• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parametric Effect Investigation on Aerodynamic Interaction Characteristics for Tandem Rotors in Forward Flight

    2015-11-24 06:57:35HuangShuilin黃水林LinYongfeng林永峰FanFeng樊楓LiuZhangwen劉長文
    關鍵詞:黃水

    Huang Shuilin(黃水林),Lin Yongfeng(林永峰),F(xiàn)an Feng(樊楓),Liu Zhangwen(劉長文)

    Parametric Effect Investigation on Aerodynamic Interaction Characteristics for Tandem Rotors in Forward Flight

    Huang Shuilin(黃水林)*,Lin Yongfeng(林永峰),F(xiàn)an Feng(樊楓),Liu Zhangwen(劉長文)

    Science and Technology on Rotorcraft Aeromechanics Laboratory,CHRDI,Jingdezhen,P.R.China

    An iterative free-wake computational method is developed for the prediction of aerodynamic interaction characteristics between the twin rotors of a tandem helicopter.Here the mutual interaction effects between twin rotors are included,as well as those between the rotor and wake.A rotor wake model,blade aerodynamic model and rotor trim model are coupled during the process of solution.A new dual-rotor trim approach is presented to fit for the aerodynamic interaction calculations between tandem twin rotors.By the present method,the blade aerodynamic loads and rotor performance for the twin rotors under the interactional condition are calculated,and the comparisons with available experimental data are also made to indicate the capability of the proposed method.Then,the effects of such parameters as the longitudinal separation and axial separation between twin rotors on the aerodynamic interaction characteristics are analyzed.Based on the investigation,the conclusions are obtained to be of benefit to the configuration design of tandem rotors.Furthermore,the performance comparison between the tandem rotors and a single rotor is conducted.It is shown that the strongest interaction does not appear in a hover state,but in a low-speed forward flight state.

    tandem helicopter;twin rotors;aerodynamic interaction;rotor trim model;parametric effect

    0 Introduction

    Tandem helicopter has two rotors overlapping each other,making the aft rotor locate below the vortex wake of the front one easily.The front rotor wake may either impact the aft rotor directly or closely pass through the aft one,and severe aerodynamic interaction occurs between twin rotors as well as between the rotor and wake.Compared to a single rotor,the rotor wake interaction of tandem twin-rotors may cause a greater change of flow field and aerodynamic characteristics,helping distinguish its aerodynamic analysis method from that of a single rotor.As a result,such aerodynamic interaction between twin rotors will significantly affect rotor performance.Thanks to the development of the new-generation helicopter with more compact structure and bigger disk loading,the aerodynamic interaction between rotors tends to be stronger.It is essential to conduct the research on twin-rotor aerodynamic interaction of a tandem helicopter.

    The researches on aerodynamics of twin rotors for a tandem helicopter were started in 1960’s.But the early work almost aimed at the flight performance,stability and control of tandem helicopters and focused on experiments[1-2]. Aerodynamic interference and rotor performance were rarely studied.After that,aerodynamic interaction of overlapping part of two rotors was investigated by researchers through simple momentum and blade-element theory.For example,Ref.[3]derived the calculation formula of performance for tandem rotors in hover,and drew a summary on previous experiments.However,the main disadvantage of momentum theory is that the induced velocity distribution across rotor disk is uniform,which significantly differs from the reality.Since the 1980’s,researchers have triedto use the vortex theory to study the aerodynamic interference characteristics of tandem rotors.In 1995,Bagai et al.first adopted a free wake method to investigate wake dynamics of tandem rotors[4],but simply analyzed the geometry of rotor wake without involving blade load and rotor performance.Recently,many researches[5-9]on aerodynamic interaction of twin rotors have been carried out in China.However,most of them were for coaxial twin rotors[6-7]and side-by-side(tilt)twin rotors[8-9],and few studies were conducted on parametric effects on rotor performance for a tandem helicopter.In the last five years,some new researches were counducted about tandem helicopter[10-12].

    Generally speaking,accurate calculation of rotor performance for a helicopter is challenging,and this is because it has a high correlation with both blade three-dimensional effects and rotor wake.Furthermore,when blade tip Mach number is relatively large,compressibility effects have to be included in the calculation of rotor power.Even in steady forward flight,the variation of blade sectional angle of attack is still unsteady,and mutual interaction between twin rotors will complicate the performance calculation.

    Recently,computational fluid dynamics(CFD)technology has made a considerable progress in simulating rotor flow-fields,and some researchers tried to choose CFD methods to investigate flow field interaction of twin rotors[5]. However,CFD methods require so much computer resources,and numerical dissipation problem still remains,especially in capturing vortex wake of twin rotors for a tandem helicopter.Compared with the CFD method,vortex theory(wake analysis)which directly solves governing equation of vortex line may be a more convenient method,as far as the calculation of blade sectional induced velocity and loading distribution is concerned. Thus,this paper tries to develop a coupling iterative computational method of free-wake to calculate the aerodynamic characteristics and parametric effects of twin rotors.

    In order to investigate the aerodynamic interactional characteristics of tandem rotors and compare with a single rotor,this paper defines a new additional power factor of twin rotors.Based upon the definition,the variation of aerodynamic interactional characteristics with different twinrotor structure layout is emphatically studied. Additionally,different from previous researches,a twin-rotor trim analytical model is presented for wake calculation of a tandem configuration in this paper in order to improve the accuracy of calculation.

