• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    M inimum wall pressure coefficient of orifice plate energy dissipater

    2015-09-03 07:29:33WanzhengAiJiahongWangSchoolofShippingandPortsArchitectureEngineeringZhejiangOceanUniversityZhoushan316000PRChinaReceived10September2013accepted15June2014AvailableonlineFebruary2015
    Water Science and Engineering 2015年1期

    Wan-zheng Ai*,Jia-hong WangSchool of Shipping and Ports Architecture Engineering,Zhejiang Ocean University,Zhoushan 316000,PR China Received 10 September 2013;accepted 15 June 2014 Available online 7 February 2015

    ?

    M inimum wall pressure coefficient of orifice plate energy dissipater

    Wan-zheng Ai*,Jia-hong Wang
    School of Shipping and Ports Architecture Engineering,Zhejiang Ocean University,Zhoushan 316000,PR China Received 10 September 2013;accepted 15 June 2014 Available online 7 February 2015

    Abstract

    Orifice p late energy dissipaters have been successfully used in large-scale hydropower projects due to their sim ple structure,convenient construction procedure,and high energy dissipation ratio.Them inimum wall pressure coefficient of an orifice p late can indirectly reflect its cavitation characteristics:the lower theminimum wallpressure coefficient is,the better theability of theorifice plate to resistcavitation damage is.Thus,it is important to study them inimum wallpressure coefficientof the orifice plate.In this study,this coefficientand related parameters,such as the contraction ratio,defined as the ratio of the orifice plate diameter to the flood-discharging tunnel diameter;the relative thickness,defined as the ratio of the orifice plate thickness to the tunnel diameter;and the Reynolds number of the flow through the orifice plate,were theoretically analyzed,and their relationshipswere obtained through physicalmodel experiments.It can be concluded that them inimum w all pressure coefficientismainly dom inated by the contraction ratio and relative thickness.The low er the contraction ratio and relative thicknessare,the larger theminimum wall pressure coefficient is.The effects of the Reynolds number on theminimum wall pressure coefficient can be neglected when it is larger than 105.An empirical expression was presented to calculate them inimum wall pressure coefficient in this study. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Orifice plate;M inimum wall pressure coefficient;Cavitation;Contraction ratio;Relative thickness;Energy dissipater

    1.Introduction

    Orifice plate energy dissipaters w ith sudden-contraction and sudden-enlargem ent forms have been successfully used in large-scale hydropower projects due to their sim ple structure,convenient construction procedure,and high energy dissipation ratio.For the M ica Dam in Canada,the flow velocity of the flood-discharging tunnel was decreased from 52 m/s to 35m/sat the head of 175m,due to the use of two plugsw ith lengthsof 49m and 37m,which aresimilar to theorifice plate(Russell and Ball,1967).In the Xiaolangdi Hydropower Project in China,three orifice plates installed in the flooddischarging tunnel obtained an energy dissipation ratio of 44%,and effectively controlled the flow velocity through the gate less than 35m/s under the condition of a head of 145 m(Aiand Zhou,2014).

    For a flood-discharging tunnel w ith orifice plate energy dissipaters,the cavitation characteristics of the orifice plate energy dissipater directly affect the safety of the flood-discharging tunnel.Thus,it is necessary to obtain the relationshipsbetween the cavitation characteristicsof the orifice plate energy dissipater and correlative factors,such as thegeometric parameters of the orifice plate and flow conditions.The contraction ratio(β),defined as the ratio of thediameter(d)of the orifice plate to the diameter(D)of the flood-discharging tunnel,is an important index affecting the critical cavitation num ber of the orifice plate,which can show the cavitation characteristics of the orifice plate(Ai and Wu,2014).Kim et al.(1998),Takahashi and Matsuda(2001),and Zhang(2003)concluded that the critical cavitation number decreases w ith the increase of the contraction ratio.Qu et al.(2001),Zhang and Cai(1999),and Ball etal.(1975)indicated that theReynoldsnumber has little impacton cavitation characteristics of orifice p late energy dissipaters.

    As stated above,research conducted in the past focused mainly on the effects of the contraction ratio and flow conditions on the cavitation characteristics of the orifice plate energy dissipater based on research of the critical cavitation number of the orifice plate.As amatter of fact,the effects of the orifice plate thickness,which can affect the flow regime around the dissipater and energy loss,on the cavitation characteristics of the orifice plate,are also remarkable.Thus,it is necessary to investigate the effectsof orifice plate thicknesson the cavitation characteristics of the orifice plate.

