• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inspection of aluminum alloys by a multi-frequency eddy current method

    2015-11-01 07:13:52EGOROVPOLYAKOVSALITAKOLUBAEVPSAKHIEACHERNYAVSKIIVOROBEI
    Defence Technology 2015年2期

    A.V.EGOROV,V.V.POLYAKOV,b,D.S.SALITA,E.A.KOLUBAEV*,S.G.PSAKHIEA.G.CHERNYAVSKII,I.V.VOROBEI

    aAltai State University,Russia

    bInstitute of Strength Physics and Materials Science SB RAS,Russia

    cNational Research Tomsk Polytechnic University,Russia

    dS.P.Korolev Rocket and Space Corporation“Energia”,Russia

    ?

    Inspection of aluminum alloys by a multi-frequency eddy current method

    A.V.EGOROVa,V.V.POLYAKOVa,b,D.S.SALITAa,E.A.KOLUBAEVb,c,*,S.G.PSAKHIEb,c,A.G.CHERNYAVSKIId,I.V.VOROBEId

    aAltai State University,Russia

    bInstitute of Strength Physics and Materials Science SB RAS,Russia

    cNational Research Tomsk Polytechnic University,Russia

    dS.P.Korolev Rocket and Space Corporation“Energia”,Russia

    The paper proposes an experimental method of material inspection,which is based on digital processing of multi-frequency eddy current measurement data.The influences of various factors(conductivity,the gap between the sample surface and the sensor,the thickness of the sample)on the obtained hodographs are examined by taking the aluminum alloys for example,and the possibility of separation of various factors is analyzed.The results obtained are indicative of how much promise the proposed method offers for the inspection and testing of products made of aluminum alloys.

    Eddy current method;Material inspection;Digital signal processing;Aluminum alloy

    1.Introduction

    One of the nondestructive testing methods for metallic materials is an eddy current method[1]that makes it possible to estimate the internal structural state of the material[2],detect the surface and subsurface flaws[3],detect the fatigue cracks[4],and determine the crack location[5]and the geometrical parameters such as the thickness of metal sheet or dielectric coating on metal products[6].The measured result of eddy current is determined by the combined action of a number of factors.Depending on the specific problem to be solved in non-destructive testing,it is necessary to isolate the effect of any one factor or group of factors.All the rest are in the number of the interfering factors and their effect should be excluded.The main factors affecting the eddy current measurementsincludeelectricalconductivityandmagneticpermeability that depend on the chemical composition and structure of the material,the geometric characteristics of a particular sample or products,the value of the gap between the probe and the surface of the object under control for overhead probes.In addition,the results of the measurements depend on the design peculiarities of the used probes[7]and measurement modes[8,9].The efficiency of the eddy current inspection can be improved by reliably separating the effect of various factors.

    The most informativity is achieved by using of the method of eddy current multi-frequency measurements,which are followed by the construction and analysis of hodographs of the“probe-specimen”system.Such hodographs plot the combined effect of almost all factors important for the inspection and testing of materials.The main problem with multifrequency measurements is that their result depends on the combined action of a very large number of factors.Upon reaching sufficient precision,the experimental hodographs allow to separate the effect of various factors.One way of solving this problem is to employ new methods of digitalprocessing of signals from an eddy current measuring system[10,11].

    http://dx.doi.org/10.1016/j.dt.2014.12.002

    2214-9147/Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    The present paper considers a method of deriving experimental hodographs,which provides a significant reduction in the measurement error and thus allows us to distinguish the factors affecting the properties under inspection.The investigation is performed on aluminum alloys widely used in modern engineering as constructional materials[12].

    2.Experimental method

    The eddy current testing helps us to determine the inductance and active resistance of the“eddy current probespecimen”system.The tests are usually run with various bridge circuits and provide a smaller error in comparison to the direct measurement of system parameters.At the same time the bridge circuits make the measurement more difficult because of the necessity for constant bridge balancing.Besides,such balancing complicates considerably the test automation[13].In this connection,the bridge measurements and direct detection of the probe impedance are conducted through the complex amplitudes of voltage and current.Both circuits are shown in Fig.1.