    1 Computational Model

    where r is the position vector of wake point;ψthe blade azimuth angle;ψWthe age angle of wake vortex;and V0the velocity of free flow.v11and v22are the self-induced velocities of rotor 1(R1)and rotor 2(R2),respectively.

    To obtain the correct wake structure,the governing equation of vortex line should be numerically discreted and solved.Although Eq.(1)is relatively simple in form,the solution is quite difficult.This is because the local velocity includes free-flow velocity,mutual induced velocity and self-induced velocity of wake vortices.In physics,helicopter rotor wake is unstable.This will result in great difficulties in solving the governing equation of rotor wake.Previous methods mostly adopt explicit time marching method[13]. One major problem of explicit time-marching method is the numerical instability.Afterwards,some researchers attempted to partly overcome this problem by introducing numerical damping. But rotor wake is strained when introducing numerical damping,and the condition of no loadbearing of wake is destroyed and the calculation results could not be reliably used.Compared mith the explicit time-marching method,semi-implicit scheme relaxation method[14]has better numerical

    1.1 Free wake model for aerodynamic interaction of tandem rotors

    In accordance with the definition of free wake,vortex lines freely move at the local velocity in the flow field.In mathematics,it can be written as the first-order ordinary differential equations(ODE)[4],namelystability.In view of this,the relaxation method is also employed here for the tandem twin-rotor configuration.

    When Eq.(1)is solved,initial values in the spatial domain and boundary conditions in the time domain need to be given,i.e.

    where rtipis the shedding location of tip vortex;β0 the coning angle of the rotor;andαsthe tip-pathplane tilt angle.

    1.2 Blade aerodynamic model for rotor performance analysis

    Blade aerodynamic force and blade circulation are closely related,and the distribution of blade circulation is solved by satisfying the impenetrable condition on control points at 3/4 chord-line position,i.e.

    whereΓis the circulation of blade bound vortex;M the total number of control point;A'the influence coefficient of blade bound circulation and wake induction;v'in right end the induced velocity of two rotors on control point;and n the normal vector.

    After solving the circulation of each blade segments through the free-wake model,the inflow of rotor disk plane can be determined,and the aerodynamic force of blade section can be further calculated.Blade aerodynamic lift and drag per unit length can be calculated.

    whereαis the sectional angle of attack,U the total sectional flow velocity.Cland Cdare the airfoil lift and drag,respectively;ρthe air density;and b the chord of blade section airfoil.

    The aerodynamic environment of rotor airfoil section is more complicated than that of wing,because the Mach number and the section angle of attack at different radial positions are different. Moreover,the Mach number and the section angle of attack at different azimuths are different in a forward flight.In the current analysis,the well-known Beddoes model[15],which can consider flow compressibility and separation effect and calculate thrust coefficients at different Mach numbers,is utilized to determine airfoil lift and drag.Lift coefficient depending on the angle of attack can be expressed as

    where Ma is the local Mach number of sectional airfoil and f the ratio of separated location to chord length

    whereαzis the zero-lift angle of attack;α0.7the stall angle of attack at 0.7 chord line;αHthe separation angle at big angle of attack;and S1,S2and fHare the parameters of airfoil static-stall characteristics.

    1.3 Twin-rotor trim model with aerodynamic interaction

    Trim analysis was almost not considered in previous research of rotor wake,and the rotor collective pitch and cyclic pitch controls are directly given in the calculation.A major reason is that the consideraton of rotor trim will greatly increase the complexity of wake solution.However,as showed in Ref.[16],it may lead to improper results without considering rotor trim.

    For the tandem two rotors with front and aft asymmetry,its trim is different from that of the single rotor and coupling of two rotors is necessary.However,it will add the time of wake solution.To improve the calculation efficiency,this section presents a new trim model for tandem rotors.Usually,the trim process for single rotor is as follows:giving inclination of rotor axis and forward flight velocity,and adjusting the collective pitchθ0.7and cyclic pitchθ1c,θ1s,then obtaining longitudinal tip-path-plane tilt angle a1and lateral tip-path-plane tilt angle b1by solving the equation of flap motion.Next,compare the calculated thrust coefficients CT,a1and b1withthe specified values,and obtain convergent solution after iterative calculations.This paper sets rotor thrust coefficient CT,rotor roll moment Mxand pitch moment Myas the target values,thus there is no need to obtain longitudinal tip-pathplane tilt angle a1and lateral tip-path-plane tilt angle b1by iteratively solving implicit equation of flap motion.a1and b1are directly given to reduce the computing time greatly.

    Meanwhile,it is necessary to consider the influence between two tandem rotors and torque trim.Tandem twin-rotor is different from single rotor in trim process,and the control inputs and outputs are of six items instead of three items. Control input and output vectors are defined as

    where superscript"tw"means twin rotors,and superscripts"1""2"refer to the aft rotor and the front one,respectively.CtwT,CtwQare the sums of the lift and torque moment of two rotors.Expanding vectors into the first-order Taylor series,one has

    Fig.1 Flowchart of aerodynamic interaction characteristics for tandem rotors

    where J is a 6×6 Jacobian matrix of twin rotors.

    During trim process,firstly,give the rotor flapping input and pre-suppose output response,then solve equations via step iteration.When Δx≤RMS(RMS is assigned as a small value),convergent trim control is considered to be achieved.In actual calculation,the solution of flapping equations and update of trimming variables is in iterative processes,and is coupled with the rotor wake solution.

