• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Incipientmotion of sediment in presence of submerged flexible vegetation

    2015-09-03 07:29:30HaoWangHongwuTangHanqingZhaoXuanyuZhaoShengqiLuStateKeyLaboratoryofHydrologyWaterResourcesandHydraulicEngineeringHohaiUniversityNanjing210098PRChinaReceived23December2013accepted28May2014Availableonline17January20
    Water Science and Engineering 2015年1期

    Hao Wang,Hong-wu Tang*,Han-qing Zhao,Xuan-yu Zhao,Sheng-qi Lu¨State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,PR China Received 23 December 2013;accepted 28 May 2014 Available online 17 January 2015

    ?

    Incipientmotion of sediment in presence of submerged flexible vegetation

    Hao Wang,Hong-wu Tang*,Han-qing Zhao,Xuan-yu Zhao,Sheng-qi Lu¨
    State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,PR China Received 23 December 2013;accepted 28 May 2014 Available online 17 January 2015

    Abstract

    The presence of submerged vegetation on river beds can change thew ater flow structure and alter the state of sedimentmotion.In this study,the incipientmotion of sediment in the presence of submerged flexible vegetation in open channelswas investigated in a laboratory experiment. The vegetation was simulated w ith flexible rubber cylinders arranged in parallel arrays.The effect of the vegetation density,water depth,and sedimentgrain size on the incipientmotion was investigated.The experimental results indicate that the incipientmotion velocity of sediment increases as the vegetation density decreases and thewater depth and sediment grain size increase.With flexible plants,the incipientmotion velocity of sediment is lower than it isw ithout vegetation,and is larger than it iswith rigid vegetation.A general incipientmotion velocity equation w as derived,which can be applied to both flexible and rigid vegetation conditions. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Sediment incipientmotion;Submerged flexible vegetation;Open channel;Experimentation;Sediment grain size;Water depth

    1.Introduction

    Aseconomic development continues to cause deterioration in the state of our environment,there is increasing interest in ecologicalmanagement.One of the ecological issues associated w ith river mechanics is the water flow and sediment behavior in the presence of vegetation.The mechanics involving vegetation and sediment is complicated(Stephan and Gutknecht,2002;Kouwen etal.,1981;Tang etal.,2007). The existence of vegetation increases the flow resistance,raises the water depth,and promotes the deposition of sedim ent,and the vegetation may sway w ith the flow pressure,promoting the stirring motion of the flow body,and washing away the sedimentaround the plant.Vegetation on river beds absorbs pollutants in the channels and provides habitat for aquatic animals.A lthough river vegetation p lays an important role in the river ecosystem,research on aquatic vegetation w ithin the framework of rivermechanicshasbeen limited.It is therefore useful to conduct further research thatw ill broaden our understanding of the effect of aquatic vegetation on river flow patterns and sedimentbehavior.

    Unlike flow characteristics in open channels w ithout vegetation,the flow velocity distributionw ith vegetation isnot subject to the exponential rule,and anisotropy is significant(Wu,2007).Experiments by Lu¨(2008)showed that the flow velocity distribution isuniform along thewater depth direction in open channelsw ith emergent rigid vegetation.Li and Shen(1973)suggested that the vegetation arrangementon the river bed affects the sediment transport rate.Less sediment is transported when plantsare arranged in a staggered pattern,as comparedw ith the traditionalparallelpattern.Wang andWang(2010)found that vegetation increases the deposition of suspended sediment in water.

    This work was supported by the China National Funds for Distinguished Young Scientists(GrantNo.51125034),the State Key Program of theNational Natural Science Foundation of China(Grant No.51239003),and the National NaturalScience Foundation of China(GrantsNo.51109066 and 51109065).

    *Corresponding author.

    E-mail address:hwtang@hhu.edu.cn(Hong-wu Tang).

    Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.w se.2015.01.002

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Generally,studies on the incipient motion of sediment w ithout vegetation from the point of view of the traditional river mechanics exam ine three aspects:the probability of sediment incipientmotion,flow shear stress,and the sediment transport rate(Zhang,1998).Only a few studies have focused on the incipientmotion of sedimentw ith vegetation. Jordanova and James(2003)and Kothyari et al.(2009)compared bed load transport rates in flows with and w ithout vegetation.They found that the incipientmotion of sediment on a vegetation bed and a flat bed(w ithout vegetation)were similar.Tang et al.(2013)studied the incipient motion of sediment in the presence of emergent rigid vegetation,classified the sediment movement process before the sediment reached the incipient motion state into three stages,and defined the third stage as the incipient motion state.They concluded that sediment moved more easily in flow s w ith vegetation,and the bed surface was deform ed before the sedim ent reached the stage of incipientm otion.Wang et al.(2014)showed that when the sediment was in the stage of incipientmotion,the bed shear stress could be divided into two parts:the grain shear stressand the shear stress caused by sand dunes,which are the bed form after ithasbeen deformed by the sediment incipientmotion.The criterion for the sediment incipientmotion adopted in Tang etal.(2013)andWang etal.(2014)is similar to thatw ithout vegetation proposed by Kramer(Zhang,1998),i.e.,themomentwhen there are few countable sedim ent particles on the bed beginning to move. Both of them are qualitative but can express the stage of the incipientmotion of sedimentvery well.This study isbased on the criterion described above.

    Even thoughmostvegetation found on riverbeds is flexible,studieson theeffectsof flexibleplantson the flow and sediment behavior,such as the incipientmotion of sediment in thewater channel,are rare.In this study we investigated the incipient motion of sediment in an open channel that contain submerged flexible vegetation,which were represented by arrays of thin rubber cy lindersarranged in a regular pattern.We exam ined the factors influencing the incipientmotionvia changes invegetation density,water depth,and sediment grain size.Based on comparisonof the resultsfor rigidand flexiblevegetation,wederivea general equation for the incipientmotion velocity of sediment thatcan beapplied to both rigid and flexiblevegetation.

    Fig.1.Experimental flume and vegetation arrangement(units:cm).

    2.M aterials and m ethods

    The experiment was carried out in a tilting rectangular flume,12m long,0.42m w ide,and 0.7 m deep(Tang et al., 2013),w ith am arble bottom and glass sidewalls for observing the state of the sediment.The flum e was connected to a tank through a pump,which controlled the water discharge to the flume.A sluice at the end of the flume controlled the discharge out of the flume.Different uniform flows were achieved by adjusting thewater pump,sluice,and flume slope.The quartz sand used in the experimentwas collected from the Nanjing reach of the Yangtze River.The sand wasgraded according to its particle diameter d;two diameters were selected for the experiment:d=0.58mm and d=0.67mm,and the relative density was(ρs-ρ)/ρ=1.65,whereρsis the density of sediment,andρis the density of water.The sedim ent used herein was the same as that in Tang etal.(2013).The incipient m otion velocity w ithout vegetation was calculated w ith the equation ofΓ.И.ЩаМов(in Russian)(Zhang,1998).

    A 6m-long section in themiddle of the flumewas selected as the experiment zone(Fig.1).To simulate vegetation accurately in ageometric configuration,thin rubber cylindersw ith a heightof 12 cm,a diameter of 0.6 cm,and stiffness similar to thatofnaturalplants,wereused to imitate thevegetation on the river bed.A horizontal plastic board w ith holes of 1 cm apart served as a base for fixing the artificial plants.Once the simulated plants were set in the board,a 5 cm-thick layer of sand was spread over the board.The actual length of the vegetation inwaterwas H=6 cm.As the number of holes in theboardwas larger than thenumberof plants,the density and pattern of the vegetation could be changed by altering the number of holes between the adjacent plants.The plantswere arranged in the holesaccording to the given vegetation density λ(Table 1),defined as(Tang etal.,2013): where D is the diameter of the vegetation,and X and Y are the distance between the centers of adjacent plants in the x and y directions,respectively.

    Combining the vegetation densityλw ith the discharge Q obtained from the pump monitor,the average flow velocity u in the vegetation zone can be derived from the follow ing equation(Yan,2008;Stone and Shen,2002):where B is the flumew idth,and hvis the heightof the flexible vegetation under the flow force.Eq.(2)was adopted to calculate the incipientmotion velocity when sedimentswere in a stage of incipientmotion.We conducted a series of experiments where the vegetation corresponding to the sediment incipient motion was in a state of swaying motion.We assumed that the height of the vegetation in thewater and the vegetation density did not change w ith the flow conditions(Kuowen and Unny,1973).Here,hv=5.7 cm.