    Fig.1(a)shows a resonant bridge circuit.The probe parameters are calculated by the formulae

    where L and r are the inductance and active resistance of the eddy current probe,respectively;C is the capacitance of the capacitor;R1,R2,and R3are the resistance values,at which the bridge is balanced;ω is the cyclic frequency of the sinusoidal input signal;and˙U1in Fig.1 is the complex input amplitude. Fig.1(b)presents a circuit for the direct measurement of the probe impedance.In this case,the parameters are calculated by the formulae

    Fig.1.Circuits for the experimental measurements.

    where R is the resistance playing the role of the current-tovoltage converter;and U10and φ1are the amplitude and initial phase of the input signal˙U1,respectively;and˙U20and φ2are the amplitude and initial phase of the signal˙U2.All measurement results are shown as the hodographs plotted in the coordinates ΔX/X0-Δr/X0,where ΔX=ω(L-L0)is the variation in the reactive resistance of probe in the presence of the specimen,Δr=r-r0is the variation in the active resistance of probe in the presence of the specimen,X0,L0and r0are the reactive resistance,inductance and active resistance of the probe without the specimen,respectively.

    In both cases,a parametric probe of an encircling type is used.The probe presents a coil with 250 mm in length and 29 mm in effective diameter.A test specimen with round cross-section and longer than the coil is passed through the probe.Specimens are made of D16T duralumin and shaped to the rods with 400 mm in length and 22 mm in diameter.The measurements are made at fixed frequencies ranging from 200 Hz to 2 kHz.Each measurement for a given frequency is conducted with and without specimen for at least 10 times with the subsequent calculation of the probe parameters by Eqs.(1)and(2).The measurement results are represented in the hodographs as a series of experimental points,each of which corresponds to a specific frequency.

    Along with the construction of experimental hodographs,the theoretical ones are calculated using the known values of probe characteristics,geometric parameters of specimens,and their specific electrical conductivity.The calculations are carried out by the formulas[1,3]

    3.Digital signal processing in eddy current measurements

    The digital processing of experimental signals was used to reduce the measurement error of complex voltage and currentamplitudes[15].This processing consists in that the instantaneous signal values are approximated by the linear combination of the first three Walsh functions[16]

    where wal(0,x),wal(1,x)and wal(2,x)are the first,second and third Walsh functions,respectively;x=t/T is the relative time;and T is the signal period.The coefficients in Eq.(4)are as follows

    where U0is the constant bias voltage;Umis the harmonic signal amplitude;and φ0is the initial phase.Such a series describes very roughly the harmonic signal and however its coefficients contain all necessary information on the searched parameters.Values of b0,b1and b2are found in processing of the experimental data by the least squares method.The criterion for the optimal choice of weighting factors is the minimum of the objective function

    where Xiand Yiin calculating the Walsh functions take on+1 or-1,which leads to the sign reversal in summation.

    The proposed approach is validated in three different tests with different measuring circuits.The derived results are shown in Fig.2.In the first test,the probe impedance is determined using a resonant bridge circuit(Fig.1(a)),and the test values are illustrated as the points in Fig.2(a),where the points represent the mean values of the relative driving-point impedances,and the mutual intersection of two lines at a point indicates the standard error of these values.In the second and third tests,the impedance is directly measured by a voltmeter and phase meter.Fig.2(b)shows the immediate results of such measurements while Fig.2(c)exhibits the data of experimental signals processed by the Walsh functions.In addition,the solid curves in these figures represent the theoretical hodographs calculated by Eq.(3).

    Fig.2.Experimental hodographs of different measuring circuits,(a)Bridge circuit(b)Direct measurement of impedance(c)Direct measurement of impedance and digital signal processing.

    The comparison of the hodographs in Fig.2(a)and(b)shows that the experimental points for the bridge circuit are placed closer to the theoretical curve and have a much smaller error.The minimum measurement error is found in Fig.2(c),where the experimental points lie on the theoretical curve. Thus,the method combining the direct measurement of probe impedance and digital signal processing using Walsh functions provides both high measuring accuracy competitive with that of bridge circuits and ease of its implementation necessary for use in an automated measuring and computing complex.

    4.Test results for aluminum alloys

    Inspected products made of aluminum alloys can have different dimensions and shapes,which narrows significantly the field of application of encircling probes under actual operating conditions.Therefore further measurements are carried out using a parametric probe.The probe presents a coil placed into a ferrite magnetic core with semi-shell structure made of manganese-nickel ferrite with relative initial magnetic permeability μ=2000.The diameter of the probe is 15 mm.The choice of this design was driven by the fact that the signal received from the probe at the same time dependent on several factors,such as electrical conductivity of gap and sheet thickness),which reveals the possibility of the proposed method for separating the influences of various factors.Measurements were carried out at frequencies from 100 Hz to 6.4 kHz,which provides a reliable separation of hodograph lines for probe mentioned above.The measurements are performed with the use of an automated measuring and computing complex by using the above-described method to directly determinate the probe impedance and the Walsh functions for digital signal processing.

