• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphniamagna

    2015-09-03 07:29:28GuanghuaLuJianchaoLiuLishaSunLujinYuanKeyLaboratoryofIntegratedRegulationandResourcesDevelopmentofShallowLakesofMinistryofEducationCollegeofEnvironmentHohaiUniversityNanjing210098PRChinaReceivedSeptember2013accepted29Ju
    Water Science and Engineering 2015年1期

    Guang-hua Lu*,Jian-chao Liu,Li-sha Sun,Lu-jin YuanKey Laboratory of Integrated Regulation and Resources Developmentof Shallow Lakes ofMinistry of Education,College of Environment,HohaiUniversity,Nanjing 210098,PRChina Received 1 September 2013;accepted 29 July 2014 Available online 14 January 2015

    ?

    Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphniamagna

    Guang-hua Lu*,Jian-chao Liu,Li-sha Sun,Lu-jin Yuan
    Key Laboratory of Integrated Regulation and Resources Developmentof Shallow Lakes ofMinistry of Education,College of Environment,HohaiUniversity,Nanjing 210098,PRChina Received 1 September 2013;accepted 29 July 2014 Available online 14 January 2015

    Abstract

    In order to study toxicological effects of perfluorononanoic acid(PFNA),perfluorooctane sulfonate(PFOS),and theirmixtures(PFNA/ PFOS)on Daphniamagna(D.magna),a suite of comprehensive toxicity testswere conducted,including a 48-h acute toxicity test,a 21-day chronic test,a feeding experiment,and a biomarker assay.D.magna were exposed to aqueous solutions of PFNA and PFOS(alone and in combination)at concentrations ranging from 0.008 to 5mg/L.The survival,grow th,and reproduction of D.magna w eremonitored over a 21-day life cycle.The biomarkers,including acetylcholinesterase(AChE),superoxide dismutase(SOD),and catalase(CAT)activities,were determ ined after seven days of exposure.PFOS wasmore toxic than PFNA based on the results of the acute toxicity test.Perfluorinated compounds(PFCs)inhibited both grow th and reproduction of D.magna during the testing period.The ingestion rates and the biomarkers,including AChE,SOD,and CAT activities,were significantly inhibited by PFCs inmost cases.Moreover,the combined effects related to the grow th and reproduction show ed the antagonistic effects of PFCs. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Toxicity effect;Perfluorononanoic acid;Perfluorooctane sulfonate;Daphniamagna;Reproduction;Ingestion rate;Biomarker

    1.Introduction

    Perfluorinated compounds(PFCs)w ith different functions have been extensively used in many technologies,either individually or as composites inmanufactured products(Giesy and Kannan,2002).For examples,PFCswere used as water-,oil-and grease-repellents or as surfactants(Renner,2001).In recent years,PFCs have become a focus of public health concern due to their ubiquitous presence in environmental media(air,water,soil,sediment,and house dust),food and drinking water,and in w ildlife,including fish,birds,and mammals(Mommaerts et al.,2011;Murakami et al.,2011; Rudel et al.,2011;Zhang et al.,2011;Tatum-Gibbs et al.,2011).PFCs have been detected in urban and remote areas around the world,and some researchers have indicated that PFCsaccumulate in animals,including humans(Pow ley etal.,2008;Cai et al.,2010;Leondiadis et al.,2010).

    Of the PFCs,perfluorooctane sulfonate(PFOS)and perfluorononanoic acid(PFNA)have been found to be the representative PFCs in the environment and in biota(Guruge etal.,2005;Kannan etal.,2004),and PFOS is regarded as the final metabolite of many PFCs by degradation or metabolization(Olsen et al.,2004;Calafat et al.,2006).The ionic nature,high solubility,and negligible vapor pressure when PFOS and PFNA are dissolved in water,make them highly mobile,and they exist in groundwater(Plum lee et al.,2008),surfacewater(Eschauzier et al.,2010),drinking water(Flores etal.,2013),and oceanwater(Snchez-Avila etal.,2010)w ith a concentration ranging from ng/L to severalμg/L.A higher concentration of PFOS(about43.5μg/L)hasbeen detected inthe Langat River,Malaysia(Zainuddin et al.,2012).A composition profile of total PFC concentrations showed that the com position was dom inated by PFOS and PFNA in the Yodo River system of Japan(Shivakotiet al.,2011).In sediment,the contentsof PFOSwere shown to be 28-145 pg/g of the dry weightat Kogaigawa and Sakuragawa cities in Ibaraki Prefecture,in Japan(Ahrensetal.,2011).Kratzer etal.(2011)found that PFOS was the predominant compound(9.57-1 444 ng/g of wet weight),followed by PFNA(0.47-109 ng/g of wetweight),in liver tissue of grey seals(Halichoerus grypus)collected from the Baltic Sea.In addition,a study revealed that insect larvae,fish,and crabs contained levels ranging from 0.23 to 144 ng/g of wetweight of PFOS and from 0.07 to 7.5 ng/g of wet weight of PFNA(Fernandez-Sanjuan et al.,2010).PFOS is also listed as a chemical contaminant on the Final Third Drinking Water Contaminant Candidate List(CCL3)considered for future regulation(US EPA,2009).Clearly,more information is required to guide decisions about regulations of PFOS and PFNA.

    Recent studies have indicated unintended biological activity of PFCs toward non-target organisms.The no-observed effectconcentration(NOEC)of PFOS determ ined for Daphnia magna(D.magna)is reported to be 5.3mg/L(Boudreau etal.,2003).PFOShasalso been found to decrease the heart rate of zebrafish embryos(Ding et al.,2012a).Huang et al.(2012)determined the transcription profiling of Oryziasmelastigma embryo exposed to PFOS,and indicated that the differentially expressed genes were related to neurobehavioral defects,m itochondrialdysfunction,and themetabolism of proteinsand fats.Thyroid-disrupting effects of long-term PFNA exposure have been observed on the levels of genes and proteins in zebrafish(Liu et al.,2011).However,toxicity information regarding PFNA,and especially information on its toxicity when combined w ith PFOS,is still lacking w ith regard to D. magna.D.magna,designated by the U.S.Environmental Protection Agency(U.S.EPA)asamodel organism,iswidely accepted as an indicator for assessing the toxicity of environmental contam inants because of its high rate of reproduction and sensitivity to different conditions(Ventura et al.,2010).Acute and chronic toxicity tests are simple,costeffective,and sensitive,and are aw idely acceptedmethod for toxicity determ ination,providing a fast yet accurate estimate of toxicity of a compound(Ventura et al.,2010).The feeding behavior of aquatic organisms has been studied as a physiological response to toxic effects of chem icals(Barata et al.,2008;de Schamphelaere etal.,2007).In addition,antioxidant enzymes such as catalase(CAT)and superoxide dismutase(SOD)havealso beenw idely used for both characterization of thedefensemechanismsand evaluation of the toxicity induced by oxidative stressors(Kim etal.,2012).

    In order to investigate the biological effectsof PFCson D. magna after different exposure periods,we conducted a comprehensive toxicity test of PFOS,PFNA,and their mixtures(PFNA/PFOS),including a 48-h acute toxicity test and a 21-day chronic toxicity test.A feeding experiment was conducted to explore whether the two target compounds could interfere w ith food intake and ultimately cause toxicity to D. magna.Finally,the activities of acetylcholinesterase(AChE),SOD,and CAT were synchronously determ ined in order to investigate single and combined effects of the two PFCs on multiple biomarkers during a seven-day exposure period.All of the above are important for ecotoxicological risk assessments of PFOS and PFNA.

    2.M aterials and methods

    2.1.Chemicals

    PFNA(98%purity)was purchased from the A lfa Aesar Co.,Ltd.(Los Angeles,USA).PFOS(98%purity)was purchased from the Matrix Scientific Co.,Ltd.(Basel,Sw itzerland).

    The test solutionwas prepared immediately prior to use by diluting the stock solution with a daphnia culture medium(consisting of 64.75 mg/L of NaHCO3,5.75 mg/L of KCl,123.25mg/L ofMgSO4·7H2O,and 294mg/L of CaCl2·2H2O)reconstituted according to the guideline formulated by the Organization for Economic Cooperation and Development(OECD,2004).

    Acetylthiocholine iodide(ATChI)and 5,5′-dithiobis(2-nitrobenzoic acid)(DTNB)were purchased from the Sinopharm Chemical Reagent Co.,Ltd.(Shanghai,China).Bovine serum albumin was purchased from the Shanghai Huixing Biochemistry Reagent Co.,Ltd.(Shanghai,China)w ith a purity of more than 98%.All other chemicals were of analytical grade and were obtained from the Shanghai Chemical Reagent Co.,Ltd.(Shanghai,China).

