張書陶,趙 瓊,韓亞洲
(中國(guó)計(jì)量學(xué)院理學(xué)院,杭州 310018)
Heisenberg群上一類半線性方程的Liouville型定理
張書陶,趙瓊,韓亞洲
(中國(guó)計(jì)量學(xué)院理學(xué)院,杭州310018)
結(jié)合向量場(chǎng)法的思想,研究了Heisenberg群上的一類半線性方程,并給出不存在非平凡正解的Liouville型定理.首先,利用Heisenberg群上左不變向量場(chǎng)的對(duì)稱性構(gòu)造一類實(shí)泛函,并通過恒等變形獲得一些恒等式;然后,利用試驗(yàn)函數(shù)的性質(zhì),結(jié)合Heisenberg群上的極坐標(biāo)公式、Young不等式等技巧以精確估計(jì),進(jìn)而證明任一非負(fù)解均恒為零.
向量場(chǎng)法;Liouville型定理;半線性方程;Heisenberg群
在Euclidean空間,半線性方程
Heisenberg群的概念來源于量子力學(xué)、多復(fù)變幾何等學(xué)科.作為非交換幾何的典型代表,學(xué)者們對(duì)Heisenberg群上的半線性問題
進(jìn)行了大量的研究[9-11].為敘述需要,下面首先給出Heisenberg群的一些概念和記號(hào).
Hn上的一個(gè)伸縮族為
記Q=2n+2為相應(yīng)的齊次維數(shù).Hn上的一組左不變向量場(chǎng)為
則Xj,Yj,j=1,2,···,n關(guān)于伸縮一次齊次,T關(guān)于伸縮二次齊次,且
記
分別為廣義梯度和次Laplace算子.定義距離函數(shù)為
定理1C2(Hn)表示由Hn上全體二階連續(xù)可微函數(shù)組成的集合,令為方程
的非負(fù)解,其中h(ξ)為Hn上的非負(fù)函數(shù)且滿足
Xu[16]引入的向量場(chǎng)采用了復(fù)數(shù)的形式,具有較強(qiáng)的對(duì)稱性,那么對(duì)于一些對(duì)稱性較弱的算子(如左不變向量場(chǎng)(式(3))的推廣形式Greiner算子),是否可直接推廣呢?本工作結(jié)合Xu的思想,采用Heisenberg群上的左不變向量場(chǎng)(式(3)),通過引入一類實(shí)泛函從而導(dǎo)出了一些恒等式,并對(duì)定理1重新證明.這將為進(jìn)一步研究以Greiner算子為主部的半線性方程的Liouville性質(zhì)[12]做充分的準(zhǔn)備.
令u≥0滿足方程(4),并記
取??Hn,(?)表示?上全體無窮次可微且具有緊支集的函數(shù)全體,?∈C∞0(?),0≤?≤1,考慮非負(fù)積分
式中,u=v-k(k/=0),q,k,r待定.為書寫方便,式(8)及以下積分中均省略積分域?和積分微元dxdydt.
由式(7)和(8),可得
將u=v-k代入式(9),并結(jié)合左不變向量場(chǎng)的關(guān)系,運(yùn)用分部積分技巧,經(jīng)過計(jì)算可得
另一方面,注意到
結(jié)合左不變向量場(chǎng)的關(guān)系,運(yùn)用分部積分可得
式中,
下面對(duì)式(15)中的Ⅵ3采用不同的分部積分,分別給出和.一方面,
另一方面,
由式(15)~(17),可得
式中,η待定.
由上節(jié)的討論,可得
即有
式中,
首先處理λ5Rhvr+k-pk?q|?Hv|2.注意到
另外,通過分部積分有
由式(20)和(21),可得
把式(22)代入到λ5Rhvr+k-pk?q|?Hv|2中,則式(19)化為
式中,
證明(定理1):選取
如果由式(23)得到v≡0,則可證u≡0.為使式(23)中“=”號(hào)的左邊為正,取及 r均非負(fù).由Young不等式
可得
式中,∈為充分小正數(shù),C為某正常數(shù).由?≤1可知,?q-1≤?q-2,從而有
同理可證
因?yàn)棣?≥0,λ4≥0,所以0≤η≤(n-1)/(n+2).若r=0,則λ1≤0,將無法控制式(26)和(27)中的正項(xiàng)∈Rvr-2?q|?Hv|4,所以r>0.由λ10=k2r(1-η)可知,λ10/=0,從而有
需λ4>0,從而0<η≤(n-1)/(n+2).由λ9/=0可得
為了控制∈Rvr?q(Tv)2,需要λ3>0,故0<η<(n-1)/(n+2).