    The block scheme of the eddy current measuring system is shown in Fig.3.A harmonic signal supplied by generator 1 is fed to an electric circuit consisting of series-connected eddy currentparametricprobe(Landr)andresistanceR(R=50 Ohms).Analog-to-digital converters 2 and 3 digitize the voltages U1and U2,respectively,and the digitized data are transmitted to the control computer,which is also used to set the operating mode of the generator,by communication channel 4.Fig.4 shows the measuring unit of eddy current measuring system together with probe superimposed on a controlled sample.

    To determine the capacity of the proposed diagnostic method,the effects the size of the gap between the sheet surface and the contact sensor,and the thickness and conductivity of the material sheet on eddy current measurement results were studied.The test specimens present the flat sheets of AMg5 aluminum alloy from 5 to 10 mm in thickness.The inspection possibilities depend on the effect of such factors as the gap width between the probe and the sheet surface,sheetthickness,and electrical conductivity of the material.The test results are shown as the points on the experimental hodographs in Fig.5(for convenience,in comparing the hodographs,the points are connected by dotted lines found by interpolation).

    Fig.3.Block scheme of the measuring unit of the eddy current measuring system.

    Fig.5(a)shows the hodograph for different gap width(being almost zero for points 1,and being 160 μm for points 2).The hodograph lines are seen to noticeably shift relative to each other.The curves diverge strongly in their lower portions corresponding to high frequencies,which are caused by the small thickness of the skin layer and the consequent stronger effect of the gap.

    Fig.4.Exterior view of the measuring unit of eddy current measuring system.

    Fig.5.Experimental hodographs for aluminum alloys.(a)Gap effect:1,lack of a gap for points,2,160 μm gap for points;(b)Effect of electrical conductivity: 1,σ=15,7 MS/m,2,σ=19,5 MS/m;(c)Effects of specimen thickness and electrical conductivity:1,h=5 mm,σ=15,7 MS/m,h=8.7 mm,2,σ=19,5 MS/m.

    Fig.5(c)illustrates the simultaneous effect of both factors,namely,the thickness of the specimen and the conductivity of the material(for points 1 the sheet thickness h=5 mm and the specific conductivity σ=15.7 MS/m,for points 2 h=8.7 mm and σ=19.5 MS/m).The hodographs for specimens with different thicknesses are seen to differ in shape,which is due to the divergence of their upper portions corresponding to low frequencies.This divergence is governed by the effect of the skin layer,whose thickness at low frequencies is comparable with the sheet thickness.The lower portions of the hodographs describing high frequencies match due to the small thickness of the skin layer the sheet thickness has almost no effect on the position of the hodograph line.At the same time,despite the curve coincidence the corresponding experimental points are significantly shifted relative to each other along the hodograph line due to different conductivity.

    It should be noted that the suppression of interfering factors is extremely difficult since the eddy current techniques are based on measurements at one fixed frequency.As a rule,the interfering factors are suppressed by time-consuming procedures for selecting the measurement mode.Thus,in the resonant eddy current inspection,a measurement frequency is selected experimentally on the left slope of the resonance curve,which allows reducing the influence of the gap width to 100 microns during inspection of non-ferrous metals[1].A weakening of the influence of larger gap(up to 200 microns)provides a eddy current technique based on measurement of the variable phase of harmonic signal in eddy current probe.In this case,it needs to carefully select the initial complexamplitude of the reference signal.The proposed method does not have these disadvantages.

    5.Conclusions

    The proposed approach based on multi-frequency measurements and digital processing of the recorded signals allows to identify successfully and to separate the influence of various factors which are very important for eddy current inspection(sample thickness,gap between probe and sample,change in electric conductivity).This indicates the prospects of this approach for the inspection of materials and products made of aluminum alloys.

    Acknowledgment

    The work has been supported by Program for Basic Scientific Research of the State Academies of Sciences for 2013-2020 and the RF Ministry of Education and Science(Contract No.02.G25.31.0063)in the framework of RF Government Order No.218.

    [1]Nondestructive testing:Handbook:In 8 volumes/Edited by V.V.Klyuev/ Volume 2,Moscow:Mashinostroenie,2003,688 p.

    [2]Polyakov VV,Egorov AV.Eddy current testing of specific electrical conductivity and magnetic permeability of products from magnetic soft materials.Defectoscopia 1992;12:78-80.

    [3]Dorofeev AL,Kazamanov YuG.Electromagnetic testing.Moscow: Mashinostroenie;1980.