    1.4 Coupling model of twin rotors for aerodynamic interaction

    Fig.1 gives the flowchart of aerodynamic in-teraction characteristics combining the wake model of two rotors and aerodynamic model with rotor trim model.Calculations of the wake-point induced velocity and trim analysis need to include mutual effects of two tandem rotors.Because it needs massive computational time when the wake of two rotors is simultaneously iterated in updating the free rotor wake,here the calculation of wake points is for each rotor alone,and the influence of interaction needs to be considered after obtaining the wake of two rotors,then the wake of two rotors is iteratively calculated to get convergent solution.To do so,computational time is relatively less.

    2 Method Verification

    The model rotor with available experimental data in Ref.[2]is chosen as the numerical example for performance calculation of tandem rotors,and the main parameters are shown in Table 1.

    Table 1 Main parameters of model rotor

    In Ref.[2],the thrust and torque coefficients of a tandem model with two two-blade rotors and an isolated single rotor were measured in the same state.It was found in the experiment[2]that the measured performance of the tandem rotor is better than that for the single rotor,because the tandem rotors required less power than the single rotor at the same thrust coefficient. Fig.2 gives the current calculating results of tandem rotors and single rotor in hover as well as the comparisons with experimental data[2].As shown in Fig.2,the good correlation between calculated values and experimental data is achieved.It is also noted that although there is no overlapping area for twin rotors,the overall performance in hover is better than that of a single rotor when the longitudinal separation of twin rotors reaches 2.06 R,due to the mutual induced interaction of two rotors.

    When the longitudinal separation is 0,the layout is the same as that of coaxial twin rotors. To further verify the calculating method in this paper,coaxial twin rotors are also taken as an example,and the distribution of induced velocities is calculated.Fig.3 shows the distribution of induced velocities at 0.2R vertical station below upper rotor and its comparison with the test data[6]. The calculated results agree with experimental data reasonably.

    3 Parameter Effect and Aerodynamic Interaction Calculation

    This section chooses the full-scaled twin rotors of tandem helicopter CH-47D as an example,and the main parameters are as follows:three blades,rotor radius of 9.145 m,chord of 0.81 m,blade negative-twist of-8°,rotation speed of 23.5 rad/s and NACA0012 airfoil.

    The typical layout parameter of tandem rotors is(1.3R,0,-0.2R),as shown in Fig.4.It has no large longitudinal separation and compact airframe structure but great interaction.The hub center of aft rotor is defined as the origin of coordinate.The x-direction is along longitudinalbody,the y-direction along lateral body,and the z-direction along axial one.In Fig.4,dLis the longitudinal separation between rotors,dVthe axial separation,and v the forward velocity.

    Fig.3 Induced velocity distribution at 0.2R below rotor

    Fig.4 Coordinate for tandem twin rotors

    4 Trim Analysis and Aerodynamic Loads Calculation for Tandem Rotors

    Fig.5 gives the variation of blade section loads with azimuth angle at the radial station of 0.85R in a forward flight(μ=0.3)for tandem twin rotors and a conventional single rotor.Longitudinal coordinate denotes non-dimensional blade section load M2Cl.In Fig.5,blade loads vary with azimuth angle greatly.Besides,due to the mutual interaction between the twin rotors of a tandem helicopter,loads distribution of the front rotor and aft rotor is different from that of a conventional single rotor.

    Fig.5 Variation of blade load with azimuth angle for tandem rotors(0.85R,μ=0.3)

    To illustrate the impact of trim on rotor aerodynamic loads,F(xiàn)ig.6 gives a typical calculated result of longitudinal load distribution without and with trim of tandem rotors.From Fig.6,the blade load without trim is larger at the 180°azimuth angle,thus generating a nose-up pitching moment easily.Blade load distributions at 0°and 180°azimuth angles are nearly symmetric after trim.It is also noted that in Fig.6(b),in spite of the inclusion of trim,the load distribution fluctuates significantly at 0°azimuth angle(overlapping area)of front rotor.This is because blade of front rotor at 0°azimuth angle is under the wake of aft rotor,and the trimming has a large effect on the calculated results.

    4.1 Calculation of performance for twin rotors

    Fig.7 gives performance curves of front and aft rotors at advance ratio(μ)of 0.1 for tandem rotors with comparison of single rotor.It is shown that the performance of front rotor is similar to that of a single rotor in a forward flight(μ=0.1),but the aft rotor performance is worse than that of front rotor or single rotor,which is consistent with the calculation result in Ref.[5],with the adoption of a CFD method.

    4.2 Effects of layout parameters for tandem rotors

    To compare with the single rotor,and to investigate the effect of layout parameters for tandem rotors,an additional power factor is defined

    Fig.6 Comparisons of blade load distribution of tandem rotors with and without trim(μ=0.1)

    Fig.7 Performance comparison between tandem rotors and single rotor(μ=0.1)

    as follows

    where subscripts"twin"and"isolated"denote the tandem twin rotors and the isolated rotor,respectively.

    Fig.8 gives a variation of additional power factor with longitudinal separation for the forward flight of tandem rotors.When the longitudinal separation is 1.3R,the additional power of tandem rotors is just about 25.7%(CT=0.006)of two separate rotors,along with the increase of the longitudinal separation increasing.The additional power factor decreases first and subsequently increases.The additional power drops to the minimum when the longitudinal separation between two rotors is 1.8R.

