is more efficient than increasing the laser intensity and adjusting the angle(Fig.7). Notably,the study of the hydrodynamics of the plasma in the conical target conduction region using analytical methods has not been proposed at all in previous works.

    Equations(12)and(23)show that laser intensity and time also affect the density trend in the conduction zone:increasing the laser intensity and pulse duration leads to a smaller density gradient and a longer lengthLof the plasma. The temperature solution of the energy equation of the fluid dynamics model is shown in Eq. (22). Increasing the laser intensity and time also increases the temperature near the critical density surface,which can have an impact on the temperature trend in the conduction zone. The two-dimensional calibration relations for the length, pressure, and velocity models of the plasma fluid in the conduction zone are provided by Eqs. (23), (24), and(28). The adjustable parameters inLrprovide convenience for the analysis of RTI on the ablation surface in the conical target.It can be concluded that extending the pulse duration is a more practical approach than increasing the laser intensity. Clearly,compared with the numerical simulation of two-dimensional fluid mechanics, the method proposed in this paper provides

    Acknowledgment

    Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA 25051000 and XDA 25010100).

    猜你喜歡
    張杰
    關于不等式選講中一道模擬題的多種解法探究
    張杰:架起北京與家鄉(xiāng)的橋梁
    華人時刊(2023年7期)2023-05-17 09:05:04
    這個老師有點“壞”
    Magnetohydrodynamic Kelvin–Helmholtz instability for finite-thickness fluid layers
    張杰演唱功夫主題神曲《我是來揍你的》
    青年歌聲(2019年2期)2019-02-21 01:17:30
    張杰藝術作品
    藝術評論(2017年5期)2017-06-14 09:56:30
    從2015年高考題看能量復習
    謎語兩則
    Propulsive performance of a passively flapping plate in a uniform flow*
    Gust Front Statistical Characteristics and Automatic Identification Algorithm for CINRAD