    Initially,thewaterwas pumped into the flume slow ly while the sluice gatewas closed,so that thewater could infiltrate the sand w ithout disturbing it.The discharge could be raised gradually,and the flume slope and the opening of the sluice gatewas adjusted rapidly to keep the flow uniform and stable while ensuring a fixed water depth.This step was repeated until incipientmotion of sediment occurred,and at this time,the discharge Q was recorded.Incipient motion is defined,according to Tang et al.(2013),as noticeable sediment transport out of the scour holes and outside the vegetation zone.Sediment m ovement begins at this stage described above,but it is very m inimal.

    Table 1 Summary of experimental conditions.

    3.Results and discussion

    3.1.Influence of vegetation density and water depth on incipientmotion of sediment

    Fig.2 shows the experimental results of the incipientmotion velocity of sediment from 36 cases w ith submerged flexible vegetation and results calculated w ith the equation of Γ.И.ЩаМов(in Russian)(Zhang,1998)in flow w ithout vegetation.

    Fig.2 indicates that the sediment incipientmotion velocity Upcis related to the vegetation densityλ,and show s a decreasing trend w ith increasingλ,in contrast to the positive correlation between Upcand the water depth and sediment grain size.Themotion of thevegetation in response to the flow force(Kuowen and Unny,1973)disturbs thewater body and causes the sand to move.Additionally,the downward flow along the plant'supstream face scours the rootof theplantand shifts thesedimentthere.Thisaction becomesmoresignificant asλincreases.For deep flow depths,the relative heightof the vegetation is low,the planteffectsmay notbe as significantas in shallow water,and Upcw ill increase.Larger-size sand grains are harder to move in flow w ith or w ithout vegetation. The observed value of Upcis at least 20%lower in flow through submerged flexible vegetation than that in flow w ithout vegetation calculated using the equation of Γ.И.ЩаМов(in Russian)(Zhang,1998),as shown in Fig.2. This indicates that the existence of submerged flexible vegetation can promote sediment transport to some extent.

    Fig.2.Incipientmotion velocity of sediment in different conditions.

    3.2.Incipientmotion velocity of sediment in flowswith rigid and flexible vegetation

    We compared some of our experimental data of the incipient sedimentmotion velocity in flow w ith flexible vegetation w ith thosew ith rigid vegetation(Tang etal.,2013),assuming that the other experimental conditions were similar.Theresults show that Upcin flow w ith flexible vegetation is generally higher than Upcw ith rigid vegetation(Fig.3). Hence,the equation that applies to flow w ith rigid vegetation cannotbe applied to flow w ith flexible vegetation.

    We can analyze this phenomenon based on the rule of conservation of energy.In flow w ith rigid vegetation,the upstream kinetic energy is used to maintain the motion of the downstream flow,sediment transport,and to some extent the dissipation of the stirring motion.In flow w ith flexible vegetation,in addition to theabove functions,someof the energy is dissipated by theplant'sswayingmotion.Tomaintain thesame state of m otion,much more energy is required in flow w ith flexible vegetation than w ith rigid vegetation.Moreover,w ith rigid vegetation,the downward flow at the plant's upstream face is vertical to the bed.Flexible vegetation tends to bend w ith the flow force.Thus,the downward flow suffers the resistance force from the swaying of flexible vegetation.This force restrains sedimentmotion.Hence,compared w ith rigid vegetation,flexible vegetation has a positive effecton control of flow scouring by absorbing more energy w ith itsmotion.

    Fig.3.Incipientmotion velocity of sediment in flowsw ith rigid and flexible vegetation.

    Fig.4.Comparison of experimental and calculated incipientmotion velocities of sediment.

    3.3.Equation of incipientmotion velocity of sediment in presence of vegetation

    Tang et al.(2013)defined the incipientmotion velocity of sediment in the presence of emergent rigid vegetation as

    where k,a1,a2,and a3are constants,and CLand Cdare coefficients for the lift force and drag force,respectively,when the bed load interacts w ith currentm oving.Their result was based on research on rigid vegetation.In flow w ith subm erged flexible vegetation,Upcis also related to h/hvand H/hv,and can be expressed as

    where h/hvindicates the relative degree of submergence,and H/hvindicates thew inding level.

    Substituting theexperimentaldata into Eq.(4),the incipient motion velocity of sediment in the presence of submerged flexible vegetation can be derived:

    The first part on the right side of Eq.(5)represents the incipient motion velocity of sediment in emergent rigid vegetation conditions;the second part reflects the factors that depend on the characteristicsof the flexiblevegetation.For the emergent rigid plant,the second expression is constant and is equal to 1.Fig.4 presentsa comparison between the observed values of Upcand those calculated w ith Eq.(5).The velocity Upcdepends on the relative degree of submergencewhile the p lant sways in the water.According to Kuowen and Unny(1973),the vegetation changes from swaying m otion to a constant oblique condition when the flow velocity increases. Therefore,while in this study we focused on swaying vegetation,further study on Upcaround vegetation in an oblique condition should be carried out.