    Fig.8 Variation of additional power factor with longitudinal separation for tandem rotors(μ=0.1,dV/R=0.2)

    Fig.9 is a variation of additional power with axial separation for tandem rotors.Axial separation sort of influences the additional power of rotors in a forward flight,and additional power decreases as the axial separation of rotors increases. Fig.9 also shows that the increase of thrust coefficient will result in the increase of additional power.

    Fig.10 presents a variation of additional power factor with advanced ratio under the condition of the same thrust coefficient for tandem rotors.Obviously,when thrust coefficient keeps constant,additional power required for tandem rotors increases first and then decreases with the increment of advance ratio.Namely at low speed,as advanced ratio increases,mutual interaction between two rotors becomes stronger,and reaches the maximum at the advanced ratio of 0.1.

    Fig.9 Variation of additional power factor with axial separation for tandem rotors(μ=0.1,dL/R= 1.3)

    From middle forward speed to larger speed,mutual interaction between two rotors becomes weaker.For a larger thrust coefficient,the additional power factor of tandem rotors increases.

    Fig.10 Variation of additional power factor with advance ratio for tandem rotors

    5 Conclusions

    The aerodynamic interactional characteristics of tandem twin-rotors for the hover and typical forward flight(μ=0.1)states are calculated and analyzed,and the parametric effects of different tandem configurations are investigated.Several conclusions can be drawn as follows:

    (1)The front rotor performance of tandem rotors is similar to that of the isolated one,while the aft rotor performance is worse than that of the front one or an isolated rotor due to the wake interaction of front rotor.

    (2)Compared with two isolated rotors,the tandem twin-rotors need 25.7%more power at the longitudinal separation of 1.3R for current numerical case.The additional power will decrease first and increase later when the longitudinal separation increases,and it reaches the minimum at about 1.8R longitudinal separation.

    (3)The variation of axial separation affects the rotor power in a forward flight,and the power will decrease as the axial separation increases.

    (4)The additional power needed by tandem twin rotors will increase first and decrease later as the advance ratio increases.The most serious interaction between twin rotors does not appear in hover but in a low-speed forward flight.The interaction will increase when the rotor thrust coefficient increases.

    (5)The trim method proposed in this paper is suitable for the calculation of aerodynamic interaction on tandem rotors.

    [1] Stepniewski W Z,Keys C N.Rotary-wing aerodynamics[M].New York:Dover Publications Inc.,1981.

    [2] Dingeldein R C.Wind-tunnel studies of the performance of multirotor configurations,NACA-TN-3236[R].Langley Field,VA,U.S.:National Advisory Committee for Aeronautics.Langley Aeronautical Lab,1954.

    [3] Harris F D.Twin rotor hover performance[J]. Journal of the American Helicopter Society,1999,44(1):34-37.

    [4] Bagai A,Leishman J G.Free-wake analysis of tandem,tilt-rotor and coaxial rotor configurations[C]∥The 51st Annual Forum of the AHS.Fort Worth,TX:American.Helicopter Society International,Inc.,1995.

    [5] Zili T,Mao S.Flow analysis of twin-rotor configurations by navier-strokes simulation[J].Journal of the American Helicopter Society,2000,45(2):97-105.

    [6] Wang P,Wang S C.Aerodynamic characteristics analysis and experimental research for co-axial twin rotors[C]∥The 13th Annual Forum of the CHS. Jiujiang,China:Chinese Aeronautics Society,1997.(in Chinese)

    [7] Deng Y M,Tao R,Hu J Z.Experimental investigation of the aerodynamic interaction between upper and lower rotors of a coaxial helicopter[J].Journal of Acta Aeronautica et Astronautica Sinica,2003,24(1):10-14.(in Chinese)

    [8] Li C H,Xu G H.Free wake analysis of tilt rotor in hover and forward flight[J].Acta Aerodynamica Sinica,2005,23(2):152-156.(in Chinese)

    [9] Tong Z L,Sun M.Study of the aerodynamic properties of tandem and side-by-side twin-rotor configurations by navier-stokes simulation[J].Journal of ACTA Aeronautica et Astronautica Sinica,1999,20(6):489-492.

    [10]Silva J,Riser R.CH-47D tandem rotor outwash survey[C]∥The 67th Annual Forum of the AHS.Virginia Beach,VA:American Helicopter Society International,2011.

    [11]Cao Y,Li G,Zhong G.Tandem helicopter trim and flight characteristics in the icing condition[J].Journal of Aircraft,2010,47(5):1559-1569.

    [12]Ramasamy M.Measurements comparing hover performance of single,coaxial,tandem,and tilt-rotor configurations[C]∥The 69th Annual Forum of the AHS.Phoenix,Arizona:American Helicopter Socity International,Inc.,2013.

    [13]Leishman J G,Beddoes T S.A generalized model for unsteady airfoil behavior and dynamic stall using the indicial method[C]∥The 42nd Annual Forum of the AHS.Washington D.C.:American Helicopter Society International Inc.,1986.

    [14]Landgrebe A J.An analytical method for predicting rotor wake geometry[J].Journal of the American Helicopter Society,1969,14(4):20-32.