    Because cavitation around the orifice p late often occurs first at the position of them inim um wall pressure,the m inimum wall pressure coefficient of the orifice plate can indirectly reflect the cavitation characteristics of the orifice plate(Zhang and Cai,1999),and is also an important index for design of the orifice plate(Aiand Ding,2010).The objective of this study,therefore,was to investigate the effects of all related factors,especially the orifice plate thickness,on the minimum wall pressure coefficient of the orifice plate,to establish an empirical expression for the minimum wall pressure coefficient of the orifice p late,and to analyze the effects of related factors on the cavitation characteristics of the orifice plate.

    Fig.1.Flow through orifice plate.

    2.Definition ofm inim um pressure coefficien t

    The sketch of the flow through an orifice plate in the flooddischarging tunnel is shown in Fig.1,where T is the thickness of the orifice plate,and Lbis the length of the vortex-ring region.Vortex-ring regions exist in front of and behind the orifice plate due to the sudden-contraction and suddenenlargement geometry of the orifice plate,and those vortexring regions are the important regions of the energy dissipation.Them inimum wall pressure coefficient cpcan be defined as

    where p0is the pressure on a non-disturbed section in front of the orifice plate,which can be regarded as the section located at least 0.5D in front of the orifice plate;pminis the minimum wall pressure;ρis the density of water;and u is theaverage flow velocity in the tunnel.Eq.(1)shows that the sm aller pminis,the larger cpis,and them ore easily cavitation occurs.The m inimum wall pressure coefficient cpshows the status of the m inimum wall pressure of the orifice p late. Thus,it can indicate the cavitation characteristics of the flood-discharging tunnelw ith orifice plates.The larger cpis,the lower the capacity of orifice plate to resist cavitation damage is.

    3.Theoretical considerations

    Them inimum wall pressure coefficientof the orifice plate is related to geometric parameters and hydraulic param eters,including the density of waterρ(kg/m3),the dynam ic viscosity of waterμ(N·s/m2),the tunnel diameter D(m),the orifice plate diameter d,the orifice plate thickness T(m),the average flow velocity in the tunnel u(m/s),and the deviation between the pressure on the non-disturbed section and minimum wall pressure p0-pmin(Pa).All the above parameters arew ritten into a formula as follows:

    According to the dimensionalanalysis,D,μ,andρare three basic parameters of the seven.A non-dimensional equation can be obtained using theπtheorem as follows:

    Eq.(3)can be rew ritten as follows:

    Combining Eq.(1)w ith Eq.(4),we can obtain

    where Re is the Reynolds number;andαis the relative thickness,andα=T/D.Eq.(5)indicates that theminimum wall pressure coefficientof the orifice plate cpisa function of β,α,and Re.The follow ing study procedure wasmeant to determ ine the effects of param etersβ,α,and Re on cp,according to Eq.(5).

    4.Model experiment

    The experimentalset-up of the physicalmodel consisted of an intake system,a tank,a flood-discharging tunnel w ith an orifice plate energy dissipater,and a return system w ith a rectangular weir(Fig.2).The diameter(D)of the tunnel model was 0.21 m,and the length of the tunnelmodel was 4.75m,i.e.,the distance from the intake to the pressure tunnel outlet controlled by a gatewas about 22.6D.The orifice plate energy dissipater was p laced at the position of 10.0D away from the tunnel intake and 12.6D away from the outlet.A water head of about 10.0D could be provided by the intake system and the tank.The opening of the gate could be changed conveniently.There were 35 pieces of small plastic tubeinstalled along the tunnelwall,whichwereutilized tomeasure the wall pressure.Because flows change violently in the vicinity of the orifice plate,in the region from 0.5D in front of the orifice plate to 4.0D behind the orifice p late,the plastic tubes were densely installed,w ith a interval of 0.25D.The physicalmodelexperimentswere conducted at theHigh-speed Flow Laboratory of Hohai University.The geometric parameters of the orifice plate and flood-discharging tunnel in each case are shown in Table 1.