    2.2.Animals

    D.magna,a common zooplankton found in freshwater lakesand ponds,isone of themostsensitiveorganismsused in toxicity tests(Alberdi et al.,1996).In this study,D.magna were originally obtained from the Chinese Center for Disease Control and Prevention(Beijing,China).It was cultured in dilution water according to the International Organization for Standardization(ISO,1996).The culture medium was renewed three timesweekly.D.magna were fed daily w ith the green algae,Scenedesmusobliquus,whichwas supplied by the Wuhan Institute of Hydrobiology of the Chinese Academy of Sciences.Exposure water quality was checked daily and maintained at conditions suitable for D.magna(temperature of(20±1)°C,pH value of 7.2±0.3,and dissolved oxygen(DO)of(6.5±0.5)mg/L).A daily 16/8-h light/dark photoperiod cyclewas used throughout the experiment.

    Offspring of D.magna were separated at regular intervals from culture dishes that were 3-5 weeks old and the test animalswere less than 24 h old.

    2.3.Acute and chronic toxicity tests

    The 48-h acute toxicity test of D.magna was performed according to OECD(2004).Six concentrations of PFC(1,3,10,30,100,and 300 mg/L)were selected.Ten neonates less than 24 h old from a designated brood were placed in a 100 m L glass beaker containing 45 m L of PFC solution for each test concentration and control group.No PFC wasadded in the control group.Test D.magna were not fed during the testing period.Each treatment was replicated three times simultaneously.Water quality parameters(pH value,temperature,conductivity,and DO)were measured at the very beginning and end of the test.The statuses of immobilization andmortality were checked at48 h,and resultswere recorded. D.magna thatwere unable to sw im w ithin 15 s after gentle agitation of the test containerwas considered to be immobile. Those animalswhose heartbeats had stopped were considered dead.The heartbeats were observed w ith a stereom icroscope w ith amagnification of four.

    The effects of two kinds PFCs on the reproductive output were assessedw ith asemi-static testaccording to thestandard procedure for D.magna reproduction testing(OECD,2012). Based on the resultsof acute toxicity tests,neonates less than 24 h old wereexposed to various concentrationsof PFOSand PFNA(0.008,0.04,0.2,1,and 5 mg/L).The solutions of PFNA and PFOSwere also mixed w ith the same concentrations at 0.004,0.02,0.1,0.5,and 2.5 mg/L.Single D.magna was cultured in 100 m L glass beakers filled w ith 45 m L of solution for a 21-day period at(20±1)°C.The test was performed in 20 replicates for each exposure concentration. D.magna were fed w ith 1×106cells/m L of Scenedesmus obliquus per day for each animal.The test solution was renewed every other day.Water quality parameters were measured after changing the test solution.Survival,grow th,and reproduction(fecundity)of D.magna weremonitored for each of the 20 replicates.Grow th of the surviving adults under each treatmentw as determ ined after 21 days of exposure.The body length of each surviving animalwasmeasured from the apex of the helm et to the base of the tail spine.Days to the first pregnancy,days to the first brood,the quantity of the first brood per female,and the average number of offspring in each brood were the criteria used to evaluate the fecundity.Neonates were counted daily and were removed from the beakers.

    This study also examined the intrinsic rate of population grow th(r)in order to estimate the effect of toxicant exposureson population grow th(Pestana etal.,2010;Zhao etal.,2012).Itwas calculated using the follow ing formula(Lotka,1913):

    where lxis the ratio of individuals surviving to age x,mxis the age-specific fecundity(number of neonates produced per surviving female at age x),and x is in days.As r calculated based on the number of D.magna after 21 days is indistinguishable from r estimated for the entire lifespan,due to the great importance of early reproduction(van Leeuwen et al.,1985),all calculationswere based on the 21-day experim ent.

    2.4.Feeding experiment

    The feeding experiment was run according to a method described by Zhu et al.(2010).Filtration and ingestion rates were used asmeasures of the feeding experiment.Ten neonates less than 24 h old were placed in a 100m L glassbeakers containing 45m L of test solution in a dark time period for 5 h at(20±1)°C.During the exposed period,D.magna were fed w ith 1×106cells/m L Scenedesmusobliquus per day for each animal.Then final food concentration wasmeasured w ith a hemocytometer under an electron m icroscope w ith amagnification of 400.The filtration rate(F)was defined as the volume of medium swept clearly by a D.magna in a unit of time,and the ingestion rate(I)as the number of cells consumed by a D.magna organism during a specific time interval.Eqs.(2)through(4)from Gauld(1951)were used to calculate the average F inμL/(ind·h)and I in cells/(ind·h): where C0and Ctare the initial and final food concentrations(cells/μL)respectively,t is time(duration of the experiment in hours),n is the number of D.magna in volume V(μL),and A is a correction factor varying w ith the final concentrationafter time t.The expressionrepresents the geometric mean of food concentration during time t.

    2.5.Biomarker assays

    Sixty neonates less than 24 h old from a designated brood were placed in a 1 L glassbeaker for each test concentration of PFCs and control group,and the test solution was renewed daily.A ll experiments were performed in triplicate.Cultured D.magna aged seven days were used for determination of AChE,SOD,and CAT activities.

    Antioxidantenzymesanalyseswere conducted according to the procedure of Barata et al.(2005).After exposure,D. magna were homogenized in 100mmol/L of phosphate buffer at a pH value of 7.4,containing 100 mmol/L of KCl and 1mmol/L of ethylene diamine tetraacetic acid(EDTA)w ith a 1:4 volume ratio,using a glasshomogenizer(Kimble Kontes,Vineland,NJ,USA).A fter centrifugation at 10 000g for 10 m in at 4°C,the supernatants were used as the enzyme extract for AChE activity determ ination.AChE activity was determined at a wavelength of 405 nm using a microplate reader(Molecular Device VersaMax,USA)w ith themethod of Guilhermino et al.(1996),by adding 50μL of homogenate and 250μL of the reaction solution(1.0m L of DTNB solution w ith the concentration of 10 mmol/L,0.2 m L of ATCh I solution w ith the concentration of 0.075 mol/L,and 30 m L of phosphate buffer)in m icro plates,and this activity wasm easured at 30°C for 3m in.AChE activity was expressed in nmol/(mg pro·m in).SOD activity was determ ined at a wavelength of 420 nm by the method of M arklund and Marklund(1974).Three hundred microlitres of Tris-HCl buffer were added to themicro plates,which werewarmed at 25°C for 10min,then 10μL of homogenate and 6μL of preheated pyrogallolwere added,and the rate of pyrogallol auto-oxidation wasmeasured for 3 min.SOD activity was expressed in U/mg pro.U was defined as the amountof enzyme required to cause 50%of inhibition of pyrogallol auto-oxidation.CAT activity was determined using ammonium molybdate(Gth,1991).Two hundred m icrolitres of the hom ogenate were incubated w ith 1 m L of substrate(65 mmol/L of hydrogen peroxide in 60 mmol/L of potassium phosphate buffer,pH value of 7.4)at 37°C for 60 s.The enzymatic reaction was term inated by adding 1m L of ammonium molybdatew ith the concentration of 32.4 mmol/L and the yellow complex of molybdate and hydrogen peroxide wasmeasured at a wavelength of 405 nm.CAT activity was expressed inμmol/(mg pro·m in).Protein concentrationswere determined at awavelength of 595 nm using a method developed by Bradford(1976),w ith bovine serum albumin as the standard.

    2.6.Statistical analysis

    All data were tested for the normal distribution w ith Shapiro-Wilk's test and for homogeneity of variances w ith Levene's test.The results were expressed as the mean w ith the standard deviation(SD).In the 48-h acute toxicity test for D. magna,themedian effective concentration(EC50)andmedian lethal concentration(LC50)were calculated w ith probit analysis using SigmaPlot 12.5.To analyze reproduction,ingestion,and biomarker data,one-way analysis of variance(ANOVA)and t-testw ith Dunnett's testwere performed w ith the SPSS statistical package(SPSS Co.,Chicago,IL,USA). Tests for other types of toxicity data were also performed using SPSS.A ll differences were considered significant at P<0.05.

    Table 1Size and fecundity of D.magna exposed to PFOS,PFNA,and PFNA/PFOS in 21-day life study.

    3.Results

    3.1.Acute toxicity of PFOSand PFNA

    Potassium dichromatewasused asa reference chemical.The EC50 for D.magna at24 h of 0.96mg/L wasobtained for potassium dichromate,which conforms to the ISO standard(ISO,1996).Throughout the testing process,the pH values of test media ranged from 7.7 to 8.4,and the DO was 5.3 m g/L.No mortality occurred in the controlgroup in the acute toxicity test.