    Eq.(5)can be rew ritten as

    based on the equation ofΓ.И.ЩаМов(in Russian),which is fitted for the incipient motion velocity of sedim ent w ithoutvegetation.The equation ofΓ.И.ЩаМов(in Russian)only includes the first part on the right side of Eq.(6).The second part is the vegetation factor.Setting the value of the vegetation factor to 1 yields the following equation:

    In contrast to thatof emerged rigid vegetation(Tang etal.,2013),the vegetation factor of submerged flexible vegetation consists of the winding level and the relative degree of submergence in different flow conditions.Eq.(7)appears to be a critical equation.If the value of the vegetation factor is less than 1,the effect of vegetation isnotnegligible.Therefore,the vegetation factor is a key factor that determ ines whether the vegetation has influence on the incipient motion velocity of sediment.In fact,the value of the vegetation factor could be greater than 1.For a significantwater depth,when the height of vegetation is less than a threshold value,the vegetation factor is greater than 1.In this case,the vegetation can be regarded as roughness elements,the influence of the vegetation on sediment transport can be ignored,and the vegetation factor can be considered 1.In fact,the vegetation factor is the parameter that describes the relationships between plants,the water depth,the density of vegetation,and the sediment in the influenced zone.

    4.Conclusions

    We conducted laboratory experiments to investigate the factors that affect the incipientmotion of sediment on river beds.Ourmain conclusions are as follows:

    (1)The plant density and the relative degree of submergence influence the incipientmotion velocity of sediment in the presence of submerged flexible vegetation.The incipient m otion velocity of sediment increases as the plant density decreases and the water depth and sediment grain size increase.

    (2)With flexible plants,the value of incipientmotion velocity of sediment is lower than that in the case w ithout vegetation,but is larger than it isw ith rigid vegetation.

    (3)A general incipientmotion velocity equation(Eq.(6))was derived,which can be applied to both rigid and flexible vegetation.

    (4)Factors such as the pattern of vegetation grow th on the bottom,the p lantdim ensions,and the vegetation statewere not investigated in this study.Further study on incipientmotion of sediment in the presence of vegetation should focus on these aspects.

    References

    Jordanova,A.A.,James,C.S.,2003.Experimental study of bed load transport through emergent vegetation.J.Hydraul.Eng.129(6),474-478.http:// dx.doi.org/10.1061/(ASCE)0733-9429(2003)129:6(474).

    Kothyari,U.C.,Hashimoto,H.,Hayashi,K.,2009.Effectof tall vegetation on sediment transport by channel flow s.J.Hydraul.Res.47(6),700-710. http://dx.doi.org/10.3826/jhr.2009.3317.

    Kouwen,N.,Li,R.M.,Simons,D.B.,1981.Flow resistance in vegetated waterways.Trans.ASABE 24(3),684-698.http://dx.doi.org/10.13031/ 2013.34321.

    Kuowen,N.,Unny,T.E.,1973.Flexible roughness in open channels.J. Hydraul.Div.99(5),713-728.

    Li,R.M.,Shen,H.W.,1973.Effectof tall vegetations on flow and sediment.J. Hydraul.Div.99(5),793-814.

    Lu¨,S.Q.,2008.Experimental Study on Suspended Sediment Distribution in Flow w ith Rigid Vegetation.Ph.D.Dissertation.HohaiUniversity,Nanjing(in Chinese).

    Stephan,U.,Gutknecht,D.,2002.Hydraulic resistance of submerged flexible vegetation.J.Hydrol.269(1-2),27-43.http://dx.doi.org/10.1016/S0022-1694(02)00192-0.

    Stone,B.M.,Shen,H.T.,2002.Hydraulic resistance of flow in channelsw ith cylindrical roughness.J.Hydraul.Eng.128(5),500-506.http:// dx.doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500).

    Tang,H.W.,Yan,J.,Lu¨,S.Q.,2007.Advances in research on flows w ith vegetation in river management.Adv.Water Sci.18(5),785-792(in Chinese).