    According to Eq.(5),the effects of the contraction ratio β,relative thicknessα,and Reynolds number Re on the m inimum wall pressure coefficient cpwere exam ined through physical model experiments.The experiment arrangement was as follow s:First,the m inimum wall pressure coefficient cpwasmeasured in cases 1 through 5 when βand Re varied andαdid not vary,and the effects of the contraction ratioβand Reynolds number Re on the m inimum wall pressure coefficient cpwere examined;second,the m inimum wall pressure coefficient cpwasmeasured in cases 6 through 10 whenαand Re varied andβwas constant,and the effects of the relative thicknessαand Reynolds number Re on the minimum wall pressure coefficient cpwere exam ined.

    Fig.2.Experimentalmodel.

    Fig.3.Wall pressure distributions along tunnel forβ=0.70 and α=0.20

    5.Results and discussion

    Themeasured resultsof thewallpressure distribution along the tunnelwhenβis 0.70 andαis 0.20 are shown in Fig.3,where P is the wall pressure expressed by the height of the water column measured using a piezometer(m),X is the distance from the tank along the flow direction,and R is the ratio of themaximum water level to the diameterof the flooddischarging tunnel.The orifice plate is located between X=10D and X=10.2D.Fig.3 shows that the lowestwall pressure occurs in the vicinity of the orifice plate,which approaches the contraction section.The experimental results of theminimum wall pressure coefficient are shown in Table 2 and Table 3.

    It can be seen from Tables 2 and 3 thatwhen the Reynolds num ber Re is less than 105,the m inimum wall pressure coefficient cpincreases slightly with the Reynolds number Re,butwhen the Reynoldsnumber Re ismore than 105,ithasno impact on theminimum wall pressure coefficient cp.

    Fig.4 and Fig.5 are drawn using the data in Tables2 and 3,respectively,when the Reynoldsnumber is1.20×105.Fig.4 shows that theminimum wallpressure coefficient cpdecreases drastically w ith the increase of the contraction ratioβwhen the relative thicknessαis constant.Fig.5 demonstrates that them inimum wall pressure coefficient cpalso decreases w ith the increase of the relative thicknessαwhen the contraction ratioβis constant,indicating that the effect of the relative thicknessαon the minimum wall pressure coefficient cpis remarkable,which isoften ignored in previous research.From this analysis,it also can be concluded that,the relative thicknessαhas important effects on the cavitation characteristics of the orifice plate,and the risk of cavitation damage occurring at the orificeplate decreasesw ith the increaseof the contraction ratioβand relative thicknessα.By fitting the curves in Figs.4 and 5,the follow ing empirical expression for them inimum wall pressure coefficient of the orifice plate can be obtained:

    This expression is valid for 0.40≤β≤0.80,0.05≤α≤0.50,and Re>105.

    Table 1 Geometric parametersof orifice plate and flood-discharging tunnel in each case.

    6.Conclusions

    The minimum wall pressure coefficient cpof an orifice plate energy dissipater isa function of the contraction ratioβ,the relative thicknessα,and the Reynolds number Re of the flow on the basis on Eq.(5).The effects of Re on cpcan be neglected when Re is larger than 105.

    The contraction ratioβand relative thicknessαare the key factors that dom inate the m inimum wall pressure coefficient cp.The lower the contraction ratioβand the relative thicknessαare,the larger theminimum wall pressure coefficient cpand the risk of cavitation damage occurring at the orifice platew ill be.The relationship between cp,β,andαcan be expressed through Eq.(6)when 0.40≤β≤0.80,0.05≤α≤0.50,and Re>105.

    Table 2 Variation of cpw ith Re andβforα=0.10.

    Table 3 Variation of cpw ith Re andαforβ=0.70.

    Fig.4.Relationship betw een cpandβfor Re=1.20×105and α=0.10

    Fig.5.Relationship between cpandαfor Re=1.20×105and β=0.70

    References

    Ai,W.Z.,Ding,T.M.,2010.Orifice plate cavitation mechanism and its influencing factors.Water Sci.Eng.3(3),321-330.http://dx.doi.org/ 10.3882/j.issn.1674-2370.2010.03.008.

    Ai,W.Z.,Zhou,Q.,2014.Hydraulic characteristicsofmulti-stageorifice plate. J.Shanghai Jiaotong Univ.(Sci.)19(3),361-366.http://dx.doi.org/ 10.1007/s12204-014-1510-x.