    The immobilization and mortality of D.magna increased continuouslyw ith elevated PFC concentrations.The EC50 and LC50 values of PFCs were calculated w ith one-dimensional linear regression analysisof the negative logarithm of exposed PFC concentrations against the immobilization and mortality rates.The EC50 valuesof PFNA and PFOS for D.magna were 43.42 and 23.41mg/L,and their LC50 valueswere 80.93 and 49.27mg/L,respectively.

    3.2.Chronic toxicity of PFOS,PFNA,and PFNA/PFOS

    The survival,body length,reproduction,and population parameters of adult D.magna were assessed after 21 days of exposure and the resultsareshown in Table1.Themortality of D.magna for all the concentrations of PFOS,PFNA,and PFNA/PFOS never exceeded 20%.No mortality occurred in the control group during the period of experiment.The body length and r of D.magna decreased significantly at the concentrations greater than or equal to 0.04 mg/L of PFNA,greater than or equal to 0.008mg/L of PFOS,and greater than or equal to 0.2 mg/L of PFNA/PFOS(P<0.05).Higherconcentrationsof PFCssignificantly prolonged the time to first pregnancy and the time to first brood of D.magna and decreased the number of offspring of first brood.Compared w ith PFNA,the reproductive toxicity of PFOS seemed to be stronger in D.magna.PFNA/PFOSsignificantly decreased the body length and r of D.magna at higher concentrationswhich were greater than or equal to 0.2 mg/L(P<0.05).However,PFNA/PFOS did not change significantly the time to first brood atall the test concentrations.

    Themaximum acceptable toxicant concentration(MATC)was calculated as the geometric mean of the NOEC and the lowest observed effect concentration(LOEC).The NOEC,LOEC,and MATC values of PFNA,PFOS,and PFNA/PFOS to D.magna are shown in Table 2.

    Table 2 NOEC,LOEC,and MATC values of PFOS,PFNA and PFNA/PFOS to D.magna(mg/L).

    3.3.Ingestion effect

    The effects of PFCs on the feeding behavior of D.magna are shown in Fig.1.The ingestion rates were significantly inhibited by PFOS and PFNA/PFOS at concentrations greater than or equal to 0.2 mg/L,while even at the lowest concentration of 0.008 mg/L,the ingestion rate was significantly inhibited by PFNA(P<0.05).The highest concentration of PFNA,PFOS,and PFNA/PFOS exposures led to maximal reduction of ingestion rates,and the inhibition rateswere 59%,55%,and 72%compared w ith control group values,respectively.The median inhibitory concentrations of ingestion(IC50)were estimated through one variable linear regression analysis,and were 10.78,14.86,and 7.48 mg/L for PFNA,PFOS,and PFNA/PFOS,respectively.The IC50 valueswere much lower than the corresponding EC50 for immobilization after 48 h of exposure.

    Fig.1.Ingestion rateof D.magna afterexposure to PFNA,PFOS,and PFNA/PFOS(*indicates significant difference from control group with P<0.05).

    Fig.2.Biomarker responses of D.magna exposed to PFNA,PFOS,and PFNA/PFOS(*indicates significant difference from control group with P<0.05).

    3.4.Biomarker response

    AChE,SOD,and CAT activities in D.magna are shown in Fig.2.No mortality occurred during experiments.AChE activity was significantly inhibited by all the test concentrations of PFOSand PFNA/PFOSand concentrationsof PFNA greater than or equal to 0.04mg/L(P<0.05).The inhibition rate of AChE activity matches the concentration increase,and the maximum inhibition rates were 87%,84%,and 67%respectively,produced by the highest concentrations of PFNA,PFOS,and PFNA/PFOS.SOD activity decreased significantly at concentrations greater than or equal to 0.2m g/L(P<0.05),and the maximum inhibition rates were 51%,44%,and 32% for PFNA,PFOS,and PFNA/PFOS,respectively.However,the two lowest concentrations of PFCs increased SOD activity.The response pattern of CAT activity was sim ilar to that of SOD activity.CAT activity was significantly inhibited by all test concentrations except for the lowest concentration.The highest concentrations of PFNA,PFOS,and PFNA/PFOS induced maximal CAT activity reduction values,which were 76%,72%,and 75%,respectively.In general,the two PFCs(alone or in combination)induced similar biological responses.Furthermore,the change of enzyme activities exhibited obvious concentration dependence.

    4.Discussion

    In the acute toxicity test,our results showed that PFOS is m ore toxic than PFNA to D.magna.These results are comparablew ith those of a previous study by Zheng et al.(2011),which reported that the values of 48-h EC50 of PFNA and PFOS for D.magna were42.84 and 33.76mg/L,respectively.Ji etal.(2008)also reported that the valueof 48-h EC50 of PFOS was17.95mg/L for Moinamacrocopa,whereas M.macrocopa was generally much more sensitive to PFOS than D.magna. Thevalueof 48-h EC50 of PFNAwas151mg/L for D.magna,as reported by Ding etal.(2012a).The value of 96-h EC50 of PFOSwas reported to be 78.13 mg/L,while that for 120 h was 76.53 mg/L for zebrafish embryo(Ding et al.,2012b).However,for marine shrimp,Mysidopsis bahia,the value of 96-h LC50 of PFOSwas reported to be 3.5 mg/L(Beach et al.,2006),significantly lower than that for the freshwater organisms mentioned above.Different culture conditions and test proceduresmay partly account for the differencesbetween the reported data in the same species(Ding et al.,2012a).

    The use of chronic toxicity data,especially the chronic toxicity of PFNA/PFOS,in environmental protection is an important part of an integrated environm entalmonitoring and assessment strategy(Dao et al.,2010;Yi et al.,2010).As far aswe know,till now there have been no published data on the response patterns of D.magna exposed to PFC mixtures,although there are some data on single PFC.Boudreau et al.(2003)investigated the acute and chronic toxicity of PFOS to D.magna,and found that PFOS exposure for 21 days could cause significant inhibition of grow th and reproduction,and even causemortality.

    Reproduction,and in particular r,has been recommended as a superior laboratory toxicological endpoint compared to the acute mortality,because it com bines lethal and sublethal effects into onem eaningfulmeasure(Zhao et al.,2012;Pestana etal.,2010).In this study,parameter r and body length of D.magna were confirmed to bemore sensitive endpoints in the 21-day chronic toxicity test.Pane et al.(2004)recommended the use of r to estimate the chronic toxic effectdue to thesensitivity of r in chronic toxicity tests.Thus,r valueswere used to estimate theMATC values for PFCs.The reproduction LOEC value of PFNA was approximately five times higher than that of PFOS.The fact that PFOSwas found to bemore toxic than PFNA in this study is not surprising,because this finding is sim ilar to the results of other studies that have evaluated the toxicity of PFOS and other PFCs in aquatic organisms(Ji et al.,2008;Ding et al.,2012a).However,the reproduction NOEC and LOEC values of PFNA/PFOS were allapproximately five times higher than those of a single dose of PFNA or PFOS.A similar result was also found in the MATC.The MATC value of PFNA/PFOS was the largest,followed by the values of PFNA and PFOS,which suggested that the inhibition effects of PFNA/PFOS on grow th were lower than those of the corresponding individual exposures,suggesting that an antagonistic effect appeared to exist.Wei etal.(2009)investigated the combined effectsof six PFCson primary cultured hepatocytes from a rare minnow(Gobiocypris rarus),and found that the gene expression related to fatty acid biosynthesis and transport showed the antagonistic effects of PFCs.Although the possible mechanisms of combined effects of PFCs have not been previously reported,the present study indicates that the PFOS and PFNA mixture can elicit effects differing from exposure to a single PFC.Therefore,the effectsof PFC combination in the assessmentof PFC exposurew ith regard to D.magna require further study.

    Inhibition of the ingestion rateby PFNA,PFOS,and PFNA/ PFOS was observed,and showed obvious concentration dependence in the present study.Toxicants that affect the movementof appendagesand the coordination of the nervous system may reduce ingestion rates(Yi et al.,2010).In addition,PFCs could accumulate w ithin the gastrointestinal tract(Kim et al.,2010),which may interfere w ith normal food intake and cause the toxicity observed in D.magna.These findingssuggest thatasensitive feeding response is required to evaluate the effect of low-level PFCs.