    Tang,H.W.,Wang,H.,Liang,D.F.,Lu¨,S.Q.,Yan,J.,2013.Incipientmotion of sediment in the presence of emergent rigid vegetation.J.Hydro-environ. Res.7(3),202-208.http://dx.doi.org/10.1016/j.jher.2012.11.002.

    Wang,C.,Wang,C.,2010.Turbulent characteristics in open-channel flow w ith emergent and submerged macrophytes.Adv.Water Sci.21(6),816-822(in Chinese).

    Wang,H.,Tang,H.W.,Yuan,S.Y.,Lu¨,S.Q.,Zhao,X.Y.,2014.An experimental study of the incipient bed shear stress partition in mobile bed channels filled w ith emergent rigid vegetation.Sci.China-Technol.Sci. 57(6),1165-1174.http://dx.doi.org/10.1007/s11431-014-5549-6.

    Wu,F(xiàn).S.,2007.Flow resistance of flexible vegetation in open channel.J. Hydraul.Eng.38(s1),283-287(in Chinese).

    Yan,J.,2008.Experimental Study on Flow Resistance and Turbulence Characteristics of Open Channel Flowsw ith Vegetation.Ph.D.Dissertation.HohaiUniversity,Nanjing(in Chinese).

    Zhang,R.J.,1998.M echanics of River Sediment,second ed.China Water-Power Press,Beijing(in Chinese).