    Ai,W.Z.,Wu,J.H.,2014.Comparison on hydraulic characteristics between orifice plate and plug.J.Shanghai Jiaotong Univ.(Sci.)19(4),476-480. http://dx.doi.org/10.1007/s12204-014-1527-1.

    Ball,J.W.,Stripling,T.,Tullis,J.P.,1975.Predicting cavitation in sudden enlargements.J.Hydraul.Div.101(7),857-870.

    Kim,B.C.,Pak,B.C.,Cho,N.H.,Chi,D.S.,Choi,H.M.,Choi,Y.M.,Park,K.A.,1998.Effects of cavitation and plate thickness on small diameter ratio orifice meters.Flow M eas.Instrum.8(2),85-92.http:// dx.doi.org/10.1016/S0955-5986(97)00034-4.

    Qu,J.X.,Yang,Y.Q.,Zhang,J.M.,Xu,W.L.,2001.Numerical simulation of cavitation on orifice energy-dissipater.J.Sichuan Univ.(Eng.Sci.Ed.)33(3),30-33(in Chinese).

    Russell,S.O.,Ball,J.W.,1967.Sudden-enlargementenergy dissipater forM ica dam.J.Hydraul.Div.93(4),41-56.

    Takahashi,K.,Matsuda,H.,2001.Cavitation characteristics of restriction orifices:experiment for shock pressure distribution by cavitation on restriction orifices and occurrence of cavitation atmultiperforated orifices due to interference of butterfly valve.In:Proceedings of the Fourth International Symposium on Cavitation-CAV2001.California Institute of Technology,Pasadena,pp.1-8.

    Zhang,C.B.,2003.Research on the Hydraulic Properties of an Orifice Spillway Tunnel.Ph.D.Dissertation.Sichuan University,Chengdu(in Chinese).

    Zhang,Z.J.,Cai,J.M.,1999.Comprom ise orifice geometry to m inim ize pressure drop.J.Hydraul.Eng.125(11),1150-1153.http://dx.doi.org/ 10.1061/(ASCE)0733-9429(1999)125:11(1150).

    This work was supported by the Zhejiang Provincial Natural Science Foundation(Grant No.Y 15E090022).

    *Corresponding author.

    E-mail address:aiwanzheng@126.com(Wan-zheng Ai).

    Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.w se.2014.06.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    99re6热这里在线精品视频| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 青春草视频在线免费观看| 五月开心婷婷网| 老鸭窝网址在线观看| 免费观看a级毛片全部| 可以免费在线观看a视频的电影网站| 久久99热这里只频精品6学生| 国产精品免费视频内射| 日韩电影二区| 中文字幕人妻丝袜制服| 欧美一级毛片孕妇| 一区二区三区乱码不卡18| 亚洲国产成人一精品久久久| 人人妻人人爽人人添夜夜欢视频| 国产色视频综合| 桃花免费在线播放| 欧美人与性动交α欧美软件| 午夜影院在线不卡| 91成年电影在线观看| av福利片在线| 国产成人a∨麻豆精品| 亚洲精品第二区| 狠狠精品人妻久久久久久综合| 国产国语露脸激情在线看| 国产成人欧美在线观看 | 日韩视频在线欧美| 成年动漫av网址| 久久久欧美国产精品| 动漫黄色视频在线观看| 1024香蕉在线观看| 欧美精品高潮呻吟av久久| 国产深夜福利视频在线观看| videos熟女内射| 午夜视频精品福利| 韩国精品一区二区三区| h视频一区二区三区| 大型av网站在线播放| 成年女人毛片免费观看观看9 | 色婷婷av一区二区三区视频| 一本大道久久a久久精品| www.自偷自拍.com| 精品国产乱码久久久久久男人| 精品久久久久久电影网| 丝袜美足系列| 欧美在线黄色| 国产黄色免费在线视频| 中国国产av一级| 色老头精品视频在线观看| 搡老岳熟女国产| 中文字幕另类日韩欧美亚洲嫩草| av网站在线播放免费| 免费日韩欧美在线观看| 国产xxxxx性猛交| 欧美xxⅹ黑人| 熟女少妇亚洲综合色aaa.| 国产精品熟女久久久久浪| 欧美精品高潮呻吟av久久| 欧美激情高清一区二区三区| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 日韩欧美一区二区三区在线观看 | 国产精品香港三级国产av潘金莲| 国产黄色免费在线视频| 日本av手机在线免费观看| 999精品在线视频| 亚洲精品美女久久久久99蜜臀| 一级,二级,三级黄色视频| 高清在线国产一区| 妹子高潮喷水视频| 美女高潮到喷水免费观看| 欧美人与性动交α欧美精品济南到| 久久人人爽av亚洲精品天堂| 亚洲中文字幕日韩| 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 我的亚洲天堂| 99久久人妻综合| 亚洲av电影在线进入| av福利片在线| 欧美精品av麻豆av| 国产精品一区二区在线不卡| 啦啦啦中文免费视频观看日本| 法律面前人人平等表现在哪些方面 | 黄色视频不卡| 黄频高清免费视频| 精品免费久久久久久久清纯 | 操出白浆在线播放| av不卡在线播放| 国产真人三级小视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲日产国产| 亚洲中文字幕日韩| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精华国产精华精| 亚洲五月婷婷丁香| 桃花免费在线播放| 精品欧美一区二区三区在线| 婷婷丁香在线五月| www.自偷自拍.com| 免费在线观看视频国产中文字幕亚洲 | 老熟女久久久| 国产日韩欧美在线精品| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花| 一区在线观看完整版| 午夜成年电影在线免费观看| 无限看片的www在线观看| 欧美日韩av久久| 亚洲成人免费av在线播放| 在线亚洲精品国产二区图片欧美| 好男人电影高清在线观看| 97在线人人人人妻| 韩国精品一区二区三区| 色老头精品视频在线观看| 免费av中文字幕在线| 久久免费观看电影| 99久久精品国产亚洲精品| 菩萨蛮人人尽说江南好唐韦庄| 欧美一级毛片孕妇| 两个人看的免费小视频| 精品卡一卡二卡四卡免费| 国产精品1区2区在线观看. | 伦理电影免费视频| 免费在线观看视频国产中文字幕亚洲 | 美女高潮喷水抽搐中文字幕| 亚洲精品久久成人aⅴ小说| 日韩欧美一区二区三区在线观看 | 国产成人精品久久二区二区免费| 免费日韩欧美在线观看| 精品亚洲成国产av| 在线天堂中文资源库| 国产av精品麻豆| 亚洲五月婷婷丁香| 两人在一起打扑克的视频| 夜夜夜夜夜久久久久| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美在线一区| 国产精品 欧美亚洲| 日本av手机在线免费观看| 一区二区三区乱码不卡18| 亚洲精品一区蜜桃| videosex国产| 