    AChE activity plays an important role in many physiological functions,when the activity of the enzyme decreases,neuronal andmuscle injurymay occur(Dettbarn etal.,2006). A significant AChE activity decrease by 20%ormore can be considered a clear toxicological effect of xenobiotic exposure,and cause reductions in the feeding activity and sw imm ing rate(USEPA,2000).Xuereb etal.(2009)also found that the feeding rate and locomotive impairment in Gammarus fossarum were directly correlated to AChE inhibitions w ith the correlation coefficientof higher than 50%for chlorpyrifosand methomyl.In the present study,the AChE activity and the ingestion rate of D.magna were both obviously inhibited in a concentration-dependent manner.Thus,the inhibition of AChE activity that resulted from exposure to the two PFCs may cause disruption of the nervous system.

    CAT plays a critical role in dismutation of the hydrogen peroxide,whereas SOD dismutates the superoxide anion radical(Kim etal.,2012).The SOD-CAT system provides the firstdefense line againstoxygen toxicity and isusually used as a biomarker to indicate reactive oxygen species(ROS)production(Li et al.,2011).However,information on the response of the antioxidant defense system in D.magna exposed to PFCs is still lacking.The changes in the SOD and CATactivitieswere approximately the sameas those observed by Qu et al.(2010),where the toxic effects of different concentrations(0.1 mg/L to 200 mg/L)of PFOS on wheatwere investigated.Their results showed that low concentrations of PFOS(0.1 m g/L to 10 mg/L)induced SOD and peroxidase(POD)activities in wheat roots and leaves,and highconcentrations of PFOS(200 mg/L)inhibited SOD and POD activities.Pollution induces the expression of antioxidant enzymes that allow organisms to partially or totally overcom e stress resulting from exposure to an unsafe environment. However,the decrease of SOD and CAT activitiesmay have been due to excessiveROSproduction(Xu etal.,2013).These results indicate that treatmentw ith PFOS,PFNA,and PFNA/ PFOS resulted in an increase of ROS.ROS,in turn,stimulated the response of antioxidant defenses and resulted in impaired physiological functions.

    5.Conclusions

    Our study demonstrated the acute and chronic toxicities of two PFCs(single or in combination),and PFOSwas found to be more toxic than PFNA.Parental exposure of D.magna transferred adverse effects to offspring.The body length and r of D.magna were confirmed to bemore sensitive grow th and reproduction parameters for PFCs.In addition,an inhibition of the feeding rate was found in D.magna.AChE,SOD,and CATactivities in D.magna werealso significantly inhibited by the two PFCs in a concentration-dependentmanner.The inhibition action attributed to the two PFCs showed positive correlations between the biom arker responses and the effects on grow th and feeding rates,which suggested that physiologicaland biochem icalendpointsneed to be incorporated into the current PFC regulations.The results of the present study should help increase the base of know ledge on risk assessment of PFCs,and additional research is required to assess the potential adverse impacts of these compounds on aquatic systems.

    References

    Ahrens,L.,Yeung,L.W.Y.,Taniyasu,S.,Lam,P.K.S.,Yamashita,N.,2011. Partitioning of perfluorooctanoate(PFOA),perfluorooctane sulfonate(PFOS)and perfluorooctane sulfonam ide(PFOSA)between water and sediment.Chemosphere 85(5),731-737.http://dx.doi.org/10.1016/ j.chemosphere.2011.06.046.

    Alberdi,J.L.,Saenz,M.E.,Di Marzio,W.D.,Tortorelli,M.C.,1996. Comparative acute toxicity of two herbicides,paraquat and glyphosate,to Daphniamagna and D.spinulata.Bull.Environ.Contam.Toxicol.57(2),229-235.http://dx.doi.org/10.1007/s001289900180.

    Barata,C.,Varo,I.,Navarro,J.C.,Arum,S.,Porte,C.,2005.Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphniamagna exposed to redox cycling compounds.Comp.Biochem. Physiol.,Part C:Toxicol.Pharmacol.140(2),175-186.http://dx.doi.org/ 10.1016/j.cca.2005.01.013.

    Barata,C.,A lanon,P.,Gutierrez-A lonso,S.,Riva,M.C.,F(xiàn)ernandez,C.,Tarazona,J.V.,2008.A Daphnia magna feeding bioassay as a cost effective and ecological relevant sublethal toxicity test for environmental risk assessment of toxic effluents.Sci.Total Environ.405(1-3),78-86. http://dx.doi.org/10.1016/j.scitotenv.2008.06.028.

    Beach,S.A.,New sted,J.L.,Coady,K.,Giesy,J.P.,2006.Ecotoxicological evaluation of perfluorooctanesulfonate(PFOS).Rev.Environ.Contam. Toxicol.186,133-174.http://dx.doi.org/10.1007/0-387-32883-1_5.

    Boudreau,T.M.,Sibley,P.K.,M abury,S.A.,2003.Laboratory evaluation of the toxicity of perfluorooctane sulfonate on Selenastrum capricornutum,Chlorella vulgaris,Lemna gibba,Daphniamagna,and Daphnia pulicaria. Arch.Environ.Contam.Toxicol.44(3),307-313.http://dx.doi.org/ 10.1007/s00244-002-2102-6.

    Bradford,M.M.,1976.A rapid and sensitivemethod for the quantitation of m icrogram quantities of protein utilizing the principle of protein-dye binding.Anal.Biochem.72(1-2),248-254.http://dx.doi.org/10.1016/ 0003-2697(76)90527-3.

    Cai,Y.Q.,Wang,J.M.,Shi,Y.L.,Pan,Y.Y.,Cai,Y.Q.,2010.Perfluorooctane sulfonate(PFOS)and other fluorochem icals in viscera and muscle of farmed pigs and chickens in Beijing.Chin.Sci.Bull.55(31),3550-3555. http://dx.doi.org/10.1007/s11434-010-4098-y.

    Calafat,A.M.,Needham,L.L.,Kuklenyik,Z.,Reidy,J.A.,Tully,J.S.,Aguilar-Villalobos,M.,Naeher,L.P.,2006.Perfluorinated chem icals in selected residentsof the American continent.Chemosphere63(3),490-496.http:// dx.doi.org/10.1016/j.chemosphere.2005.08.028.

    Dao,T.S.,Do-Hong,L.C.,W iegand,C.,2010.Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring.Toxicon 55(7),1244-1254.http://dx.doi.org/10.1016/j.toxicon.2010.01.014.

    de Schamphelaere,K.A.C.,F(xiàn)orrez,I.,Dierckens,K.,Sorgeloos,P.,Janssen,C.R.,2007.Chronic toxicity of dietary copper to Daphnia magna.Aquat.Toxicol.81(4),409-418.http://dx.doi.org/10.1016/ j.aquatox.2007.01.002.

    Dettbarn,W.D.,M ilatovic,D.,Gupta,R.C.,2006.Oxidative stress in anticholinesterase-induced excitotoxicity.In:Gupta,R.C.(Ed.),Toxicology of Organophosphate and Carbamate Compounds.Academ ic Press,Burlington,pp.511-532.

    Ding,G.H.,F(xiàn)romel,T.,van den Brandhof,E.J.,Baerselman,R.,Peijnenburg,W.J.G.M.,2012a.Acute toxicity of poly-and perfluorinated compounds to two cladocerans,Daphniamagna and Chydorussphaericus. Environ.Toxicol.Chem.31(3),605-610.http://dx.doi.org/10.1002/ Etc.1713.

    Ding,G.H.,Zhang,J.,Chen,Y.H.,Luo,G.Y.,Mao,C.H.,2012b.Acute toxicity effect of PFOS on zebrafish embryo.Adv.Mater.Res.356-360(2012),603-606.http://dx.doi.org/10.4028/www.scientific.net/AMR.356-360.603.

    Eschauzier,C.,Haftka,J.,Stuyfzand,P.J.,de Voogt,P.,2010.Perfluorinated compounds in infiltrated River Rhine water and infiltrated rainwater in coastal dunes.Environ.Sci.Technol.44(19),7450-7455.http:// dx.doi.org/10.1021/es100471z.

    Fernandez-Sanjuan,M.,Meyer,J.,Damasio,J.,F(xiàn)aria,M.,Barata,C.,Lacorte,S.,2010.Screening of perfluorinated chemicals(PFCs)in various aquatic organisms.Anal.Bioanal.Chem.398(3),1447-1456.http:// dx.doi.org/10.1007/s00216-010-4024-x.

    Flores,C.,Ventura,F(xiàn).,Martin-Alonso,J.,Caixach,J.,2013.Occurrence of perfluorooctanesulfonate(PFOS)and perfluorooctanoate(PFOA)inNESpanish surface waters and their removal in a drinking water treatment plant that combines conventionaland advanced treatments in parallel lines.Sci.Total Environ.461,618-626.http://dx.doi.org/10.1016/j.scitotenv.2013.05.026.