    熟女av电影| 妹子高潮喷水视频| 一区福利在线观看| 亚洲欧美精品自产自拍| 人人妻人人澡人人看| 亚洲欧美日韩高清在线视频 | svipshipincom国产片| 美国免费a级毛片| 欧美 日韩 精品 国产| 国产又色又爽无遮挡免| 亚洲黑人精品在线| av又黄又爽大尺度在线免费看| 色播在线永久视频| 亚洲图色成人| 看十八女毛片水多多多| 久久精品国产亚洲av高清一级| 精品一区二区三区四区五区乱码 | 男人添女人高潮全过程视频| 男女之事视频高清在线观看 | 激情视频va一区二区三区| 国产真人三级小视频在线观看| 成人亚洲欧美一区二区av| 久9热在线精品视频| 国产精品三级大全| 水蜜桃什么品种好| 欧美黑人精品巨大| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 超碰成人久久| 91成人精品电影| 国产精品.久久久| 如日韩欧美国产精品一区二区三区| 欧美中文综合在线视频| 9热在线视频观看99| 亚洲欧美色中文字幕在线| 最近中文字幕2019免费版| 女警被强在线播放| 国产免费视频播放在线视频| 亚洲图色成人| 日本a在线网址| 一本色道久久久久久精品综合| 午夜91福利影院| 成年av动漫网址| 19禁男女啪啪无遮挡网站| 亚洲熟女精品中文字幕| 一级毛片女人18水好多 | 亚洲伊人久久精品综合| 国产免费一区二区三区四区乱码| 精品亚洲成国产av| 久久国产精品大桥未久av| 99香蕉大伊视频| 国产成人av激情在线播放| 一本大道久久a久久精品| 亚洲精品第二区| 丁香六月天网| 国产精品国产av在线观看| av网站免费在线观看视频| av网站在线播放免费| www日本在线高清视频| 在线观看人妻少妇| 黄频高清免费视频| 日韩大片免费观看网站| 在现免费观看毛片| avwww免费| 久久久久久久久久久久大奶| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 在线观看一区二区三区激情| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 国产精品国产三级国产专区5o| kizo精华| 最黄视频免费看| 在线观看免费高清a一片| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 精品熟女少妇八av免费久了| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲 | 婷婷色av中文字幕| 欧美激情极品国产一区二区三区| 在线av久久热| 欧美日韩精品网址| 熟女av电影| 亚洲色图 男人天堂 中文字幕| 天堂8中文在线网| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩综合久久久久久| 日本vs欧美在线观看视频| 亚洲欧美清纯卡通| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 91麻豆av在线| 亚洲熟女毛片儿| 中文字幕人妻丝袜一区二区| 亚洲伊人久久精品综合| 男人爽女人下面视频在线观看| 美女中出高潮动态图| 男的添女的下面高潮视频| 免费av中文字幕在线| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 亚洲av成人精品一二三区| 黄色毛片三级朝国网站| 精品亚洲成国产av| 日韩一本色道免费dvd| 中国国产av一级| 免费在线观看影片大全网站 | 中国国产av一级| 蜜桃国产av成人99| 午夜福利免费观看在线| 亚洲成国产人片在线观看| 91精品国产国语对白视频| 日韩一区二区三区影片| 久久精品国产亚洲av涩爱| 日本色播在线视频| 9191精品国产免费久久| 精品一区二区三卡| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 国产亚洲av片在线观看秒播厂| 精品人妻熟女毛片av久久网站| 伊人久久大香线蕉亚洲五| 久9热在线精品视频| 99久久精品国产亚洲精品| 亚洲精品久久久久久婷婷小说| 香蕉国产在线看| 美女扒开内裤让男人捅视频| 大片免费播放器 马上看| 在线观看www视频免费| 国产成人系列免费观看| 国产一区二区激情短视频 | 岛国毛片在线播放| 最新的欧美精品一区二区| 国产一区亚洲一区在线观看| 91精品伊人久久大香线蕉| 精品国产超薄肉色丝袜足j| 精品一区二区三卡| 国产av精品麻豆| 久久性视频一级片| 国产高清国产精品国产三级| 晚上一个人看的免费电影| 人妻人人澡人人爽人人| 精品人妻一区二区三区麻豆| 一级片免费观看大全| 国产人伦9x9x在线观看| 中文字幕亚洲精品专区| 久久中文字幕一级| 国产精品欧美亚洲77777| 激情视频va一区二区三区| 成人免费观看视频高清| 大片电影免费在线观看免费| 国产欧美日韩一区二区三区在线| 美女脱内裤让男人舔精品视频| 国产亚洲欧美精品永久| 国产精品国产三级国产专区5o| 国产三级黄色录像| 成人三级做爰电影| 国产高清视频在线播放一区 | 日韩一卡2卡3卡4卡2021年| 国产精品久久久久成人av| 一区二区日韩欧美中文字幕| 中文欧美无线码| 99九九在线精品视频| 男女无遮挡免费网站观看| 十八禁人妻一区二区| 高清不卡的av网站| 成年动漫av网址| 中文欧美无线码| av国产久精品久网站免费入址| 精品国产一区二区三区四区第35| 成人黄色视频免费在线看| 亚洲欧美一区二区三区久久| 久久亚洲国产成人精品v| 国产成人一区二区三区免费视频网站 | 真人做人爱边吃奶动态| 两个人免费观看高清视频| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 欧美老熟妇乱子伦牲交| 操美女的视频在线观看| 亚洲三区欧美一区| 你懂的网址亚洲精品在线观看| 伦理电影免费视频| 亚洲精品一区蜜桃| 一区二区三区精品91| 午夜日韩欧美国产| 国产一卡二卡三卡精品| 国产成人91sexporn| 狂野欧美激情性bbbbbb| 天天添夜夜摸| www.