    [4]Sasi B,Rao BPC,Jayakumar T,Raj Baldev.Development of eddy current test procedure for non-destructive detection of fatigue cracks and corrosion in rivets of air-intake structures.Def Sci J 2009;59(2):106-12.

    [5]Song Zenglu,Yamada Tsutomu,Shitara Hideki,Takemura Yasushi. Detection of damage and crack in railhead by using eddy current testing. J Electromagn Anal Appl 2011;3:546-50.

    [6]Polyakov VV,Egorov AV.Magnetic and electrical characteristics of porous ferromagnets.Dok Akad Nauk 1995;344(4):479-80.

    [7]Golovnev IF,Golovneva EI,Merzhievsky LA,F(xiàn)omin VM.Defect generation as a phenomenon of structure self-organization under external loads.Phys Mesomech 2013;16(4):294-302.

    [8]García-Martín J,G′omez-Gil J,V′azquez-S′anchez E.Non-destructive techniquesbasedoneddycurrenttesting.Sensors(Basel)2011;11(3):2525-65.

    [9]Bashtannikov LA,Bondarenko VI,Sebko VP,Tyupa VI.Determination of electromagnetic characteristics of the material of solid cylindrical products.Defectoscopia 1980;8:5-9.

    [10]Polyakov VV,Golovin AV,Egorov AV,Utemesov MA.Correlation of acoustic and physicomechanical characteristics of porous materials. Defectoscopia 1994;9:48-50.

    [11]Kucheryavskii SV,Polyakov VV.Multivariable data analysis techniques for thestudy ofthematerial structure.Zavod LabDiag Mat 2007;73(8):32-6.

    [12]Shang-kun Ren,Da-peng Sun.Studies of eddy current testing on nuclear power steam generator tube based on finite element simulation.In:2nd international conference on materials,mechatronics and automation lecture notes in information technology,vol.15;2012.p.217-22.

    [13]Egorov AV,Polyakov VV,Ivakov SV.A measuring and computing complex for the eddy current detection of specific conductivity and magnetic permeability.Polzunov Vest 2010;2:129-31.

    [14]Korenev BG.Introduction to the theory of bessel functions.Moscow: Nauka;1971.

    [15]Max J.M′ethodes es techniques de traitement du Signal et applications aux mesures physiques.Paris:Masson;1987.

    [16]Zalmanzon LA.Fourier,Walsh,and Haar transforms and their application in management,communication,and other fields.Moscow:Nauka;1989.

    .Institute of Strength Physics and Materials Science SB RAS,Russian Federation

    E-mail address:eak@ispms.ru(E.A.KOLUBAEV).

    Peer review under responsibility of China Ordnance Society.