    av免费观看日本| 久久99热6这里只有精品| 草草在线视频免费看| 国产真实伦视频高清在线观看| 制服丝袜香蕉在线| 人人妻人人澡人人爽人人夜夜| 女人久久www免费人成看片| 国产精品国产av在线观看| 高清视频免费观看一区二区| 亚洲国产精品国产精品| 美女视频免费永久观看网站| 香蕉精品网在线| 一级黄片播放器| 最近的中文字幕免费完整| 亚洲欧美一区二区三区国产| 国产 精品1| 国产精品一区二区精品视频观看| 97精品久久久久久久久久精品| 在线观看www视频免费| 午夜两性在线视频| 黄网站色视频无遮挡免费观看| 国产精品久久久久久精品电影小说| 亚洲一区中文字幕在线| 一二三四在线观看免费中文在| 999久久久精品免费观看国产| 免费在线观看影片大全网站| 丰满饥渴人妻一区二区三| 激情视频va一区二区三区| 老司机靠b影院| 午夜视频精品福利| 中文字幕制服av| 超碰97精品在线观看| 亚洲精品国产区一区二| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产毛片av蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品免费视频一区二区三区| 欧美黑人精品巨大| 国产精品久久久人人做人人爽| 高清视频免费观看一区二区| 国产一区二区三区综合在线观看| 狠狠婷婷综合久久久久久88av| 久久99一区二区三区| 90打野战视频偷拍视频| 国产福利在线免费观看视频| 亚洲av欧美aⅴ国产| 亚洲激情五月婷婷啪啪| a在线观看视频网站| 亚洲人成电影免费在线| 精品一区二区三区四区五区乱码| 可以免费在线观看a视频的电影网站| 91麻豆av在线| 男女高潮啪啪啪动态图| 真人做人爱边吃奶动态| 丝袜美足系列| 国产精品99久久99久久久不卡| 精品高清国产在线一区| 国产老妇伦熟女老妇高清| 9热在线视频观看99| 麻豆乱淫一区二区| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| h视频一区二区三区| 久久久水蜜桃国产精品网| 国产精品av久久久久免费| 狠狠婷婷综合久久久久久88av| 国产伦人伦偷精品视频| 亚洲一码二码三码区别大吗| 国产精品偷伦视频观看了| 亚洲国产av影院在线观看| 女警被强在线播放| 大片电影免费在线观看免费| 欧美大码av| 精品高清国产在线一区| www日本在线高清视频| 男人爽女人下面视频在线观看| 亚洲成人免费电影在线观看| 日韩制服丝袜自拍偷拍| 亚洲国产毛片av蜜桃av| 十八禁网站网址无遮挡| 国产精品一区二区在线观看99| 天天操日日干夜夜撸| 午夜福利在线观看吧| 精品一区二区三区四区五区乱码| 国产人伦9x9x在线观看| 免费一级毛片在线播放高清视频 | 黄色毛片三级朝国网站| 咕卡用的链子| 我要看黄色一级片免费的| 少妇 在线观看| 97在线人人人人妻| 国产日韩欧美在线精品| 午夜免费观看性视频| 成人免费观看视频高清| 天堂中文最新版在线下载| 亚洲人成电影观看| 别揉我奶头~嗯~啊~动态视频 | 在线观看人妻少妇| 久久亚洲国产成人精品v| 亚洲欧美精品自产自拍| 90打野战视频偷拍视频| 亚洲精品久久久久久婷婷小说| 欧美黄色淫秽网站| 欧美另类亚洲清纯唯美| 老司机福利观看| 国产成人免费观看mmmm| 熟女少妇亚洲综合色aaa.| 我的亚洲天堂| 黑人操中国人逼视频| 又黄又粗又硬又大视频| 少妇 在线观看| 亚洲专区中文字幕在线| 精品一品国产午夜福利视频| 性高湖久久久久久久久免费观看| 亚洲av日韩在线播放| 日韩有码中文字幕| 久久久国产一区二区| 脱女人内裤的视频| 国产亚洲精品一区二区www | 男人操女人黄网站| 2018国产大陆天天弄谢| 啦啦啦视频在线资源免费观看| 女性被躁到高潮视频| 国产一级毛片在线| 成年动漫av网址| 人人妻人人爽人人添夜夜欢视频| 91成年电影在线观看| 欧美精品人与动牲交sv欧美| 日韩有码中文字幕| 欧美国产精品一级二级三级| 久久国产亚洲av麻豆专区| 岛国在线观看网站| 婷婷色av中文字幕| 日本91视频免费播放| 欧美97在线视频| 人人妻人人爽人人添夜夜欢视频| 国产有黄有色有爽视频| 十八禁人妻一区二区| 后天国语完整版免费观看| 一本色道久久久久久精品综合| 亚洲色图综合在线观看| 9热在线视频观看99| 欧美av亚洲av综合av国产av| 亚洲中文av在线| 永久免费av网站大全| 十八禁人妻一区二区| 91麻豆av在线| 美女福利国产在线| 国产精品一二三区在线看| 巨乳人妻的诱惑在线观看| 美女高潮到喷水免费观看| 色精品久久人妻99蜜桃| 老司机午夜十八禁免费视频| 欧美精品av麻豆av| 99九九在线精品视频| 亚洲中文字幕日韩| 国产精品麻豆人妻色哟哟久久| 黄色视频不卡| 国产黄色免费在线视频| 两人在一起打扑克的视频| 久久久久久久久免费视频了| 亚洲va日本ⅴa欧美va伊人久久 | 国产又色又爽无遮挡免| 国产精品av久久久久免费| 日本av免费视频播放| 