    Gauld,T.,1951.The grazing rate ofmarine copepods.J.Mar.Biol.Assoc.U. K.29(3),695-706.http://dx.doi.org/10.1017/S0025315400052875.

    Giesy,J.P.,Kannan,K.,2002.Peer reviewed:perfluorochem ical surfactants in theenvironment.Environ.Sci.Technol.36(7),146-152.http://dx.doi.org/ 10.1021/es022253t.

    Guilhermino,L.,Lopes,M.C.,Carvalho,A.P.,Soared,A.M.V.M.,1996.Inhibition of acetylcholinesterase activity as effect criterion in acute tests w ith juvenile Daphnia magna.Chemosphere 32(4),727-738.http:// dx.doi.org/10.1016/0045-6535(95)00360-6.

    Guruge,K.S.,Taniyasu,S.,Yamashita,N.,Wijeratna,S.,Mohotti,K.M.,Seneviratne,H.R.,Kannan,K.,Yamanaka,N.,M iyazaki,S.,2005.Perfluorinated organic compounds in human blood serum and sem inal plasma: a study of urban and rural teaworker populations in Sri Lanka.J.Environ. Monit.7(4),371-377.http://dx.doi.org/10.1039/B412532k.

    Huang,Q.S.,Dong,S.J.,F(xiàn)ang,C.,Wu,X.L.,Ye,T.,Lin,Y.,2012.Deep sequencing-based transcriptome profiling analysis of Oryziasmelastigma exposed to PFOS.Aquat.Toxicol.120-121,54-58.http://dx.doi.org/ 10.1016/j.aquatox.2012.04.013.

    International Organisation for Standardisation(ISO),1996.Water Quality-Determ ination of the Inhibition to the M obility of Daphnia magna Straus(Cladocera,Crustacea):Acute Toxicity Test(ISO 6341).British Standards Institute,London.

    Ji,K.,Kim,Y.,Oh,S.,Ahn,B.,Jo,H.,Choi,K.,2008.Toxicity of perfluorooctane sulfonic acid and perfluorooctanoic acid on freshwatermacroinvertebrates(Daphniamagna and Moinamacrocopa)and fish(Oryzias latipes).Environ.Toxicol.Chem.27(10),2159-2168.http://dx.doi.org/ 10.1897/07-523.1.

    Kannan,K.,Corsolini,S.,F(xiàn)alandysz,J.,F(xiàn)illmann,G.,Kumar,K.S.,Loganathan,B.G.,Mohd,M.A.,Olivero,J.,Van Wouwe,N.,Yang,J.H.,A ldous,K.M.,2004.Perfluorooctanesulfonate and related fluorochem icals in human blood from several countries.Environ.Sci.Technol.38(17),4489-4495.http://dx.doi.org/10.1021/Es0493446.

    Kim,K.T.,Klaine,S.J.,Cho,J.,Kim,S.H.,Kim,S.D.,2010.Oxidative stress responses of Daphnia magna exposed to TiO2nanoparticles according to size fraction.Sci.Total Environ.408(10),2268-2272.http://dx.doi.org/ 10.1016/j.scitotenv.2010.01.041.

    Kim,S.,Kim,W.,Chounlamany,V.,Seo,J.,Yoo,J.,Jo,H.-J.,Jung,J.,2012. Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa.J.Hazard.M ater. 227-228,327-333.http://dx.doi.org/10.1016/j.jhazmat.2012.05.059.

    K ratzer,J.,Ahrens,L.,Roos,A.,Backlin,B.M.,Ebinghaus,R.,2011. Tem poral trends of poly fluoroalkyl compounds(PFCs)in liver tissue of grey seals(Halichoerus grypus)from the Baltic Sea,1974-2008.Chemosphere 84(11),1592-1600.http://dx.doi.org/10.1016/ j.chemosphere.2011.09.001.

    Leondiadis,L.,Vassiliadou,I.,Costopoulou,D.,F(xiàn)erderigou,A.,2010. Levels of perfluorooctane sufonate(PFOS)and perfluorooctanoate(PFOA)in blood samplesfrom different groups of adults living in Greece.Chemosphere 8(1),1199-1206.http://dx.doi.org/10.1016/ j.chemosphere.2010.06.014.

    Li,Z.H.,Zlabek,V.,Velisek,J.,Grabic,R.,M achova,J.,Kolarova,J.,Li,P.,Randak,T.,2011.Acute toxicity of carbamazepine to juvenile rainbow trout(Oncorhynchusmykiss):effects on antioxidant responses,hematological parameters and hepatic EROD.Ecotoxicol.Environ.Safe 74(3),319-327.http://dx.doi.org/10.1016/j.ecoenv.2010.09.008.

    Liu,Y.,Wang,J.,F(xiàn)ang,X.,Zhang,H.,Dai,J.,2011.The thyroid-disrupting effects of long-term perfluorononanoate exposure on zebrafish(Danio rerio).Ecotoxicology 20(1),47-55.http://dx.doi.org/10.1007/s10646-010-0555-3.

    Lotka,A.J.,1913.A naturalpopulation norm.J.Wash.Acad.Sci.3,241-248,289-293.

    Marklund,S.,Marklund,G.,1974.Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase.Eur.J.Biochem.47(3),469-474.http://dx.doi.org/ 10.1111/j.1432-1033.1974.tb03714.x.

    Mommaerts,V.,Hagenaars,A.,Meyer,J.,De Coen,W.,Swevers,L.,M osallanejad,H.,Smagghe,G.,2011.Impact of a perfluorinated organic compound PFOS on the terrestrial pollinator Bombus terrestris(Insecta,Hymenoptera).Ecotoxicology 20(2),447-456.http://dx.doi.org/10.1007/ s10646-011-0596-2.

    M urakam i,M.,Adachi,N.,Saha,M.,M orita,C.,Takada,H.,2011.Levels,temporal trends,and tissue distribution of perfluorinated surfactants in freshwater fish from Asian countries.Arch.Environ.Contam.Toxicol. 61(4),631-641.http://dx.doi.org/10.1007/s00244-011-9660-4.

    Olsen,G.W.,Church,T.R.,Larson,E.B.,Van Belle,G.,Lundberg,J.K.,Hansen,K.J.,Burris,J.M.,Mandel,J.H.,Zobel,L.R.,2004.Serum concentrations of perfluorooctanesulfonate and other fluorochemicals in an elderly population from Seattle,Washington.Chemosphere 54(11),1599-1611.http://dx.doi.org/10.1016/j.chemosphere.2003.09.025.

    Organization for Econom ic Cooperation and Development(OECD),2004. Testno.202:Daphnia sp.acute immobilisation test.In:OECDGuidelines for the Testing of Chemicals,Section 2:Effecton Biotic System.OECD Publishing,Paris.http://dx.doi.org/10.1787/9789264069947-en.

    Organization for Econom ic Cooperation and Development(OECD),2012. Testno.211:Daphniamagna reproduction test.In:OECD Guidelines for the Testing Chemicals,Section 2:Effect on Biotic System.OECD Publishing,Paris.http://dx.doi.org/10.1787/9789264185203-en.

    Pane,E.F.,M cGeer,J.C.,Wood,C.M.,2004.Effects of chronic waterborne nickel exposure on two successive generations of Daphnia magna.Environ.Toxicol.Chem.23(4),1051-1056.http://dx.doi.org/10.1897/03-208.

    Pestana,J.L.T.,Loureiro,S.,Baird,D.J.,Soares,A.M.M.,2010.Pesticide exposure and inducible antipredator responses in the zooplankton grazer,Daphnia magna Straus.Chemosphere 78,41-48.http://dx.doi.org/ 10.1016/j.chemosphere.2009.10.066.

    Plum lee,M.H.,Larabee,J.,Reinhard,M.,2008.Perfluorochemicals in water reuse.Chemosphere 72(10),1541-1547.http://dx.doi.org/10.1016/ j.chemosphere.2008.04.057.

    Pow ley,C.R.,George,S.W.,Russell,M.H.,Hoke,R.A.,Buck,R.C.,2008. Polyfluorinated chemicals in a spatially and temporally integrated food web in the Western Arctic.Chemosphere 70(4),664-672.http:// dx.doi.org/10.1016/j.chemosphere.2007.06.067.