    [15]Xu G H,Wang S C,Zhao J G.Experimental and analytical investigation on aerodynamics of helicopter scissors tail rotor[J].Chinese Journal of Aeronautics,2001,14(4):193-199.

    [16]Bagai A,Leishman J G.Rotor free wake modeling using a relaxation technique including comparisons with experimental data[J].Journal of the American Helicopter Society,1995,40(3):29-41.

    (Executive editor:Zhang Tong)

    V271 Document code:A Article ID:1005-1120(2015)04-0390-09

    *Corresponding author:Huang Shuilin,Senior Engineer,E-mail:602hsl@gmail.com

    How to cite this article:Huang Shuilin,Lin Yongfeng,F(xiàn)an Feng,et al.Parametric effect investigation on aerodynamic interaction characteristics for tandem rotors in forward flight[J].Trans.Nanjing U.Aero.Astro.,2015,32(4):390-398. http://dx.doi.org/10.16356/j.1005-1120.2015.04.390

    (Received 22 September 2014;revised 24 March 2015;accepted 14 April 2015)

    猜你喜歡
    黃水
    基于數(shù)據(jù)挖掘的藏藥三黃水類方治療“黃水病”用藥規(guī)律研究
    理發(fā)店店主堅守24年的“約定”
    傷科黃水制備工藝的優(yōu)化
    中成藥(2018年9期)2018-10-09 07:18:40
    黃水抗氧化活性的初步研究
    釀酒科技(2018年7期)2018-07-25 03:08:48
    傷科黃水對行全膝關節(jié)置換術患者術后膝關節(jié)功能的影響
    中成藥(2017年7期)2017-11-22 07:32:53
    傷科黃水預防斷指再植術后血管危象的臨床觀察
    中成藥(2017年5期)2017-06-13 13:01:12
    高墻內(nèi)的暖“心”人
    檢察風云(2017年3期)2017-02-20 15:03:10
    高墻內(nèi)的暖“心”人
    檢察風云(2017年3期)2017-02-20 15:02:17
    黃水是百病之源
    蒙醫(yī)溫針療法治療膝關節(jié)黃水病
    国产亚洲精品第一综合不卡| 精品久久久久久,| 好男人电影高清在线观看| 国产三级中文精品| 老司机在亚洲福利影院| 亚洲中文字幕日韩| 999久久久国产精品视频| 国产三级中文精品| 男人舔女人下体高潮全视频| 久久精品aⅴ一区二区三区四区| 一区福利在线观看| 国产91精品成人一区二区三区| 一进一出好大好爽视频| 精品乱码久久久久久99久播| 国产av不卡久久| 91成年电影在线观看| 中文字幕熟女人妻在线| 国产精品 国内视频| 国产精品av久久久久免费| 一a级毛片在线观看| 欧美一级毛片孕妇| tocl精华| 亚洲成a人片在线一区二区| 久久久久性生活片| 国产成人精品久久二区二区免费| 神马国产精品三级电影在线观看 | 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 久久香蕉精品热| 国产精品久久久人人做人人爽| 国产高清有码在线观看视频 | 悠悠久久av| 欧美黑人欧美精品刺激| 国产av又大| xxx96com| 12—13女人毛片做爰片一| 久久天堂一区二区三区四区| 亚洲成av人片免费观看| 男女那种视频在线观看| 久久久久久人人人人人| 哪里可以看免费的av片| 久久久精品国产亚洲av高清涩受| 韩国av一区二区三区四区| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 三级毛片av免费| 国产1区2区3区精品| 两个人的视频大全免费| a级毛片a级免费在线| 国产成人av教育| 精品久久久久久久人妻蜜臀av| 久久久久久九九精品二区国产 | 成人永久免费在线观看视频| 成人三级黄色视频| a级毛片在线看网站| 亚洲国产精品久久男人天堂| 国产精品一区二区精品视频观看| 精品乱码久久久久久99久播| 日韩有码中文字幕| 久久久久免费精品人妻一区二区| 国产真人三级小视频在线观看| 午夜亚洲福利在线播放| 欧美一级毛片孕妇| 午夜两性在线视频| 久久久久久久久久黄片| 国产亚洲av嫩草精品影院| 观看免费一级毛片| 老熟妇仑乱视频hdxx| 天堂动漫精品| 日本一区二区免费在线视频| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 亚洲黑人精品在线| 两个人看的免费小视频| 亚洲专区中文字幕在线| 欧美一区二区国产精品久久精品 | 在线观看www视频免费| 久久久久久久久久黄片| 精品一区二区三区四区五区乱码| 亚洲欧美日韩东京热| av国产免费在线观看| 精品国产乱码久久久久久男人| 又爽又黄无遮挡网站| 亚洲自偷自拍图片 自拍| 97人妻精品一区二区三区麻豆| 免费看美女性在线毛片视频| 亚洲国产精品久久男人天堂| 亚洲成人久久性| 国产三级黄色录像| 国产成人欧美在线观看| av福利片在线观看| 亚洲av成人av| 桃色一区二区三区在线观看| 午夜激情av网站| 一进一出好大好爽视频| bbb黄色大片| 国产亚洲精品综合一区在线观看 | 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久久电影 | 少妇被粗大的猛进出69影院| 嫁个100分男人电影在线观看| 午夜精品一区二区三区免费看| 亚洲精品中文字幕在线视频| 极品教师在线免费播放| 精品久久蜜臀av无| 窝窝影院91人妻| 嫩草影视91久久| 色综合亚洲欧美另类图片| 51午夜福利影视在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品免费视频内射| 天堂√8在线中文| 桃红色精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 高潮久久久久久久久久久不卡| 亚洲在线自拍视频| 99热这里只有是精品50| 国产亚洲精品综合一区在线观看 | 最近最新免费中文字幕在线| 1024手机看黄色片| 亚洲欧美精品综合久久99| 久久久久久久久免费视频了| 亚洲国产日韩欧美精品在线观看 | 黄色片一级片一级黄色片| 首页视频小说图片口味搜索| 国产成人av激情在线播放| 三级男女做爰猛烈吃奶摸视频| 久久人人精品亚洲av| 亚洲精品色激情综合| 日日干狠狠操夜夜爽| 国产熟女午夜一区二区三区| 又黄又粗又硬又大视频| 国产精品,欧美在线| 99在线视频只有这里精品首页| 国产成人精品久久二区二区免费| 男女做爰动态图高潮gif福利片| 黄片大片在线免费观看| 韩国av一区二区三区四区| 男人舔女人下体高潮全视频| 久99久视频精品免费| 香蕉久久夜色| 丰满人妻一区二区三区视频av | 老汉色av国产亚洲站长工具| 日本a在线网址| 国产片内射在线| 悠悠久久av| 国产精品av久久久久免费| 亚洲男人的天堂狠狠| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕人妻丝袜一区二区| 国产v大片淫在线免费观看| 亚洲一区二区三区不卡视频| 国产精品98久久久久久宅男小说| 精华霜和精华液先用哪个| 丝袜美腿诱惑在线| 热99re8久久精品国产| 日日夜夜操网爽| 欧美日韩黄片免| 久久久水蜜桃国产精品网| xxxwww97欧美| 久久精品91蜜桃| 中文字幕熟女人妻在线| xxx96com| 成人三级黄色视频| 亚洲人成电影免费在线| 国产精品1区2区在线观看.| 2021天堂中文幕一二区在线观| 国产成年人精品一区二区| 久久久精品国产亚洲av高清涩受| 成人精品一区二区免费| 日本黄色视频三级网站网址| 美女免费视频网站| 婷婷六月久久综合丁香| 淫秽高清视频在线观看| 日日干狠狠操夜夜爽| 午夜老司机福利片| xxx96com| 一级黄色大片毛片| 国产在线观看jvid| 视频区欧美日本亚洲| 成人手机av| 成年女人毛片免费观看观看9| 天堂av国产一区二区熟女人妻 | 一二三四社区在线视频社区8| www.www免费av| 国产成人啪精品午夜网站| 婷婷亚洲欧美| 国产高清激情床上av| 国产成人精品久久二区二区91| 欧美黄色淫秽网站| 国产成人av激情在线播放| 国产精品久久久久久久电影 | 熟妇人妻久久中文字幕3abv| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 日本一区二区免费在线视频| 欧美日本视频| 亚洲精品一区av在线观看| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 中文资源天堂在线| 国内少妇人妻偷人精品xxx网站 | 亚洲av电影在线进入| 久9热在线精品视频| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看 | 妹子高潮喷水视频| 久久精品国产亚洲av香蕉五月| 又大又爽又粗| 久久午夜综合久久蜜桃| 国产一级毛片七仙女欲春2| 麻豆国产97在线/欧美 | 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 国产成人一区二区三区免费视频网站| 脱女人内裤的视频| 久久香蕉精品热| 亚洲,欧美精品.| 一本久久中文字幕| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av| 国产一区二区在线观看日韩 | 久久国产精品人妻蜜桃| 黑人巨大精品欧美一区二区mp4| 国产av一区二区精品久久| 色播亚洲综合网| 人妻久久中文字幕网| 欧美激情久久久久久爽电影| 日本五十路高清| 我要搜黄色片| 人妻久久中文字幕网| 国产乱人伦免费视频| 99精品欧美一区二区三区四区| 久久香蕉激情| 窝窝影院91人妻| 日韩精品青青久久久久久| 久久中文字幕人妻熟女| 老司机午夜福利在线观看视频| 韩国av一区二区三区四区| 少妇人妻一区二区三区视频| 精品免费久久久久久久清纯| 特大巨黑吊av在线直播| 欧美日韩国产亚洲二区| 国产男靠女视频免费网站| 久久久精品欧美日韩精品| 免费看日本二区| 亚洲一区中文字幕在线| 