性少妇av在线| 精品卡一卡二卡四卡免费| 亚洲国产欧美日韩在线播放| 新久久久久国产一级毛片| 动漫黄色视频在线观看| 精品亚洲成a人片在线观看| 人人妻人人澡人人爽人人夜夜| 后天国语完整版免费观看| 一级毛片女人18水好多| 亚洲成人免费电影在线观看| 三上悠亚av全集在线观看| 国产精品久久久av美女十八| 国产精品av久久久久免费| 国产成人影院久久av| 各种免费的搞黄视频| 一本久久精品| 999精品在线视频| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 日本猛色少妇xxxxx猛交久久| 超碰成人久久| 亚洲国产精品一区三区| 精品卡一卡二卡四卡免费| 亚洲三区欧美一区| 久久久水蜜桃国产精品网| 久久久国产成人免费| 天堂8中文在线网| 亚洲国产欧美日韩在线播放| 久久久久网色| 麻豆乱淫一区二区| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 精品第一国产精品| 亚洲精品第二区| 亚洲成av片中文字幕在线观看| 亚洲美女黄色视频免费看| 久久午夜综合久久蜜桃| 在线观看www视频免费| 侵犯人妻中文字幕一二三四区| 欧美大码av| 亚洲中文字幕日韩| 国产成人免费无遮挡视频| 在线观看人妻少妇| 国产成人精品无人区| 国产精品免费大片| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 中文字幕人妻丝袜一区二区| 三级毛片av免费| 老司机亚洲免费影院| h视频一区二区三区| 色精品久久人妻99蜜桃| 欧美中文综合在线视频| 97人妻天天添夜夜摸| 两个人免费观看高清视频| 狠狠狠狠99中文字幕| 免费人妻精品一区二区三区视频| 成人影院久久| 丰满饥渴人妻一区二区三| 精品乱码久久久久久99久播| 免费看十八禁软件| 精品一区二区三区av网在线观看 | 日韩一卡2卡3卡4卡2021年| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 五月开心婷婷网| 久久久久视频综合| 黄色视频在线播放观看不卡| 国产av一区二区精品久久| 黄色视频,在线免费观看| 久久久久久人人人人人| 亚洲av美国av| 操出白浆在线播放| 午夜免费鲁丝| 亚洲精品一区蜜桃| 黄色视频不卡| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频| 99国产精品99久久久久| 国产区一区二久久| 老司机午夜福利在线观看视频 | 国产欧美日韩综合在线一区二区| 国产一区二区 视频在线| 曰老女人黄片| 欧美日韩黄片免| 久久久久精品人妻al黑| 亚洲av日韩在线播放| av网站在线播放免费| 看免费av毛片| 色老头精品视频在线观看| 巨乳人妻的诱惑在线观看| cao死你这个sao货| 亚洲情色 制服丝袜| 久久久久久久国产电影| 99精国产麻豆久久婷婷| 大香蕉久久成人网| 国产精品国产av在线观看| 国产在线视频一区二区| 日韩一卡2卡3卡4卡2021年| 天堂8中文在线网| 999久久久精品免费观看国产| 国产精品久久久人人做人人爽| 香蕉丝袜av| 久久这里只有精品19| 国产在视频线精品| 精品亚洲成a人片在线观看| 久久久国产精品麻豆| 免费不卡黄色视频| 超碰97精品在线观看| 永久免费av网站大全| 午夜日韩欧美国产| 国产三级黄色录像| 精品一区二区三区av网在线观看 | a级片在线免费高清观看视频| 各种免费的搞黄视频| 老熟妇仑乱视频hdxx| 久久免费观看电影| 曰老女人黄片| 久久国产精品大桥未久av| 淫妇啪啪啪对白视频 | 国产区一区二久久| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 侵犯人妻中文字幕一二三四区| 捣出白浆h1v1| 欧美日韩福利视频一区二区| 日韩有码中文字幕| 免费在线观看黄色视频的| 丰满少妇做爰视频| 亚洲第一av免费看| 久久中文字幕一级| 午夜精品久久久久久毛片777| 美女福利国产在线| 天天躁夜夜躁狠狠躁躁| 色94色欧美一区二区| 日韩大片免费观看网站| 国产精品免费视频内射| 亚洲av日韩在线播放| 精品卡一卡二卡四卡免费| www.999成人在线观看| 欧美少妇被猛烈插入视频| 在线观看人妻少妇| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区三区在线| tocl精华| 国产亚洲一区二区精品| 最新的欧美精品一区二区| 国产老妇伦熟女老妇高清| 午夜福利在线免费观看网站| 国产成人精品久久二区二区免费| 国产一区二区激情短视频 | 亚洲国产欧美日韩在线播放| tocl精华| 国产视频一区二区在线看| 狠狠狠狠99中文字幕| netflix在线观看网站| 