    Qu,B.,Zhao,H.,Zhou,J.,2010.Toxic effects of perfluorooctane sulfonate(PFOS)on wheat(Triticum aestivum L.)plant.Chemosphere 79(5),555-560.http://dx.doi.org/10.1016/j.chemosphere.2010.02.012.

    Renner,R.,2001.Grow ing concern over perfluorinated chem icals.Environ. Sci.Technol.35(7),154A-160A.http://dx.doi.org/10.1021/es012317k.

    Rudel,H.,Muller,J.,Jurling,H.,Bartel-Steinbach,M.,Koschorreck,J.,2011. Survey of patterns,levels,and trends of perfluorinated compounds in aquatic organisms and bird eggs from representative German ecosystems. Environ.Sci.Pollut.Res.Int.18(9),1457-1470.http://dx.doi.org/ 10.1007/s11356-011-0501-9.

    Shivakoti,B.R.,Tanaka,S.,F(xiàn)ujii,S.,Nguyen,P.H.L.,Nozoe,M.,Kunacheva,C.,Okamoto,R.,Seneviratne,S.T.M.L.D.,Tanaka,H.,2011. Perfluorinated compounds(PFCs)in Yodo River system,Japan.Water Sci. Technol.63(1),115-123.http://dx.doi.org/10.2166/Wst.2011.020.

    Tatum-Gibbs,K.,Wambaugh,J.F.,Das,K.P.,Zehr,R.D.,Strynar,M.J.,Lindstrom,A.B.,Delinsky,A.,Lau,C.,2011.Comparative pharmacokinetics of perfluorononanoic acid in rat andmouse.Toxicology 281(1-3),48-55.http://dx.doi.org/10.1016/j.tox.2011.01.003.

    U.S.Environmental Protection Agency(USEPA),2000.The Use of Cholinesterase Inhibition for Risk Assessment of Organophosphate and Carbamate Pesticides.USEPA,Washington,D.C.http://www.epa.gov/oppfead1/ trac/science/cholin.pdf[Retrieved February 22,2013].

    U.S.Environmental Protection Agency(USEPA),2009.Final Third Drinking Water Contaminant Candidate List(CCL 3).USEPA,Washington,D.C.. http://www.epa.gov/ogw dw/ccl/pdfs/ccl3_docs/fs_cc3_final.pdf[Retrieved February 22,2013].

    van Leeuwen,C.J.,Luttmer,W.J.,Griffieon,P.S.,1985.Theuseof cohortsand populations in chronic toxicity studiesw ith Daphnia magna:a cadmium example.Ecotoxicol.Environ.Saf.9(1),26-39.http://dx.doi.org/ 10.1016/0147-6513(85)90031-4.

    Ventura,S.P.,Gon?alves,A.M.,Gon?alves,F(xiàn).,Coutinho,J.A.,2010.Assessing the toxicity on[C3mim][Tf2N]to aquatic organisms of different trophic levels.Aquat.Toxicol.96(4),290-297.http://dx.doi.org/10.1016/ j.aquatox.2009.11.008.

    Wei,Y.,Shi,X.,Zhang,H.,Wang,J.,Zhou,B.,Dai,J.,2009.Combined effectsofpolyfluorinated and perfluorinated compoundson primary cultured hepatocytes from rare m innow(Gobiocypris raru)using toxicogenom ic analysis.Aquat.Toxicol.95(1),27-36.http://dx.doi.org/10.1016/ j.aquatox.2009.07.020.

    Xu,D.,Li,C.,Wen,Y.,Liu,W.,2013.Antioxidant defense system responses and DNA damage of earthworms exposed to perfluorooctane sulfonate(PFOS).Environ.Pollut.174,121-127.http://dx.doi.org/10.1016/ j.envpol.2012.10.030.

    Xuereb,B.,Lefe'vre,E.,Garric,J.,Geffard,O.,2009.Acetylcholinesterase activity in Gammarus fossarum(Crustacea Amphipoda):linking AChE inhibition and behaviouralalteration.Aquat.Toxicol.94,114-122.http:// dx.doi.org/10.1016/j.aquatox.2009.06.010.

    Yi,X.,Kang,S.W.,Jung,J.,2010.Long-term evaluation of lethal and sublethal toxicity of industrial effluents using Daphnia magna and Moinamacrocopa.J.Hazard.Mater.178(1-3),982-987.http://dx.doi.org/ 10.1016/j.jhazmat.2010.02.034.

    Zainuddin,K.,Zakaria,M.P.,A l-Odaini,N.A.,Bakhtiari,A.R.,Latif,P.A.,2012.Perfluorooctanoic acid(PFOA)and perfluorooctane sulfonate(PFOS)in surface water from the Langat River,Peninsular M alaysia.Environ.Forensics 13(1),82-92.http://dx.doi.org/10.1080/ 15275922.2011.643335.

    Zhang,X.M.,Song,J.L.,Jin,Y.H.,2011.Study on reproductive toxicity of perfluorooctanesulfonate(PFOS)inmale quail.Asian J.Ecotoxicol.6(2),143-148(in Chinese).

    Zhao,H.Z.,Lu,G.H.,Xia,J.,Jin,S.G.,2012.Toxicity of nanoscale CuO and ZnO to Daphnia magna.Chem.Res.Chin.Univ.28(2),209-213.

    Zheng,X.M.,F(xiàn)eng,Z.,Liu,H.L.,2011.Toxicity of typical perfluorinated compounds to Daphniamagna and zebrafish(Brachydanio rerio)embryos. In:Persistent Organic Pollutants Forum 2010 and the Fifth Session National Academ ic Symposium of Persistent Organic Pollutants.Chinese Chem ical Society,Nanjing,pp.246-247(in Chinese).

    Zhu,X.S.,Chang,Y.,Chen,Y.S.,2010.Toxicity and bioaccumulation of TiO2nanoparticle aggregates in Daphnia magna.Chemosphere 78(3),209-215.http://dx.doi.org/10.1016/j.chemosphere.2009.11.013.

    Thiswork was supported by the National Natural Science Foundation of China(Grant No.51279061)and the Qing Lan Project of Jiangsu Province.

    *Corresponding author.

    E-mail address:ghlu@hhu.edu.cn(Guang-hua Lu).

    Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.wse.2015.01.001

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    性色av乱码一区二区三区2| 国产主播在线观看一区二区| 免费在线观看完整版高清| 久久中文字幕人妻熟女| 国产国语露脸激情在线看| 少妇的丰满在线观看| 精品久久久久久电影网| 中文字幕人妻熟女乱码| 国产主播在线观看一区二区| 91字幕亚洲| 久久国产精品影院| 欧美不卡视频在线免费观看 | 国产成人精品久久二区二区免费| 啦啦啦在线免费观看视频4| 久久青草综合色| 精品国产乱子伦一区二区三区| 久久热在线av| 成人影院久久| 在线播放国产精品三级| 国产精品永久免费网站| 亚洲 欧美一区二区三区| 麻豆一二三区av精品| 亚洲自偷自拍图片 自拍| 老司机在亚洲福利影院| 国产成人欧美| 国产亚洲精品第一综合不卡| 免费少妇av软件| 国产不卡一卡二| 亚洲精品一二三| 久久狼人影院| 伦理电影免费视频| 欧洲精品卡2卡3卡4卡5卡区| 无人区码免费观看不卡| 免费在线观看黄色视频的| 久久久精品国产亚洲av高清涩受| 69精品国产乱码久久久| 国产熟女午夜一区二区三区| 国产熟女午夜一区二区三区| 黄色片一级片一级黄色片| 99久久精品国产亚洲精品| 老司机午夜福利在线观看视频| 精品欧美一区二区三区在线| 亚洲国产中文字幕在线视频| 久久午夜综合久久蜜桃| 两人在一起打扑克的视频| 成人三级黄色视频| 亚洲成人精品中文字幕电影 | 亚洲欧美日韩无卡精品| 999久久久国产精品视频| 波多野结衣高清无吗| 亚洲伊人色综图| 国产又爽黄色视频| 精品一区二区三卡| 少妇被粗大的猛进出69影院| 18禁国产床啪视频网站| 国产成人精品在线电影| 欧美日本中文国产一区发布| 国产精品久久久久成人av| 欧美人与性动交α欧美软件| 变态另类成人亚洲欧美熟女 | 久久久久精品国产欧美久久久| 夫妻午夜视频| av网站在线播放免费| 成熟少妇高潮喷水视频| 久久伊人香网站| 老司机亚洲免费影院| 亚洲精品在线观看二区| 国产欧美日韩一区二区三| 久久亚洲精品不卡| 男女做爰动态图高潮gif福利片 | 午夜精品国产一区二区电影| 日本五十路高清| 在线视频色国产色| 日韩欧美一区视频在线观看| 日本黄色日本黄色录像| 18禁美女被吸乳视频| 日韩大码丰满熟妇| x7x7x7水蜜桃| 亚洲国产中文字幕在线视频| 久久久久久久久久久久大奶| 亚洲精品国产精品久久久不卡| 国产成人影院久久av| 精品久久久久久电影网| 久久久久久久久免费视频了| 亚洲欧美精品综合一区二区三区| 日韩欧美国产一区二区入口| 久久久水蜜桃国产精品网| 视频在线观看一区二区三区| 桃红色精品国产亚洲av| 国产精华一区二区三区| 国产精品久久久久成人av| 精品高清国产在线一区| 国产免费男女视频| 欧美日韩瑟瑟在线播放| 黑人巨大精品欧美一区二区mp4| 水蜜桃什么品种好| 精品国产亚洲在线| 欧美一区二区精品小视频在线| 亚洲国产精品sss在线观看 | 免费搜索国产男女视频| 最新美女视频免费是黄的| 欧美日韩av久久| 精品久久久久久成人av| 久久久久久亚洲精品国产蜜桃av| 一进一出好大好爽视频| 男女做爰动态图高潮gif福利片 | 日日爽夜夜爽网站| 91成人精品电影| 91av网站免费观看| av天堂久久9| 夜夜看夜夜爽夜夜摸 | 熟女少妇亚洲综合色aaa.| 亚洲av五月六月丁香网| 亚洲av成人av| 久久久久久亚洲精品国产蜜桃av| 少妇 在线观看| 亚洲第一青青草原| 黄色片一级片一级黄色片| 91精品国产国语对白视频| 自线自在国产av| 久久久精品欧美日韩精品| 超色免费av| 午夜精品久久久久久毛片777| 丰满饥渴人妻一区二区三| 亚洲一区中文字幕在线| 97人妻天天添夜夜摸| www日本在线高清视频| 亚洲一区二区三区不卡视频| 国产免费男女视频| 欧美精品亚洲一区二区| 亚洲国产欧美日韩在线播放| 91成人精品电影| 国产高清激情床上av| 国产欧美日韩一区二区三| 久久精品影院6| 国产精品av久久久久免费| 国产精品 国内视频| 两性夫妻黄色片| 女人被狂操c到高潮| 级片在线观看| 日韩国内少妇激情av| 国产真人三级小视频在线观看| 在线看a的网站| 性欧美人与动物交配| 一本大道久久a久久精品| 一a级毛片在线观看| 又大又爽又粗| 在线国产一区二区在线| 日韩成人在线观看一区二区三区| 国产午夜精品久久久久久| 国产亚洲精品久久久久5区| 免费高清视频大片| 琪琪午夜伦伦电影理论片6080| 亚洲av熟女| 中亚洲国语对白在线视频| 国产区一区二久久| 人人澡人人妻人| 日韩精品中文字幕看吧| 手机成人av网站| 国产99白浆流出| 日本 av在线| 90打野战视频偷拍视频| 视频在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产av一区在线观看免费| 一本综合久久免费| 一区二区三区激情视频| 国产精品影院久久| 亚洲成人国产一区在线观看| 国产精品av久久久久免费| 国产精品秋霞免费鲁丝片| 精品国内亚洲2022精品成人| 一a级毛片在线观看| 嫁个100分男人电影在线观看| 看免费av毛片| 久久久国产欧美日韩av| 国产av又大| 在线国产一区二区在线| 午夜免费观看网址| 97超级碰碰碰精品色视频在线观看| 色老头精品视频在线观看| 日韩欧美三级三区| 精品久久蜜臀av无| 身体一侧抽搐| 母亲3免费完整高清在线观看| 欧美久久黑人一区二区| 神马国产精品三级电影在线观看 | 久久青草综合色| 91字幕亚洲| 露出奶头的视频| 国产野战对白在线观看| 亚洲国产欧美日韩在线播放| 国产不卡一卡二| 国产一区二区三区在线臀色熟女 | 久久 成人 亚洲| 亚洲熟女毛片儿| 国产又色又爽无遮挡免费看| videosex国产| 欧美成狂野欧美在线观看| 极品人妻少妇av视频| 免费av中文字幕在线| 欧美乱码精品一区二区三区| 亚洲成人免费电影在线观看| 精品免费久久久久久久清纯| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 美女国产高潮福利片在线看| 纯流量卡能插随身wifi吗| 亚洲精品美女久久久久99蜜臀| 亚洲欧美激情综合另类| 国产99白浆流出| 国内毛片毛片毛片毛片毛片| 精品一区二区三区av网在线观看| 涩涩av久久男人的天堂| 欧美乱妇无乱码| 在线观看免费高清a一片| 天天影视国产精品| 美女 人体艺术 gogo| 又黄又爽又免费观看的视频| 99国产综合亚洲精品| 国产人伦9x9x在线观看| 国产成人系列免费观看| 精品一区二区三区四区五区乱码| 国产成人欧美| 18美女黄网站色大片免费观看| 国产成人免费无遮挡视频| 日本欧美视频一区| 国产国语露脸激情在线看| 变态另类成人亚洲欧美熟女 | 无人区码免费观看不卡| 黄色成人免费大全| 丝袜美腿诱惑在线| 精品国产乱子伦一区二区三区| 美女午夜性视频免费| 国产精品久久视频播放| 午夜日韩欧美国产| 国产精品免费一区二区三区在线| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三区在线| a在线观看视频网站| 99久久99久久久精品蜜桃| 亚洲视频免费观看视频| 老司机福利观看| ponron亚洲| 久久中文字幕人妻熟女| 精品国产乱子伦一区二区三区| 国产又色又爽无遮挡免费看| 老司机午夜十八禁免费视频| 成人特级黄色片久久久久久久| 91av网站免费观看| 精品高清国产在线一区| 欧美黑人欧美精品刺激| 欧美精品一区二区免费开放| av福利片在线| 亚洲狠狠婷婷综合久久图片| 成人手机av| 免费在线观看影片大全网站| 怎么达到女性高潮| 亚洲av片天天在线观看| 12—13女人毛片做爰片一| 免费看a级黄色片| 久久香蕉国产精品| 久久天躁狠狠躁夜夜2o2o| 99热国产这里只有精品6| 国产激情欧美一区二区| 亚洲欧美日韩另类电影网站| 夜夜看夜夜爽夜夜摸 | 又黄又爽又免费观看的视频| 激情视频va一区二区三区| 欧美黑人精品巨大| 日本精品一区二区三区蜜桃| 免费女性裸体啪啪无遮挡网站| 中文字幕色久视频| 亚洲精品成人av观看孕妇| 一个人免费在线观看的高清视频| 精品久久久久久成人av| 美女大奶头视频| 天堂中文最新版在线下载| 看免费av毛片| 日韩成人在线观看一区二区三区| 在线观看免费午夜福利视频| 欧美精品啪啪一区二区三区| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 欧美日韩亚洲高清精品| 欧美黑人精品巨大| 国产欧美日韩一区二区精品| 久久精品人人爽人人爽视色| 国产一区二区激情短视频| 欧美成人性av电影在线观看| 99久久综合精品五月天人人| 99久久综合精品五月天人人| 成人18禁高潮啪啪吃奶动态图| 亚洲专区国产一区二区| 嫩草影视91久久| 国产一区二区激情短视频| 色婷婷av一区二区三区视频| 国产av一区在线观看免费| 欧美乱色亚洲激情| 欧美在线黄色| 成在线人永久免费视频| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 成年版毛片免费区| 波多野结衣高清无吗| 国产一区二区激情短视频| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 9色porny在线观看| 国产精品1区2区在线观看.