一本色道久久久久久精品综合| 久久久久久久精品精品| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品av久久久久免费| 青草久久国产| 黑丝袜美女国产一区| 欧美 日韩 精品 国产| 日本wwww免费看| 巨乳人妻的诱惑在线观看| 亚洲av电影在线观看一区二区三区| 国产福利在线免费观看视频| 国产日韩欧美在线精品| 在线天堂中文资源库| 交换朋友夫妻互换小说| 黄片大片在线免费观看| 狂野欧美激情性xxxx| 我的亚洲天堂| 亚洲欧美日韩另类电影网站| 国产日韩欧美在线精品| 91成年电影在线观看| 国产一区二区三区av在线| 男女国产视频网站| 国产精品熟女久久久久浪| 男人舔女人的私密视频| 19禁男女啪啪无遮挡网站| 日本av免费视频播放| 一进一出抽搐动态| 高清av免费在线| 91精品伊人久久大香线蕉| 在线观看www视频免费| kizo精华| 99国产精品一区二区蜜桃av | 日本91视频免费播放| www.999成人在线观看| a级毛片在线看网站| 国产男人的电影天堂91| 精品少妇久久久久久888优播| 久热爱精品视频在线9| 午夜影院在线不卡| 亚洲国产日韩一区二区| 亚洲激情五月婷婷啪啪| 国产在线一区二区三区精| 亚洲三区欧美一区| 日韩 欧美 亚洲 中文字幕| 天堂中文最新版在线下载| 极品人妻少妇av视频| 久久青草综合色| 麻豆乱淫一区二区| 男人添女人高潮全过程视频| 久久久国产精品麻豆| 亚洲熟女精品中文字幕| 我的亚洲天堂| 国产日韩欧美视频二区| 波多野结衣av一区二区av| 在线天堂中文资源库| 欧美日韩成人在线一区二区| 各种免费的搞黄视频| 一区二区三区四区激情视频| 国产日韩欧美视频二区| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| av福利片在线| 男女高潮啪啪啪动态图| 亚洲自偷自拍图片 自拍| 三上悠亚av全集在线观看| 欧美日本中文国产一区发布| tocl精华| √禁漫天堂资源中文www| av不卡在线播放| 亚洲伊人色综图| 国产精品二区激情视频| 叶爱在线成人免费视频播放| 欧美日韩一级在线毛片| 高清在线国产一区| 日韩 亚洲 欧美在线| av欧美777| cao死你这个sao货| 国产成人啪精品午夜网站| 在线 av 中文字幕| 久热这里只有精品99| 亚洲激情五月婷婷啪啪| 国产高清videossex| 9热在线视频观看99| 在线永久观看黄色视频| 啪啪无遮挡十八禁网站| 爱豆传媒免费全集在线观看| 9191精品国产免费久久| 青春草视频在线免费观看| 人成视频在线观看免费观看| 伦理电影免费视频| 日韩中文字幕欧美一区二区| 18禁国产床啪视频网站| 欧美日韩成人在线一区二区| 色综合欧美亚洲国产小说| 岛国在线观看网站| 亚洲精品久久成人aⅴ小说| 亚洲黑人精品在线| 男女高潮啪啪啪动态图| a 毛片基地| 国产亚洲av片在线观看秒播厂| videosex国产| 久久久久久亚洲精品国产蜜桃av| 亚洲成人手机| 99久久人妻综合| h视频一区二区三区| www.av在线官网国产| 国产成人av教育| 天天躁日日躁夜夜躁夜夜| 韩国高清视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 五月开心婷婷网| 五月天丁香电影| 亚洲自偷自拍图片 自拍| 亚洲第一av免费看| 国产福利在线免费观看视频| 老司机福利观看| 日韩一区二区三区影片| 久久毛片免费看一区二区三区| 桃红色精品国产亚洲av| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美| 人人妻人人澡人人爽人人夜夜| 中文字幕色久视频| 曰老女人黄片| 少妇被粗大的猛进出69影院| 国产色视频综合| 亚洲欧美日韩高清在线视频 | 极品少妇高潮喷水抽搐| 肉色欧美久久久久久久蜜桃| 高清av免费在线| 欧美成人午夜精品| 精品人妻熟女毛片av久久网站| 国产av又大| 窝窝影院91人妻| 99久久人妻综合| 最近最新中文字幕大全免费视频| 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 成年人免费黄色播放视频| 性少妇av在线| 下体分泌物呈黄色| 黄片小视频在线播放| 欧美日韩成人在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 好男人电影高清在线观看| 99精国产麻豆久久婷婷| 国产成人啪精品午夜网站| 一本综合久久免费| 国产在线观看jvid| 黄频高清免费视频| av网站在线播放免费| 丰满饥渴人妻一区二区三| 国产免费现黄频在线看| 桃花免费在线播放| 精品福利观看| 在线精品无人区一区二区三| e午夜精品久久久久久久| 高清欧美精品videossex| 久久亚洲精品不卡| 中文欧美无线码| 久久 成人 亚洲| 搡老岳熟女国产| av超薄肉色丝袜交足视频| www.