精华液| 久久久久久久大尺度免费视频| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 精品国产一区二区三区四区第35| 日本wwww免费看| 一边摸一边抽搐一进一出视频| 在线精品无人区一区二区三| 婷婷丁香在线五月| 亚洲精品国产av蜜桃| 国产免费福利视频在线观看| 国产成人免费无遮挡视频| 日本欧美视频一区| av福利片在线| 99热全是精品| 51午夜福利影视在线观看| av天堂久久9| 99久久人妻综合| 电影成人av| 中文字幕av电影在线播放| 欧美在线黄色| 国产精品一国产av| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 成年女人毛片免费观看观看9 | 人体艺术视频欧美日本| 人人澡人人妻人| 亚洲国产毛片av蜜桃av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区中文字幕在线| 视频区欧美日本亚洲| 男女边吃奶边做爰视频| 久久久国产欧美日韩av| 操出白浆在线播放| 国产视频一区二区在线看| 国产精品一区二区在线观看99| svipshipincom国产片| 亚洲图色成人| 欧美成狂野欧美在线观看| 国产精品熟女久久久久浪| 亚洲精品美女久久久久99蜜臀 | 亚洲男人天堂网一区| 女人精品久久久久毛片| 国产高清视频在线播放一区 | 国产成人啪精品午夜网站| 999久久久国产精品视频| cao死你这个sao货| 国产成人精品久久二区二区免费| 一二三四社区在线视频社区8| 可以免费在线观看a视频的电影网站| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 精品一区二区三区av网在线观看 | 一本大道久久a久久精品| 99re6热这里在线精品视频| 精品久久蜜臀av无| 999久久久国产精品视频| 日韩av在线免费看完整版不卡| 王馨瑶露胸无遮挡在线观看| 岛国毛片在线播放| 激情五月婷婷亚洲| 国产免费又黄又爽又色| 99热网站在线观看| 久久久久久人人人人人| 日韩大码丰满熟妇| 国产精品99久久99久久久不卡| 成人亚洲欧美一区二区av| 人人澡人人妻人| 精品视频人人做人人爽| 亚洲伊人久久精品综合| 久久久久久人人人人人| 两性夫妻黄色片| 男人爽女人下面视频在线观看| 国产免费现黄频在线看| 一级毛片女人18水好多 | 久久青草综合色| 成年动漫av网址| 99久久精品国产亚洲精品| 亚洲精品国产区一区二| 欧美日韩成人在线一区二区| 97人妻天天添夜夜摸| 美女脱内裤让男人舔精品视频| 久久99热这里只频精品6学生| 久久精品aⅴ一区二区三区四区| 99热网站在线观看| 黑人巨大精品欧美一区二区蜜桃| 后天国语完整版免费观看| 国产精品99久久99久久久不卡| 亚洲九九香蕉| 91精品伊人久久大香线蕉| 熟女av电影| 美女扒开内裤让男人捅视频| 日本欧美视频一区| e午夜精品久久久久久久| 一边摸一边抽搐一进一出视频| 国产xxxxx性猛交| 久久精品国产亚洲av高清一级| 一级毛片 在线播放| 国产高清国产精品国产三级| 久久人人爽人人片av| 老熟女久久久| 人成视频在线观看免费观看| 国产成人啪精品午夜网站| 搡老岳熟女国产| 又大又爽又粗| 看免费av毛片| 国产亚洲精品第一综合不卡| 国产精品久久久久久人妻精品电影 | 欧美日韩亚洲高清精品| videosex国产| 777米奇影视久久| 另类精品久久| 国产高清不卡午夜福利| www.精华液| 每晚都被弄得嗷嗷叫到高潮| 一级毛片黄色毛片免费观看视频| www.熟女人妻精品国产| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 国产欧美日韩综合在线一区二区| 婷婷色综合www| 国产欧美亚洲国产| 日日夜夜操网爽| 亚洲国产精品999| 国产精品 欧美亚洲| 无遮挡黄片免费观看| 视频区图区小说| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 久久久久视频综合| 久久精品人人爽人人爽视色| 99热网站在线观看| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av| 久久狼人影院| 成人亚洲精品一区在线观看| 国产精品免费大片| 久久久久久免费高清国产稀缺| 成人亚洲欧美一区二区av| 国产片内射在线| 国产在线一区二区三区精| 大话2 男鬼变身卡| 9色porny在线观看| 精品亚洲成国产av| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看| 制服诱惑二区| 国产在视频线精品| 国产一卡二卡三卡精品| 日本vs欧美在线观看视频| 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜| 大片电影免费在线观看免费| 免费在线观看影片大全网站 | 18禁黄网站禁片午夜丰满| 美女国产高潮福利片在线看| 久久精品国产亚洲av涩爱| 大码成人一级视频| 国产一级毛片在线| 满18在线观看网站| 