    28 July 2014;revised 10 December 2014;accepted 11 December 2014

    Available online 26 January 2015

    Copyright?2015,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    十八禁国产超污无遮挡网站| 麻豆一二三区av精品| 男女那种视频在线观看| 免费观看在线日韩| 色吧在线观看| 男人的好看免费观看在线视频| 久久精品久久久久久久性| 国产av麻豆久久久久久久| 少妇高潮的动态图| 久久久精品大字幕| 乱码一卡2卡4卡精品| 国产精品麻豆人妻色哟哟久久 | 天堂影院成人在线观看| 国产老妇女一区| 少妇被粗大猛烈的视频| 最近中文字幕高清免费大全6| 国产麻豆成人av免费视频| 天堂影院成人在线观看| 18+在线观看网站| 亚洲成人av在线免费| 久久精品国产亚洲av涩爱 | 一级av片app| 国产色婷婷99| 午夜福利高清视频| 亚洲精品国产成人久久av| 亚洲欧美中文字幕日韩二区| 国内精品久久久久精免费| 九九在线视频观看精品| 国产精品人妻久久久影院| videossex国产| 免费黄网站久久成人精品| 特级一级黄色大片| 色噜噜av男人的天堂激情| 五月伊人婷婷丁香| 99久久中文字幕三级久久日本| av视频在线观看入口| 亚洲成a人片在线一区二区| 日韩一区二区视频免费看| 久久精品91蜜桃| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 伦精品一区二区三区| 亚洲av中文av极速乱| 变态另类丝袜制服| 久久久色成人| 亚洲在线观看片| 九九在线视频观看精品| 国产成人精品婷婷| 国产精品嫩草影院av在线观看| 午夜福利成人在线免费观看| 男女那种视频在线观看| 国产单亲对白刺激| 亚洲一级一片aⅴ在线观看| 亚洲综合色惰| 国产蜜桃级精品一区二区三区| 村上凉子中文字幕在线| 深夜a级毛片| 欧美bdsm另类| 97超视频在线观看视频| 美女黄网站色视频| 国产一区二区亚洲精品在线观看| 亚州av有码| 一级毛片电影观看 | 成人高潮视频无遮挡免费网站| 国产精品不卡视频一区二区| 国产伦理片在线播放av一区 | www.色视频.com| 亚洲av免费在线观看| 精品久久久久久久久av| 日韩成人av中文字幕在线观看| 欧美成人a在线观看| 久久午夜亚洲精品久久| 精品无人区乱码1区二区| 91精品国产九色| 啦啦啦观看免费观看视频高清| a级一级毛片免费在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av免费在线观看| 精品国产三级普通话版| 高清日韩中文字幕在线| 久久久久久大精品| 六月丁香七月| 给我免费播放毛片高清在线观看| 好男人在线观看高清免费视频| 久久国内精品自在自线图片| 熟女人妻精品中文字幕| 久久久国产成人精品二区| 中出人妻视频一区二区| 中文在线观看免费www的网站| 青春草视频在线免费观看| 人人妻人人澡人人爽人人夜夜 | 久久综合国产亚洲精品| 亚洲高清免费不卡视频| 久久久色成人| 国产精品久久久久久久久免| 精品久久久久久久久久久久久| 午夜视频国产福利| 三级经典国产精品| 免费看光身美女| 亚洲欧美清纯卡通| 嫩草影院入口| 春色校园在线视频观看| 51国产日韩欧美| 欧美高清成人免费视频www| 日本五十路高清| 我要搜黄色片| 乱码一卡2卡4卡精品| 色哟哟哟哟哟哟| 丰满乱子伦码专区| 99久国产av精品| 白带黄色成豆腐渣| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说 | 亚洲内射少妇av| 中文字幕精品亚洲无线码一区| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 岛国在线免费视频观看| 国产色爽女视频免费观看| 我的老师免费观看完整版| 国产精品三级大全| 国产精品蜜桃在线观看 | 观看美女的网站| 人妻久久中文字幕网| .