99精品欧美一区二区三区四区| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 免费不卡黄色视频| 新久久久久国产一级毛片| 亚洲人成电影免费在线| 国产精品久久久久成人av| 亚洲国产看品久久| 桃红色精品国产亚洲av| 少妇猛男粗大的猛烈进出视频| 国产精品麻豆人妻色哟哟久久| 国产成人av教育| 飞空精品影院首页| 中文字幕人妻熟女乱码| 午夜视频精品福利| tocl精华| 12—13女人毛片做爰片一| 超色免费av| 一级a爱视频在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av片天天在线观看| 人人妻人人澡人人爽人人夜夜| av在线播放精品| 考比视频在线观看| 99精品久久久久人妻精品| 老熟妇乱子伦视频在线观看 | 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 久久久久久久久免费视频了| 中文字幕人妻丝袜一区二区| 91老司机精品| 日本黄色日本黄色录像| 精品国内亚洲2022精品成人 | 飞空精品影院首页| 欧美日韩一级在线毛片| 18禁观看日本| 一进一出抽搐动态| 嫩草影视91久久| 操出白浆在线播放| 韩国精品一区二区三区| 性少妇av在线| 一个人免费看片子| 国产男人的电影天堂91| 成年动漫av网址| 大片电影免费在线观看免费| 美女中出高潮动态图| 91麻豆av在线| 在线观看免费视频网站a站| 欧美一级毛片孕妇| 精品一品国产午夜福利视频| www.精华液| 美女中出高潮动态图| cao死你这个sao货| 久久青草综合色| 老汉色av国产亚洲站长工具| 亚洲色图综合在线观看| 国产精品.久久久| 国产av国产精品国产| 99re6热这里在线精品视频| 9色porny在线观看| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 亚洲精品粉嫩美女一区| 黄色毛片三级朝国网站| 黑丝袜美女国产一区| 黄色毛片三级朝国网站| 免费高清在线观看日韩| 高清欧美精品videossex| 免费观看人在逋| 高清欧美精品videossex| 肉色欧美久久久久久久蜜桃| av不卡在线播放| 国产av精品麻豆| av电影中文网址| 俄罗斯特黄特色一大片| 超碰成人久久| 亚洲国产欧美一区二区综合| 亚洲精品成人av观看孕妇| 视频在线观看一区二区三区| 妹子高潮喷水视频| 操出白浆在线播放| av在线app专区| 色婷婷av一区二区三区视频| 免费少妇av软件| 国产亚洲欧美精品永久| 少妇被粗大的猛进出69影院| 国产高清国产精品国产三级| 一二三四社区在线视频社区8| 国产99久久九九免费精品| 亚洲国产日韩一区二区| 王馨瑶露胸无遮挡在线观看| 久久中文字幕一级| 亚洲国产精品成人久久小说| 国产成人影院久久av| 在线观看www视频免费| 欧美精品一区二区大全| 亚洲精品av麻豆狂野| 另类精品久久| 欧美+亚洲+日韩+国产| 男女边摸边吃奶| 色老头精品视频在线观看| 亚洲av日韩精品久久久久久密| 久久久精品94久久精品| 人人妻,人人澡人人爽秒播| 黄片大片在线免费观看| 在线 av 中文字幕| 久久久久精品人妻al黑| 中国国产av一级| 嫩草影视91久久| 久久性视频一级片| 欧美 亚洲 国产 日韩一| 国产伦理片在线播放av一区| 精品国产一区二区久久| 一区二区三区乱码不卡18| 大香蕉久久网| 咕卡用的链子| 男女下面插进去视频免费观看| av免费在线观看网站| 国产成人影院久久av| 亚洲精品中文字幕在线视频| 一区二区av电影网| 免费少妇av软件| svipshipincom国产片| 亚洲,欧美精品.| 免费在线观看日本一区| 亚洲人成77777在线视频| 亚洲精品国产av成人精品| 久久精品国产亚洲av高清一级| 777久久人妻少妇嫩草av网站| 又大又爽又粗| 亚洲精品国产av蜜桃| 亚洲av男天堂| avwww免费| 成人影院久久| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 如日韩欧美国产精品一区二区三区| 亚洲全国av大片| 首页视频小说图片口味搜索| 国产精品久久久人人做人人爽| 国产成人av激情在线播放| 国产亚洲欧美在线一区二区| 免费日韩欧美在线观看| 在线观看免费日韩欧美大片| 日韩欧美国产一区二区入口| 人妻久久中文字幕网| 人妻 亚洲 视频| 亚洲国产精品一区三区| 精品久久久久久久毛片微露脸 | 999久久久精品免费观看国产| 亚洲精品自拍成人| 午夜精品久久久久久毛片777| 色综合欧美亚洲国产小说| 不卡一级毛片| 汤姆久久久久久久影院中文字幕| 亚洲专区字幕在线| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 99久久人妻综合| 后天国语完整版免费观看| 曰老女人黄片| 纵有疾风起免费观看全集完整版| 午夜91福利影院| 香蕉丝袜av| 国产精品免费视频内射| 免费在线观看黄色视频的| 欧美精品av麻豆av| 国产又色又爽无遮挡免| 真人做人爱边吃奶动态| 亚洲精品中文字幕一二三四区 | 美女视频免费永久观看网站| 国产成人免费观看mmmm| 国产欧美日韩一区二区三 | 宅男免费午夜| 午夜日韩欧美国产| 国产精品 国内视频| 亚洲国产欧美日韩在线播放| 狂野欧美激情性xxxx| 蜜桃在线观看..