熟女人妻精品国产| 欧美国产精品va在线观看不卡| 少妇被粗大的猛进出69影院| 欧美精品一区二区免费开放| 99九九在线精品视频| 热re99久久精品国产66热6| 99国产精品免费福利视频| 女人精品久久久久毛片| 97精品久久久久久久久久精品| www.av在线官网国产| 亚洲第一欧美日韩一区二区三区 | 美女福利国产在线| 欧美精品高潮呻吟av久久| 汤姆久久久久久久影院中文字幕| 亚洲av成人一区二区三| 一区福利在线观看| 一区二区av电影网| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 在线观看免费日韩欧美大片| 亚洲国产欧美网| 精品国产一区二区三区四区第35| 亚洲av国产av综合av卡| av国产精品久久久久影院| 国产亚洲精品第一综合不卡| 1024视频免费在线观看| 午夜日韩欧美国产| 在线观看人妻少妇| 久久九九热精品免费| 亚洲欧美一区二区三区久久| 欧美精品高潮呻吟av久久| 最新的欧美精品一区二区| 91九色精品人成在线观看| h视频一区二区三区| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 亚洲精品美女久久久久99蜜臀| 十八禁人妻一区二区| 丰满少妇做爰视频| 精品人妻在线不人妻| 免费在线观看黄色视频的| 曰老女人黄片| 国产精品二区激情视频| 欧美一级毛片孕妇| 亚洲精品国产av蜜桃| 免费高清在线观看视频在线观看| 丝袜美足系列| h视频一区二区三区| 69精品国产乱码久久久| 天天躁日日躁夜夜躁夜夜| 亚洲视频免费观看视频| 中文字幕人妻熟女乱码| 免费在线观看视频国产中文字幕亚洲 | 亚洲国产欧美在线一区| 啦啦啦啦在线视频资源| 51午夜福利影视在线观看| 久久久久久久久免费视频了| 国产亚洲av片在线观看秒播厂| 丝袜人妻中文字幕| 精品欧美一区二区三区在线| 老汉色∧v一级毛片| 久久天躁狠狠躁夜夜2o2o| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 99精品久久久久人妻精品| 国产精品一区二区精品视频观看| 国产成人精品在线电影| 欧美精品人与动牲交sv欧美| 精品第一国产精品| 精品亚洲成a人片在线观看| 亚洲av日韩在线播放| 一区二区三区四区激情视频| 男女无遮挡免费网站观看| 国产av又大| 水蜜桃什么品种好| 精品久久久久久久毛片微露脸 | 高清欧美精品videossex| 久久天堂一区二区三区四区| 欧美亚洲 丝袜 人妻 在线| 国产免费一区二区三区四区乱码| 久久亚洲国产成人精品v| 亚洲第一欧美日韩一区二区三区 | 黄色a级毛片大全视频| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 免费日韩欧美在线观看| 成人免费观看视频高清| 欧美精品av麻豆av| 国产真人三级小视频在线观看| 国产欧美日韩综合在线一区二区| 国产精品99久久99久久久不卡| 精品国产一区二区三区久久久樱花| 国产片内射在线| 啦啦啦免费观看视频1| 99久久国产精品久久久| 国产亚洲av高清不卡| 在线天堂中文资源库| 欧美另类一区| 在线观看人妻少妇| 国产熟女午夜一区二区三区| 国产精品久久久久久精品电影小说| 午夜福利免费观看在线| 人人妻人人添人人爽欧美一区卜| 成年动漫av网址| 首页视频小说图片口味搜索| 国产欧美日韩一区二区三区在线| 中国美女看黄片| 国产精品久久久久久精品电影小说| 天天添夜夜摸| √禁漫天堂资源中文www| 成人av一区二区三区在线看 | 老熟妇乱子伦视频在线观看 | 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 国产av精品麻豆| 久久久久精品国产欧美久久久 | 一级,二级,三级黄色视频| 老汉色∧v一级毛片| 日韩人妻精品一区2区三区| 亚洲精品久久午夜乱码| 久热这里只有精品99| 女警被强在线播放| 久久久久久免费高清国产稀缺| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 国产在线免费精品| 人人澡人人妻人| 欧美变态另类bdsm刘玥| 自拍欧美九色日韩亚洲蝌蚪91| 国产亚洲av片在线观看秒播厂| 欧美日韩福利视频一区二区| 另类精品久久| 国产一区二区三区在线臀色熟女 | 久久久久网色| 亚洲人成77777在线视频| 亚洲精品国产色婷婷电影| 