国产精品久久| 亚洲自偷自拍三级| 亚洲国产色片| 国产伦一二天堂av在线观看| 高清日韩中文字幕在线| 99热这里只有是精品在线观看| 亚洲欧美日韩东京热| 婷婷六月久久综合丁香| 欧美色视频一区免费| 午夜免费男女啪啪视频观看| 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 免费一级毛片在线播放高清视频| 精品人妻视频免费看| 国产成人a∨麻豆精品| 丝袜喷水一区| 中文欧美无线码| 六月丁香七月| 国产午夜精品一二区理论片| 色综合亚洲欧美另类图片| 一本一本综合久久| 国产毛片a区久久久久| 亚洲综合色惰| 欧美+日韩+精品| 欧美日韩精品成人综合77777| 嫩草影院入口| 国产色婷婷99| 男人舔女人下体高潮全视频| 亚洲成人久久爱视频| 伦精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 性欧美人与动物交配| 国产白丝娇喘喷水9色精品| 免费不卡的大黄色大毛片视频在线观看 | 国语自产精品视频在线第100页| 在线免费观看的www视频| 热99re8久久精品国产| 国产探花极品一区二区| 精品一区二区免费观看| 免费在线观看成人毛片| 女同久久另类99精品国产91| av在线天堂中文字幕| 亚洲美女搞黄在线观看| 国产三级中文精品| 午夜老司机福利剧场| 啦啦啦韩国在线观看视频| 久久99蜜桃精品久久| 六月丁香七月| 亚洲精华国产精华液的使用体验 | 天堂网av新在线| 神马国产精品三级电影在线观看| 春色校园在线视频观看| 成人高潮视频无遮挡免费网站| 黑人高潮一二区| 中文字幕精品亚洲无线码一区| 老熟妇乱子伦视频在线观看| 中文字幕熟女人妻在线| 乱码一卡2卡4卡精品| 神马国产精品三级电影在线观看| 一本久久中文字幕| 人妻制服诱惑在线中文字幕| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 欧美+亚洲+日韩+国产| 免费搜索国产男女视频| 欧美最黄视频在线播放免费| 草草在线视频免费看| 成人av在线播放网站| 日韩国内少妇激情av| 亚洲精品色激情综合| 久久精品久久久久久久性| 精品不卡国产一区二区三区| 日韩成人av中文字幕在线观看| av在线老鸭窝| 男女下面进入的视频免费午夜| 好男人在线观看高清免费视频| 内射极品少妇av片p| 美女黄网站色视频| 欧美另类亚洲清纯唯美| 午夜福利在线在线| 午夜精品在线福利| 国产精品一区二区在线观看99 | 免费看a级黄色片| 一本久久中文字幕| 欧美不卡视频在线免费观看| 激情 狠狠 欧美| 欧美另类亚洲清纯唯美| 国产精品福利在线免费观看| 能在线免费观看的黄片| 欧美日韩一区二区视频在线观看视频在线 | 秋霞在线观看毛片| 寂寞人妻少妇视频99o| 在线观看美女被高潮喷水网站| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 国产精品久久久久久久电影| 丝袜美腿在线中文| 国产亚洲精品av在线| 美女国产视频在线观看| 国产视频内射| 22中文网久久字幕| 最近手机中文字幕大全| 久久久久久久久久久免费av| 一夜夜www| 精品久久久噜噜| 成人三级黄色视频| 99热6这里只有精品| 国产精品一区二区在线观看99 | 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 啦啦啦韩国在线观看视频| 91午夜精品亚洲一区二区三区| 国产成年人精品一区二区| 国产精品精品国产色婷婷| 99riav亚洲国产免费| 成年免费大片在线观看| 99热这里只有精品一区| 黄色日韩在线| 国产午夜精品久久久久久一区二区三区| 国产成人精品婷婷| 简卡轻食公司| 免费一级毛片在线播放高清视频| 亚洲成人久久性| 男女下面进入的视频免费午夜| 亚洲高清免费不卡视频| 免费黄网站久久成人精品| 国产精品乱码一区二三区的特点| 亚洲精品日韩在线中文字幕 | 久久这里有精品视频免费| 人妻夜夜爽99麻豆av| 国产成人精品婷婷| 韩国av在线不卡| 亚洲精华国产精华液的使用体验 | 日韩欧美在线乱码| 国产国拍精品亚洲av在线观看| 老司机福利观看| 天天躁夜夜躁狠狠久久av| 一边摸一边抽搐一进一小说| 成年版毛片免费区| 一夜夜www| 成人午夜精彩视频在线观看| 色综合亚洲欧美另类图片| 欧美3d第一页| 午夜福利高清视频| 久久国内精品自在自线图片| 亚洲人成网站在线播放欧美日韩| 亚洲高清免费不卡视频| 天天一区二区日本电影三级| 日本免费a在线| 亚洲人成网站高清观看| 国产亚洲5aaaaa淫片| 成人无遮挡网站| 亚洲av中文字字幕乱码综合| 成人三级黄色视频| 热99re8久久精品国产| 国产极品精品免费视频能看的| 卡戴珊不雅视频在线播放| 亚洲无线观看免费| 我要看日韩黄色一级片| 看片在线看免费视频| 我的女老师完整版在线观看| 精品久久久久久久久久久久久| 免费观看a级毛片全部| 能在线免费观看的黄片| 国产精品综合久久久久久久免费| 麻豆国产av国片精品| 国产成人freesex在线| 日韩欧美一区二区三区在线观看| 午夜福利成人在线免费观看| 精华霜和精华液先用哪个| 精品无人区乱码1区二区| 国产精品一区二区性色av| 亚洲精品久久国产高清桃花| 一级黄色大片毛片| 