| 亚洲国产精品999在线| 精品福利永久在线观看| 精品久久蜜臀av无| 黄片播放在线免费| 免费看十八禁软件| 99在线视频只有这里精品首页| 欧美中文日本在线观看视频| 亚洲欧美日韩高清在线视频| 日韩精品中文字幕看吧| 黄色a级毛片大全视频| av片东京热男人的天堂| 久久久久精品国产欧美久久久| 成人精品一区二区免费| 亚洲成人精品中文字幕电影 | 黄频高清免费视频| 欧美中文综合在线视频| 又黄又粗又硬又大视频| 亚洲国产看品久久| 99国产综合亚洲精品| 在线观看日韩欧美| 欧美乱码精品一区二区三区| 日韩一卡2卡3卡4卡2021年| 岛国在线观看网站| 天天影视国产精品| 成在线人永久免费视频| xxxhd国产人妻xxx| 国产免费av片在线观看野外av| 91麻豆av在线| 成人国产一区最新在线观看| 日韩有码中文字幕| 丝袜美足系列| 日本欧美视频一区| 精品国产一区二区久久| 又黄又粗又硬又大视频| 亚洲第一av免费看| 可以免费在线观看a视频的电影网站| 亚洲精品成人av观看孕妇| 满18在线观看网站| 国产激情欧美一区二区| 国产一区二区三区综合在线观看| 高清毛片免费观看视频网站 | 欧美老熟妇乱子伦牲交| 国产精品九九99| 免费在线观看黄色视频的| 国产熟女xx| 国产一区二区三区视频了| 在线免费观看的www视频| 无人区码免费观看不卡| 我的亚洲天堂| 国产高清视频在线播放一区| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 一边摸一边抽搐一进一出视频| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 可以免费在线观看a视频的电影网站| 午夜日韩欧美国产| 久久久久久人人人人人| 妹子高潮喷水视频| 正在播放国产对白刺激| 夜夜看夜夜爽夜夜摸 | 国产一区二区三区视频了| 亚洲国产精品999在线| 中亚洲国语对白在线视频| 黑人猛操日本美女一级片| 丰满饥渴人妻一区二区三| 岛国视频午夜一区免费看| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 又紧又爽又黄一区二区| 精品国产一区二区三区四区第35| 日韩大码丰满熟妇| 搡老乐熟女国产| 免费日韩欧美在线观看| 搡老岳熟女国产| 中文欧美无线码| 亚洲五月色婷婷综合| 日本欧美视频一区| 日日干狠狠操夜夜爽| 成在线人永久免费视频| 成人黄色视频免费在线看| 亚洲一区二区三区不卡视频| 黑人巨大精品欧美一区二区蜜桃| 纯流量卡能插随身wifi吗| 久久精品国产亚洲av高清一级| 色综合欧美亚洲国产小说| 国产亚洲精品一区二区www| 久久久国产欧美日韩av| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 欧美不卡视频在线免费观看 | 亚洲欧美精品综合久久99| 日韩大尺度精品在线看网址 | 亚洲情色 制服丝袜| 日韩 欧美 亚洲 中文字幕| 精品福利永久在线观看| 久久久久久久久中文| 亚洲国产精品sss在线观看 | 首页视频小说图片口味搜索| 欧美不卡视频在线免费观看 | 女人高潮潮喷娇喘18禁视频| 午夜福利,免费看| 欧美在线一区亚洲| 国产精品 欧美亚洲| 成年版毛片免费区| 欧美精品亚洲一区二区| 久久欧美精品欧美久久欧美| 好看av亚洲va欧美ⅴa在| a级片在线免费高清观看视频| av有码第一页| 国产精品成人在线| xxx96com| 女同久久另类99精品国产91| 久久中文看片网| tocl精华| 正在播放国产对白刺激| 欧美日韩黄片免| 免费av毛片视频| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| 99国产精品一区二区三区| 999精品在线视频| 五月开心婷婷网| 久久亚洲真实| 久久午夜综合久久蜜桃| 成人永久免费在线观看视频| 国产精品综合久久久久久久免费 | 亚洲五月天丁香| 99riav亚洲国产免费| 可以免费在线观看a视频的电影网站| 黑人猛操日本美女一级片| 欧美性长视频在线观看| 国产av在哪里看| 日本五十路高清| 91麻豆精品激情在线观看国产 | 日韩大尺度精品在线看网址 | 国产精品99久久99久久久不卡| 天天影视国产精品| 又大又爽又粗| 精品久久久久久成人av| 三级毛片av免费| 国产亚洲av高清不卡| 少妇被粗大的猛进出69影院| 国产av又大| 黄色成人免费大全| 男女床上黄色一级片免费看| 一夜夜www| cao死你这个sao货| 夫妻午夜视频| 国产99白浆流出| av网站免费在线观看视频| 搡老乐熟女国产| 国产精品影院久久| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频 | 日韩一卡2卡3卡4卡2021年| 久久热在线av| 在线观看一区二区三区激情| 纯流量卡能插随身wifi吗| 亚洲视频免费观看视频| 欧美中文日本在线观看视频| 精品电影一区二区在线| 视频在线观看一区二区三区| 香蕉久久夜色| 日本 av在线| 亚洲自拍偷在线| 欧美在线黄色| 国产黄色免费在线视频| 美女福利国产在线| 岛国视频午夜一区免费看| 欧美日韩一级在线毛片| 怎么达到女性高潮| 黄色女人牲交| 国产精华一区二区三区| 手机成人av网站| 欧美黑人欧美精品刺激| 国产黄色免费在线视频| 多毛熟女@视频| 91老司机精品| 亚洲精品成人av观看孕妇| 亚洲成人国产一区在线观看| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 国内毛片毛片毛片毛片毛片| 女人被狂操c到高潮| 热re99久久国产66热| 久久欧美精品欧美久久欧美| 日本精品一区二区三区蜜桃| 国产精品久久久久久人妻精品电影| 热99re8久久精品国产| 免费av中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看 | 国产国语露脸激情在线看| 99精品在免费线老司机午夜| 国产无遮挡羞羞视频在线观看| 亚洲国产看品久久| 久久午夜亚洲精品久久| 校园春色视频在线观看| 又黄又爽又免费观看的视频| 久久国产精品男人的天堂亚洲| 在线观看免费日韩欧美大片| 精品久久久久久久久久免费视频 | 激情在线观看视频在线高清| 日韩欧美免费精品| 国产人伦9x9x在线观看| 老司机靠b影院| 久久性视频一级片| 亚洲av片天天在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 欧美乱色亚洲激情| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 9色porny在线观看| 男女午夜视频在线观看| 亚洲一区二区三区欧美精品| xxxhd国产人妻xxx| 村上凉子中文字幕在线| 一区在线观看完整版| 曰老女人黄片| 夜夜爽天天搞| 亚洲中文日韩欧美视频| 久久久精品欧美日韩精品| 50天的宝宝边吃奶边哭怎么回事| 91精品三级在线观看| 夫妻午夜视频| 另类亚洲欧美激情| 欧美成人免费av一区二区三区| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 免费一级毛片在线播放高清视频 | av中文乱码字幕在线| 色精品久久人妻99蜜桃| 在线国产一区二区在线| 淫秽高清视频在线观看| 亚洲精品国产一区二区精华液| 久久精品91蜜桃| 亚洲人成77777在线视频| 操出白浆在线播放| 999久久久国产精品视频| 老鸭窝网址在线观看| av免费在线观看网站| 成人亚洲精品一区在线观看| 在线国产一区二区在线| 亚洲精品一二三| 精品第一国产精品| 日本五十路高清| 欧美黄色淫秽网站| 精品福利观看| 天堂中文最新版在线下载| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| 熟女少妇亚洲综合色aaa.| 一区二区日韩欧美中文字幕| 视频区图区小说| 亚洲成人免费av在线播放| 日本一区二区免费在线视频| 999久久久国产精品视频| 一个人观看的视频www高清免费观看 | 免费少妇av软件| 一级作爱视频免费观看| 纯流量卡能插随身wifi吗| 色精品久久人妻99蜜桃| 午夜两性在线视频| 黄色视频,在线免费观看| 我的亚洲天堂| 午夜福利在线免费观看网站| 日本撒尿小便嘘嘘汇集6| 亚洲自拍偷在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻aⅴ院| 日韩三级视频一区二区三区| 日本三级黄在线观看| 日韩免费av在线播放| 桃色一区二区三区在线观看| 999精品在线视频| 中文字幕人妻熟女乱码| 在线观看免费视频日本深夜| 男人的好看免费观看在线视频 | tocl精华| 亚洲av片天天在线观看| 少妇裸体淫交视频免费看高清 | 国产91精品成人一区二区三区| 极品人妻少妇av视频| 国产成人欧美| 国产免费现黄频在线看| 咕卡用的链子| 亚洲精品美女久久av网站| 成人精品一区二区免费| 他把我摸到了高潮在线观看| 91老司机精品| 18禁国产床啪视频网站| 日日夜夜操网爽| 两个人免费观看高清视频| 丰满迷人的少妇在线观看| 亚洲国产精品sss在线观看 | 日韩大尺度精品在线看网址 | 一级毛片女人18水好多| avwww免费| 人人妻人人爽人人添夜夜欢视频| 日韩视频一区二区在线观看| 精品一区二区三区四区五区乱码| 亚洲成人免费av在线播放| 热99re8久久精品国产| 国产三级在线视频| 别揉我奶头~嗯~啊~动态视频|