巨乳人妻的诱惑在线观看| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 十八禁人妻一区二区| 一边摸一边做爽爽视频免费| 伊人亚洲综合成人网| 五月天丁香电影| 亚洲九九香蕉| 精品少妇内射三级| 国产一区二区激情短视频 | 男人添女人高潮全过程视频| 夜夜夜夜夜久久久久| 亚洲免费av在线视频| 久久人人爽人人片av| 美女大奶头黄色视频| 99国产精品一区二区三区| 香蕉丝袜av| 精品久久久精品久久久| 成年人免费黄色播放视频| 日日夜夜操网爽| 国产一卡二卡三卡精品| 国产亚洲午夜精品一区二区久久| 国产真人三级小视频在线观看| 性少妇av在线| 久久人人97超碰香蕉20202| 欧美成狂野欧美在线观看| 一区二区三区激情视频| 汤姆久久久久久久影院中文字幕| 欧美激情久久久久久爽电影 | 久久精品国产a三级三级三级| 成人黄色视频免费在线看| 亚洲三区欧美一区| 又大又爽又粗| 一级a爱视频在线免费观看| 亚洲av欧美aⅴ国产| 9热在线视频观看99| 纵有疾风起免费观看全集完整版| 无限看片的www在线观看| 天天添夜夜摸| 国产在视频线精品| 中文字幕人妻丝袜制服| 精品久久久精品久久久| 大陆偷拍与自拍| 中文字幕高清在线视频| 国产在线免费精品| 日日爽夜夜爽网站| 岛国毛片在线播放| 久久 成人 亚洲| 天天添夜夜摸| netflix在线观看网站| 日韩熟女老妇一区二区性免费视频| 国精品久久久久久国模美| 国产在线免费精品| 91精品国产国语对白视频| 国产精品九九99| 中文字幕av电影在线播放| 日本精品一区二区三区蜜桃| 亚洲综合色网址| 精品国产一区二区三区四区第35| 日韩中文字幕视频在线看片| 少妇精品久久久久久久| 老司机福利观看| 久久狼人影院| 777米奇影视久久| 日韩 欧美 亚洲 中文字幕| 老司机福利观看| 美女午夜性视频免费| 免费久久久久久久精品成人欧美视频| 亚洲国产看品久久| 亚洲免费av在线视频| 欧美av亚洲av综合av国产av| 亚洲免费av在线视频| 午夜影院在线不卡| 老司机午夜福利在线观看视频 | 97精品久久久久久久久久精品| 免费看十八禁软件| 久热爱精品视频在线9| 嫁个100分男人电影在线观看| 建设人人有责人人尽责人人享有的| 欧美日韩成人在线一区二区| 亚洲三区欧美一区| 欧美成狂野欧美在线观看| 成人av一区二区三区在线看 | 亚洲 国产 在线| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃| 成人黄色视频免费在线看| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 日本五十路高清| 久久久久视频综合| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 国产av一区二区精品久久| 成人18禁高潮啪啪吃奶动态图| 99re6热这里在线精品视频| 脱女人内裤的视频| 美女高潮到喷水免费观看| 久久国产亚洲av麻豆专区| 国产一区二区三区在线臀色熟女 | 日韩欧美国产一区二区入口| 老司机午夜十八禁免费视频| 男女午夜视频在线观看| 各种免费的搞黄视频| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 蜜桃在线观看..| 看免费av毛片| 最近中文字幕2019免费版| 欧美 亚洲 国产 日韩一| 电影成人av| 在线 av 中文字幕| 这个男人来自地球电影免费观看| 老汉色∧v一级毛片| 精品国产一区二区久久| 精品亚洲成a人片在线观看| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 2018国产大陆天天弄谢| 欧美在线黄色| 可以免费在线观看a视频的电影网站| 青春草视频在线免费观看| av一本久久久久| 亚洲精品美女久久久久99蜜臀| 精品少妇内射三级| 亚洲av日韩在线播放| 国产亚洲av高清不卡| 最新的欧美精品一区二区| 国产一级毛片在线| 热99re8久久精品国产| 无遮挡黄片免费观看| 丰满人妻熟妇乱又伦精品不卡| 十八禁网站网址无遮挡| 91九色精品人成在线观看| 亚洲av欧美aⅴ国产| 欧美日韩黄片免| 精品久久久久久电影网| 国产真人三级小视频在线观看| 精品第一国产精品| 90打野战视频偷拍视频| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 午夜精品国产一区二区电影| 久久久久久亚洲精品国产蜜桃av| 精品一品国产午夜福利视频| 人人妻人人添人人爽欧美一区卜| 天天添夜夜摸| 女性被躁到高潮视频| 国产色视频综合|