| 日日爽夜夜爽网站| 满18在线观看网站| 老汉色∧v一级毛片| 十分钟在线观看高清视频www| 久热这里只有精品99| 国产99久久九九免费精品| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 国产成人精品久久二区二区91| 在线观看www视频免费| 极品人妻少妇av视频| 欧美黑人精品巨大| 黄色毛片三级朝国网站| 69av精品久久久久久 | 精品少妇黑人巨大在线播放| 亚洲av成人一区二区三| av超薄肉色丝袜交足视频| 每晚都被弄得嗷嗷叫到高潮| 大码成人一级视频| 十八禁网站免费在线| 夜夜骑夜夜射夜夜干| 18在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 夫妻午夜视频| 成人亚洲精品一区在线观看| 狂野欧美激情性bbbbbb| 久久久精品国产亚洲av高清涩受| 精品国产一区二区三区四区第35| 黄色怎么调成土黄色| 精品国产乱码久久久久久男人| 一边摸一边做爽爽视频免费| 99久久精品国产亚洲精品| 久久毛片免费看一区二区三区| 午夜福利视频精品| 人成视频在线观看免费观看| 精品国产超薄肉色丝袜足j| 亚洲av国产av综合av卡| 精品亚洲乱码少妇综合久久| 欧美精品av麻豆av| 大陆偷拍与自拍| 国产精品1区2区在线观看. | 美女国产高潮福利片在线看| 久久久久久人人人人人| 亚洲人成电影免费在线| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 国产精品久久久久久精品电影小说| 丝袜美腿诱惑在线| 国内毛片毛片毛片毛片毛片| 午夜福利影视在线免费观看| 少妇裸体淫交视频免费看高清 | 国产精品成人在线| 欧美日韩黄片免| 欧美日韩一级在线毛片| 亚洲全国av大片| 久久精品久久久久久噜噜老黄| 伊人久久大香线蕉亚洲五| 国产精品秋霞免费鲁丝片| 国产无遮挡羞羞视频在线观看| 亚洲五月婷婷丁香| 国产精品久久久久久精品古装| 中文字幕人妻熟女乱码| 嫩草影视91久久| 首页视频小说图片口味搜索| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 1024香蕉在线观看| 99国产精品99久久久久| 肉色欧美久久久久久久蜜桃| a级毛片黄视频| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 精品一区二区三区四区五区乱码| 国产不卡av网站在线观看| 女人爽到高潮嗷嗷叫在线视频| 男女下面插进去视频免费观看| 一级黄色大片毛片| 这个男人来自地球电影免费观看| 性色av一级| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区蜜桃| 国产97色在线日韩免费| 日韩视频在线欧美| 国产片内射在线| 人人妻人人爽人人添夜夜欢视频| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 欧美日韩精品网址| 久久香蕉激情| 国产精品久久久av美女十八| 国产高清国产精品国产三级| 女性生殖器流出的白浆| 不卡av一区二区三区| 纵有疾风起免费观看全集完整版| 久久人人97超碰香蕉20202| 免费久久久久久久精品成人欧美视频| 欧美日韩中文字幕国产精品一区二区三区 | 午夜久久久在线观看| 90打野战视频偷拍视频| 亚洲中文字幕日韩| 自拍欧美九色日韩亚洲蝌蚪91| 黄色视频不卡| 老司机深夜福利视频在线观看 | 欧美日韩av久久| 两性夫妻黄色片| 亚洲全国av大片| 欧美黄色淫秽网站| 久久狼人影院| av天堂久久9| 免费在线观看完整版高清| 久久青草综合色| 成人亚洲精品一区在线观看| 午夜日韩欧美国产| 国产伦人伦偷精品视频| 我要看黄色一级片免费的| 久久99一区二区三区| 亚洲熟女毛片儿| 精品熟女少妇八av免费久了| 少妇精品久久久久久久| 多毛熟女@视频| 久久久久精品人妻al黑| 咕卡用的链子| 精品福利永久在线观看| 欧美亚洲日本最大视频资源| 日本一区二区免费在线视频| 搡老岳熟女国产| 正在播放国产对白刺激| 亚洲中文av在线| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 欧美黄色淫秽网站| 久久久精品免费免费高清| 9色porny在线观看| 久久人妻熟女aⅴ|