欧美成人一区二区免费高清观看| 欧美最新免费一区二区三区| 国产黄色小视频在线观看| 欧美变态另类bdsm刘玥| 床上黄色一级片| 99热这里只有是精品50| 日韩三级伦理在线观看| 真实男女啪啪啪动态图| 99久久中文字幕三级久久日本| 欧美极品一区二区三区四区| 国产 一区精品| 久久精品夜色国产| 男人舔奶头视频| 老司机影院成人| 国产高清不卡午夜福利| 日韩欧美精品免费久久| 插逼视频在线观看| 日韩欧美精品免费久久| 九九在线视频观看精品| 亚洲精品国产av成人精品| 久久久欧美国产精品| 亚洲内射少妇av| 天堂网av新在线| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 精品人妻视频免费看| 国产视频内射| 国产精品无大码| 日韩一区二区三区影片| 国产三级在线视频| 婷婷色av中文字幕| 亚洲国产精品sss在线观看| a级毛色黄片| 此物有八面人人有两片| 熟女人妻精品中文字幕| 亚洲精品自拍成人| 日本撒尿小便嘘嘘汇集6| 久久精品人妻少妇| 久久精品国产亚洲网站| 欧美又色又爽又黄视频| 久久99热6这里只有精品| 国产三级中文精品| 国产视频内射| 久久国产乱子免费精品| 中文字幕制服av| 亚洲精品日韩av片在线观看| 免费看av在线观看网站| 亚洲精品成人久久久久久| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 午夜激情福利司机影院| 波多野结衣高清无吗| 久99久视频精品免费| 国产高潮美女av| 在现免费观看毛片| 欧美一区二区精品小视频在线| 美女内射精品一级片tv| 国产综合懂色| 最近2019中文字幕mv第一页| 可以在线观看毛片的网站| 国产极品天堂在线| 亚洲aⅴ乱码一区二区在线播放| 久久精品国产99精品国产亚洲性色| 久久久久免费精品人妻一区二区| 日日啪夜夜撸| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 女同久久另类99精品国产91| 国产成人精品婷婷| 国产中年淑女户外野战色| 99久久九九国产精品国产免费| 亚洲18禁久久av| 99热全是精品| 亚洲欧美日韩东京热| 久久久久久久久久黄片| 在线免费十八禁| 国内精品一区二区在线观看| 少妇的逼好多水| 99热这里只有是精品在线观看| 亚洲国产精品合色在线| 亚洲一级一片aⅴ在线观看| 午夜精品国产一区二区电影 | 五月玫瑰六月丁香| 天堂av国产一区二区熟女人妻| 哪里可以看免费的av片| 欧美高清成人免费视频www| 青春草亚洲视频在线观看| 亚洲成av人片在线播放无| 亚洲最大成人av| 中国美白少妇内射xxxbb| 亚洲av一区综合| 两性午夜刺激爽爽歪歪视频在线观看| 夜夜爽天天搞| 你懂的网址亚洲精品在线观看 | 免费人成在线观看视频色| av免费在线看不卡| 干丝袜人妻中文字幕| 国产在视频线在精品| 国产精品电影一区二区三区| 最新中文字幕久久久久| 亚洲欧美日韩高清专用| 天天一区二区日本电影三级| 亚洲av成人av| 欧美高清性xxxxhd video| 不卡一级毛片| 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 国产精品国产高清国产av| 国产伦理片在线播放av一区 | 久久精品综合一区二区三区| 99久国产av精品| 天天躁夜夜躁狠狠久久av| 插阴视频在线观看视频| 国产精品乱码一区二三区的特点| 国产一区二区在线av高清观看| 性欧美人与动物交配| 边亲边吃奶的免费视频| 精品久久久久久久末码| av在线亚洲专区| 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看 | 我要搜黄色片| 99精品在免费线老司机午夜| 免费av毛片视频| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 高清毛片免费观看视频网站| 大香蕉久久网| 听说在线观看完整版免费高清| 99热精品在线国产| 在线免费观看的www视频| 午夜福利成人在线免费观看| 久久久久久久久大av| 欧美一级a爱片免费观看看| 成年女人永久免费观看视频| 国产午夜精品论理片| 91久久精品国产一区二区成人| 精品不卡国产一区二区三区| 能在线免费观看的黄片| 国产 一区精品| 亚洲图色成人| 波多野结衣高清作品| 午夜免费男女啪啪视频观看| 在现免费观看毛片| 成人毛片60女人毛片免费| 非洲黑人性xxxx精品又粗又长| 国产真实伦视频高清在线观看| 1024手机看黄色片| 亚洲精品亚洲一区二区| 午夜福利成人在线免费观看| 99热只有精品国产| 97超碰精品成人国产| 狠狠狠狠99中文字幕| 