国产精品av视频在线免费观看| 男人的好看免费观看在线视频 | 丰满人妻一区二区三区视频av | 亚洲国产高清在线一区二区三| 日韩三级视频一区二区三区| 国产av又大| 一级毛片精品| 99国产极品粉嫩在线观看| 制服丝袜大香蕉在线| 亚洲欧美精品综合久久99| 国产亚洲av高清不卡| 久久香蕉国产精品| 成年免费大片在线观看| 老司机深夜福利视频在线观看| 国产不卡一卡二| 久久九九热精品免费| 99热这里只有精品一区 | 日本 欧美在线| 成年女人毛片免费观看观看9| 国产伦在线观看视频一区| 国产成人系列免费观看| 成人午夜高清在线视频| 成人国语在线视频| 亚洲最大成人中文| 久久精品国产亚洲av香蕉五月| 欧美zozozo另类| 国产久久久一区二区三区| 久热爱精品视频在线9| 色综合亚洲欧美另类图片| 午夜免费激情av| 国产激情欧美一区二区| 男女午夜视频在线观看| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 久久久久亚洲av毛片大全| 一个人免费在线观看电影 | 欧美大码av| 亚洲国产高清在线一区二区三| 床上黄色一级片| e午夜精品久久久久久久| 国产精品亚洲美女久久久| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 99热这里只有是精品50| 国产三级中文精品| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 日本黄色视频三级网站网址| videosex国产| 精品久久蜜臀av无| 久久精品91蜜桃| 一个人免费在线观看电影 | 久久久久久久久中文| 亚洲成人久久性| 白带黄色成豆腐渣| 国产高清激情床上av| 日本一二三区视频观看| 国产激情欧美一区二区| 国产三级中文精品| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 亚洲中文字幕日韩| 亚洲无线在线观看| 亚洲第一欧美日韩一区二区三区| 国产精品免费视频内射| 久久精品影院6| 在线看三级毛片| 国产精品国产高清国产av| 天堂√8在线中文| 久久精品国产99精品国产亚洲性色| 麻豆成人av在线观看| 亚洲av美国av| 久久这里只有精品19| 亚洲一区中文字幕在线| 美女高潮喷水抽搐中文字幕| 非洲黑人性xxxx精品又粗又长| www日本在线高清视频| 宅男免费午夜| 一进一出抽搐动态| 日韩精品中文字幕看吧| 五月玫瑰六月丁香| www国产在线视频色| 亚洲国产高清在线一区二区三| 欧美日韩亚洲综合一区二区三区_| 狂野欧美激情性xxxx| 波多野结衣高清无吗| 麻豆成人午夜福利视频| 女人爽到高潮嗷嗷叫在线视频| 男人舔女人的私密视频| 黄色成人免费大全| 99热只有精品国产| 最近在线观看免费完整版| 亚洲午夜理论影院| 国产成人系列免费观看| 一个人免费在线观看电影 | 中文字幕精品亚洲无线码一区| 欧美日本视频| 国产av一区二区精品久久| 亚洲一卡2卡3卡4卡5卡精品中文| 超碰成人久久| 亚洲,欧美精品.| 热99re8久久精品国产| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| 日韩有码中文字幕| 免费无遮挡裸体视频| 九色成人免费人妻av| 老司机福利观看| 精品一区二区三区视频在线观看免费| 国产精品自产拍在线观看55亚洲| 成人18禁高潮啪啪吃奶动态图| 国产野战对白在线观看| 一本一本综合久久| 手机成人av网站| 国产男靠女视频免费网站| 麻豆久久精品国产亚洲av| 免费av毛片视频| 禁无遮挡网站| 欧美3d第一页| 天堂av国产一区二区熟女人妻 | 国产免费av片在线观看野外av| 中文字幕精品亚洲无线码一区| 麻豆成人av在线观看| 听说在线观看完整版免费高清| 欧美大码av| 搡老岳熟女国产| 在线观看日韩欧美| 国产精品一区二区三区四区免费观看 | 国产黄色小视频在线观看| 欧美一级a爱片免费观看看 | 校园春色视频在线观看| 亚洲 国产 在线| 黄片大片在线免费观看| 在线十欧美十亚洲十日本专区| 99在线人妻在线中文字幕| 成人18禁在线播放| 丁香欧美五月| bbb黄色大片| 精品国产亚洲在线| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 精品乱码久久久久久99久播| 精品久久蜜臀av无| 成人国产一区最新在线观看| 精品欧美国产一区二区三| 亚洲一区中文字幕在线| 亚洲九九香蕉| 91在线观看av| 天堂√8在线中文| xxx96com| 国产精品香港三级国产av潘金莲| 三级毛片av免费| 久久精品91蜜桃| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 香蕉av资源在线| 亚洲欧美日韩无卡精品| 亚洲黑人精品在线| 亚洲av中文字字幕乱码综合| 亚洲激情在线av| 老司机午夜福利在线观看视频| 999久久久国产精品视频| 这个男人来自地球电影免费观看| 熟妇人妻久久中文字幕3abv| АⅤ资源中文在线天堂| 伦理电影免费视频| 亚洲国产精品sss在线观看| 在线观看免费午夜福利视频| 精品少妇一区二区三区视频日本电影| 日本免费a在线| 天堂av国产一区二区熟女人妻 | 欧美成狂野欧美在线观看| 亚洲色图av天堂| 我要搜黄色片| 精品久久久久久久人妻蜜臀av| 深夜精品福利| 精品久久久久久久久久久久久| 99re在线观看精品视频| 国产区一区二久久| 三级国产精品欧美在线观看 | 国产精品野战在线观看| 在线观看美女被高潮喷水网站 | 一个人免费在线观看电影 | 一进一出好大好爽视频| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 免费在线观看视频国产中文字幕亚洲| 欧美成人一区二区免费高清观看 | 国产一区二区激情短视频| 中文字幕av在线有码专区| 国产高清videossex| 无遮挡黄片免费观看| bbb黄色大片| 国产一区二区三区视频了| 最近最新免费中文字幕在线| 成人高潮视频无遮挡免费网站| 亚洲无线在线观看| 欧美最黄视频在线播放免费| 欧美黄色片欧美黄色片| 国产精品 欧美亚洲| 美女午夜性视频免费| 亚洲欧美激情综合另类| 日本免费一区二区三区高清不卡| 久久久久九九精品影院| 一二三四在线观看免费中文在| 日本免费a在线| 欧美日本视频| 亚洲无线在线观看| 窝窝影院91人妻| 十八禁网站免费在线| 欧美久久黑人一区二区| 草草在线视频免费看| 人妻久久中文字幕网| 日韩成人在线观看一区二区三区| 亚洲人成电影免费在线| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3| 国产欧美日韩一区二区三| 亚洲国产精品久久男人天堂| 亚洲国产看品久久| 婷婷丁香在线五月| 亚洲成人久久性| 午夜精品久久久久久毛片777| 身体一侧抽搐| 欧美乱妇无乱码| 国产亚洲av高清不卡| 在线观看午夜福利视频| 又紧又爽又黄一区二区| cao死你这个sao货| 国产精品亚洲美女久久久| 一个人免费在线观看的高清视频| 日日爽夜夜爽网站| 麻豆国产97在线/欧美 | 免费在线观看影片大全网站| 国产精华一区二区三区| 精品国产超薄肉色丝袜足j| av超薄肉色丝袜交足视频| 白带黄色成豆腐渣| 亚洲一码二码三码区别大吗| 在线十欧美十亚洲十日本专区| 欧美日韩乱码在线| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 在线国产一区二区在线| 欧美日韩乱码在线| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区| 亚洲avbb在线观看| 亚洲国产看品久久| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看 | 欧美 亚洲 国产 日韩一| 午夜福利免费观看在线| 99国产精品99久久久久| 久久久久久大精品| 中文字幕高清在线视频| 一个人免费在线观看的高清视频| 成人精品一区二区免费| 亚洲人成77777在线视频| netflix在线观看网站| 国产亚洲欧美在线一区二区| 精品高清国产在线一区| a级毛片a级免费在线| 国产亚洲精品综合一区在线观看 | 一区二区三区国产精品乱码| 19禁男女啪啪无遮挡网站| 一级毛片精品| 色综合站精品国产| 人人妻人人看人人澡| 国产一区二区三区在线臀色熟女| netflix在线观看网站| 黄色视频,在线免费观看| 一本综合久久免费| 51午夜福利影视在线观看| 久久久久国产精品人妻aⅴ院| 人成视频在线观看免费观看| 亚洲一区中文字幕在线| a级毛片在线看网站| 久久香蕉精品热| 两性夫妻黄色片| 99久久久亚洲精品蜜臀av| 三级毛片av免费| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| www日本黄色视频网| 亚洲国产精品久久男人天堂| 亚洲成人国产一区在线观看| 国产在线精品亚洲第一网站| 变态另类丝袜制服| 久久久久久久久中文| 嫩草影院精品99| 成人永久免费在线观看视频| 制服丝袜大香蕉在线| 天天一区二区日本电影三级| av视频在线观看入口| 又黄又爽又免费观看的视频| 一个人观看的视频www高清免费观看 | 国产成人影院久久av| 日本黄色视频三级网站网址| 一级作爱视频免费观看| 波多野结衣高清无吗| 国产单亲对白刺激| 国内揄拍国产精品人妻在线| 欧美国产日韩亚洲一区| 精品国产美女av久久久久小说| 亚洲av成人精品一区久久| 国产黄a三级三级三级人| 国产成人精品久久二区二区免费| 我要搜黄色片| 成年版毛片免费区| 又大又爽又粗| 我的老师免费观看完整版| 三级毛片av免费| 亚洲自拍偷在线| √禁漫天堂资源中文www| 国产成年人精品一区二区| 黄色毛片三级朝国网站| 叶爱在线成人免费视频播放| 国产黄片美女视频| 在线看三级毛片| 国产成年人精品一区二区| 国内精品一区二区在线观看| 黄色片一级片一级黄色片| 久久天堂一区二区三区四区| 特级一级黄色大片| 精品熟女少妇八av免费久了| 黄色女人牲交| 一本大道久久a久久精品| 久久香蕉激情| 99久久精品热视频| 国产伦在线观看视频一区| 久久久国产成人免费| 国产精品av视频在线免费观看| 久久精品国产综合久久久| 青草久久国产| 美女午夜性视频免费| 中文字幕av在线有码专区| 黄片大片在线免费观看| 国产真人三级小视频在线观看| 成人精品一区二区免费| 男人的好看免费观看在线视频 | 久久久精品大字幕| 啪啪无遮挡十八禁网站| 免费看a级黄色片| 淫妇啪啪啪对白视频| 成在线人永久免费视频| 亚洲av五月六月丁香网| 禁无遮挡网站| 人人妻,人人澡人人爽秒播| www国产在线视频色| 男女做爰动态图高潮gif福利片| 午夜精品一区二区三区免费看| 中文字幕熟女人妻在线| 欧美不卡视频在线免费观看 | 欧美三级亚洲精品| 精品一区二区三区四区五区乱码| 久久亚洲精品不卡| 国产激情欧美一区二区| 一夜夜www| 久久国产精品影院| 欧美日韩一级在线毛片| 久久国产乱子伦精品免费另类| 黄色丝袜av网址大全| 19禁男女啪啪无遮挡网站|