通過分部積分,可得
若
則
故在式(33)成立的情況下,
將式(25)~(34)代入式(23),有
選取?={ξ∈Hn:|ξ|≤R,R為任一實(shí)數(shù)},?∈(?)滿足
再由式(36)和(38),可得
[1]Gidas B,Ni W M,Nirenberg L.Symmetry of positive solutions of nonlinear elliptic equations in Rn[J].Advances in Mathematics Supplementary Studies,1981,7A:369-402.
[2]Caffarelli L,Gidas B,Spruck J.Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[J].Communications on Pure and Applied Mathematics,1989,42:271-297.
[3]Chen W,Li C.Classification of solutions of some nonlinear elliptic equations[J].Duke Mathematical Journal,1991,63:615-622.
[4]Chen W,Li C,OU B.Classification of solutions for an integral equation[J].Communications on Pure and Applied Mathematics,2006,59:330-343.
[5]Li C.Local asymptotic symmetry of singular solutions to nonlinear elliptic equations[J].Inventiones Mathematicae,1996,123:221-231.
[6]Gidas B,Spruck J.Global and local behavior of positive solutions of nonlinear elliptic equations[J].Communications on Pure and Applied Mathematics,1981,85:525-598.
[7]Obata M.The conjecture on conformal transformations of Riemannian manifolds[J].Journal of Differential Geometry,1971,6:247-258.
[8]Chang S Y A,Gursky M J,Yang P C.Entire solutions of a fully nonlinear equation[M]// Lectures on partial differential equations.Boston:International Press,2003:43-60.
[9]Birindelli I,Dolcetta I C,Cutri A.Liouville theorems for semilinear equations on the Heisenberg groups[J].Annales de l'Institut Henri Poincare,1997,14(3):295-308.
[10]Birindelli I,Dolcetta I C,Cutri A.Indefinite semi-linear equations on the Heisenberg group:a priori bounds and existence[J].Comm Partial Differential Equations,1998,23:1123-1157.
[11]Birindelli I,Prajapat J.Nonlinear Liouville theorems in the Heisenberg group via the moving plane method[J].Comm Partial Differential Equations,1999,24(9/10):1875-1890.
[12]Han Y Z,Zhao Q,Jin Y Y.Semi-linear Liouville theorem in the generalized Greiner vector fields[J].Indian Journal of Pure and Applied Mathematics,2013,44(3):311-342.
[13]Jerison D S,Lee J M.The Yamabe problem on CR manifolds[J].Journal of Differential Geometry,1987,25(2):167-197.
[14]Jerison D S,Lee J M.Extremals for the Sobolev inequality on the Heisenberg group and Yamabe problem[J].J Amer Math Soc,1988,1(1):1-13.
[15]Garofalo N,Vassilev D.Symmetry properties of positive entire solutions of Yamabe type equations on the groups of Heisenberg type[J].Duke Mathematical Journal,2001,106:411-448.
[16]Xu L.Semi-linear Liouville theorems in the Heisenberg group via vector field methods[J]. Journal of Differential Equations,2009,247(10):2799-2820.
A Liouville type theorem of semi-linear equations on the Heisenberg group
ZHANG Shu-tao,ZHAO Qiong,HAN Ya-zhou
(College of Sciences,China Jiliang University,Hangzhou 310018,China)
Referring to the method of vector fields,this paper studies a class of semilinear equations on the Heisenberg group and gives a Liouville type theorem,namely,the nonexistence of nontrivial positive solutions.A class of real functional constituted by leftinvariant vector fields on the Heisenberg group is introduced.Some identities are obtained by identical deformation.It is proved that any nonnegative solution is trivial according to the properties of test function and some techniques such as polar coordinates formula on the Heisenberg group and Young inequality.
vector field method;Liouville type theorem;semi-linear equation;Heisenberg group
O 175.2
A
1007-2861(2015)03-0319-12
10.3969/j.issn.1007-2861.2013.07.052
2013-10-29
國(guó)家自然科學(xué)基金資助項(xiàng)目(11201443);浙江省自然科學(xué)基金資助項(xiàng)目(Y6110118)
韓亞洲(1978—),男,副教授,博士,研究方向?yàn)闄E圓方程的定性理論.E-mail:yazhou.han@gmail.com