女同久久另类99精品国产91| 国产精品美女特级片免费视频播放器| 国产精品无大码| 色尼玛亚洲综合影院| 波多野结衣高清作品| 亚洲欧美成人精品一区二区| 男女视频在线观看网站免费| 两个人的视频大全免费| 啦啦啦啦在线视频资源| 婷婷六月久久综合丁香| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 亚洲av成人av| 又爽又黄a免费视频| 精品午夜福利在线看| 看片在线看免费视频| 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 | 麻豆av噜噜一区二区三区| 国内揄拍国产精品人妻在线| 国产成人a区在线观看| 九九热线精品视视频播放| 少妇熟女aⅴ在线视频| 97热精品久久久久久| 日韩欧美 国产精品| 成年免费大片在线观看| 久久久久久伊人网av| 国产精品野战在线观看| 国产黄片视频在线免费观看| 天堂中文最新版在线下载 | 12—13女人毛片做爰片一| 色视频www国产| 日韩制服骚丝袜av| 日韩一区二区视频免费看| 日本av手机在线免费观看| 在线观看66精品国产| 可以在线观看的亚洲视频| 精华霜和精华液先用哪个| av在线老鸭窝| 深爱激情五月婷婷| 国产熟女欧美一区二区| 日本撒尿小便嘘嘘汇集6| 男女做爰动态图高潮gif福利片| 欧美最黄视频在线播放免费| 嫩草影院新地址| 久久精品91蜜桃| 夜夜夜夜夜久久久久| 草草在线视频免费看| av专区在线播放| 亚洲av熟女| av在线蜜桃| 亚洲一区高清亚洲精品| 亚洲av男天堂| 日韩成人伦理影院| 一本久久精品| 欧美日本亚洲视频在线播放| 国产乱人偷精品视频| 久久久久久国产a免费观看| 九草在线视频观看| 1024手机看黄色片| 日本色播在线视频| 免费观看精品视频网站| av在线播放精品| 三级国产精品欧美在线观看| 欧美成人精品欧美一级黄| 精品午夜福利在线看| 欧美激情国产日韩精品一区| 久久九九热精品免费| 国产一区二区三区av在线 | 18禁在线播放成人免费| 高清午夜精品一区二区三区 | 日韩欧美一区二区三区在线观看| 人人妻人人看人人澡| 精品久久久久久久末码| 亚洲精品日韩在线中文字幕 | 国产一区二区亚洲精品在线观看| 黄色配什么色好看| 能在线免费观看的黄片| 国产高清激情床上av| 精品久久久久久久人妻蜜臀av| 一个人观看的视频www高清免费观看| 成人毛片60女人毛片免费| 特大巨黑吊av在线直播| 日韩欧美三级三区| 久久精品国产亚洲av涩爱 | 精品人妻视频免费看| 国产成人精品一,二区 | 日本黄大片高清| 蜜桃亚洲精品一区二区三区| 哪里可以看免费的av片| 免费无遮挡裸体视频| 热99re8久久精品国产| 色综合亚洲欧美另类图片| 亚洲欧美成人精品一区二区| 男人的好看免费观看在线视频| 亚洲自拍偷在线| 老女人水多毛片| 亚洲av一区综合| 精品一区二区三区人妻视频| 欧美极品一区二区三区四区| 色综合站精品国产| 免费av不卡在线播放| 日本撒尿小便嘘嘘汇集6| 在线免费观看的www视频| 熟妇人妻久久中文字幕3abv| 国产亚洲av嫩草精品影院| 97人妻精品一区二区三区麻豆| 精品久久久久久久久久免费视频| 搡老妇女老女人老熟妇| 欧美一区二区精品小视频在线| 九九爱精品视频在线观看| 九九热线精品视视频播放| 插逼视频在线观看| 一级av片app| 床上黄色一级片| 波野结衣二区三区在线| 一级黄片播放器| 99热只有精品国产| 黄色配什么色好看| 午夜激情欧美在线| 91麻豆精品激情在线观看国产| 欧美人与善性xxx| 亚洲国产精品成人久久小说 | 美女被艹到高潮喷水动态| 91久久精品国产一区二区成人| 欧美+亚洲+日韩+国产| 老女人水多毛片| 69人妻影院| 男女啪啪激烈高潮av片| 国产又黄又爽又无遮挡在线| 免费观看人在逋| 国产精品一区二区性色av| 免费黄网站久久成人精品| 舔av片在线| 99视频精品全部免费 在线| 成人av在线播放网站| 国产精品无大码| 国内久久婷婷六月综合欲色啪| 99热只有精品国产| 亚洲欧美日韩高清在线视频| 有码 亚洲区| 色5月婷婷丁香| 日日摸夜夜添夜夜爱| 在线观看免费视频日本深夜| 春色校园在线视频观看| 又粗又爽又猛毛片免费看| 干丝袜人妻中文字幕| 国产蜜桃级精品一区二区三区| 欧美一级a爱片免费观看看| 国产一区二区三区在线臀色熟女| 不卡视频在线观看欧美| 在线观看午夜福利视频| 日本免费一区二区三区高清不卡| 性欧美人与动物交配| 免费av毛片视频| 久久这里有精品视频免费| 精品免费久久久久久久清纯| 美女脱内裤让男人舔精品视频 | 国产亚洲精品av在线| 一个人观看的视频www高清免费观看| 亚洲一区二区三区色噜噜| 夜夜夜夜夜久久久久|