久久久久久久精品精品| 国产成人系列免费观看| 后天国语完整版免费观看| av不卡在线播放| 亚洲男人天堂网一区| 亚洲精品乱久久久久久| 国产精品久久久久久精品古装| 久久人妻福利社区极品人妻图片 | 国产欧美日韩一区二区三 | 女人久久www免费人成看片| 日本wwww免费看| 97精品久久久久久久久久精品| 中文字幕人妻丝袜一区二区| 色婷婷av一区二区三区视频| 手机成人av网站| 美女高潮到喷水免费观看| 日本猛色少妇xxxxx猛交久久| 在线亚洲精品国产二区图片欧美| 高清黄色对白视频在线免费看| 久久99热这里只频精品6学生| 欧美在线黄色| 国产成人av教育| 日韩一区二区三区影片| 国产亚洲精品久久久久5区| 人人妻人人添人人爽欧美一区卜| 天天影视国产精品| bbb黄色大片| 国产视频一区二区在线看| 香蕉丝袜av| 免费在线观看日本一区| 日韩视频在线欧美| 99香蕉大伊视频| 一级a爱视频在线免费观看| 99国产综合亚洲精品| 久久ye,这里只有精品| av在线app专区| 日本午夜av视频| 国产片特级美女逼逼视频| 99国产精品一区二区蜜桃av | 久久99精品国语久久久| 黄色 视频免费看| 一区在线观看完整版| 性色av一级| 欧美精品一区二区免费开放| 国产高清视频在线播放一区 | 国产国语露脸激情在线看| 操出白浆在线播放| 精品一区二区三区四区五区乱码 | 日韩中文字幕欧美一区二区 | 久久热在线av| 丝袜在线中文字幕| 波野结衣二区三区在线| 男女国产视频网站| 丝袜喷水一区| 久久99精品国语久久久| 亚洲精品日本国产第一区| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 免费黄频网站在线观看国产| 成人黄色视频免费在线看| 老司机在亚洲福利影院| 国产av精品麻豆| 一区二区三区四区激情视频| 国产不卡av网站在线观看| 极品人妻少妇av视频| 亚洲成人免费电影在线观看 | 亚洲欧美中文字幕日韩二区| 午夜福利在线免费观看网站| 脱女人内裤的视频| 国产伦理片在线播放av一区| 日本一区二区免费在线视频| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品美女久久av网站| 最新在线观看一区二区三区 | 国产一区二区激情短视频 | 精品卡一卡二卡四卡免费| 国产一区二区三区综合在线观看| av一本久久久久| 免费在线观看视频国产中文字幕亚洲 | www.自偷自拍.com| 亚洲一区二区三区欧美精品| av不卡在线播放| 成在线人永久免费视频| 久久精品亚洲熟妇少妇任你| 婷婷色麻豆天堂久久| 国产日韩欧美视频二区| 一区在线观看完整版| 亚洲av成人不卡在线观看播放网 | 亚洲国产欧美网| 最近中文字幕2019免费版| 五月天丁香电影| 免费看十八禁软件| 三上悠亚av全集在线观看| 两人在一起打扑克的视频| 国产免费又黄又爽又色| 乱人伦中国视频| 国产欧美日韩综合在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 捣出白浆h1v1| 夜夜骑夜夜射夜夜干| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 69精品国产乱码久久久| 在线观看人妻少妇| www.熟女人妻精品国产| 岛国毛片在线播放| 热99国产精品久久久久久7| 麻豆av在线久日| 亚洲精品中文字幕在线视频| 亚洲国产av影院在线观看| 国产xxxxx性猛交| av天堂久久9| 国产在线免费精品| 热99国产精品久久久久久7| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品古装| 精品一区二区三区四区五区乱码 | 亚洲国产av影院在线观看| 国产免费又黄又爽又色| 黄片播放在线免费| 国产av精品麻豆| 黄色视频在线播放观看不卡| 麻豆国产av国片精品| 男女午夜视频在线观看| 国产精品 欧美亚洲| 捣出白浆h1v1| 老司机深夜福利视频在线观看 | 亚洲精品国产色婷婷电影| 99国产精品免费福利视频| 丝袜美足系列| 日韩人妻精品一区2区三区| 丝袜在线中文字幕| 狂野欧美激情性xxxx| av视频免费观看在线观看| 亚洲 欧美一区二区三区| 香蕉丝袜av| 久久国产精品影院| 亚洲欧美成人综合另类久久久| 午夜影院在线不卡| 青青草视频在线视频观看| 国产男女超爽视频在线观看| 下体分泌物呈黄色| av福利片在线| 精品国产一区二区三区四区第35| 50天的宝宝边吃奶边哭怎么回事| 精品国产乱码久久久久久男人| 一级黄色大片毛片| 日本wwww免费看| h视频一区二区三区| 一级毛片女人18水好多 | 欧美成人午夜精品| 亚洲欧洲国产日韩| 一区二区日韩欧美中文字幕| 黄色毛片三级朝国网站| 亚洲黑人精品在线| 午夜精品国产一区二区电影| 中文字幕色久视频| 高清视频免费观看一区二区| 最近手机中文字幕大全| 欧美亚洲 丝袜 人妻 在线| 乱人伦中国视频| 欧美另类一区| 人人妻人人澡人人爽人人夜夜| a 毛片基地| 一区在线观看完整版| 国产精品久久久av美女十八| 我的亚洲天堂| 丝袜美腿诱惑在线| 天堂俺去俺来也www色官网| 精品熟女少妇八av免费久了| 狠狠精品人妻久久久久久综合| 99精品久久久久人妻精品| 久久久久国产一级毛片高清牌| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 中文字幕制服av| 99热国产这里只有精品6| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区 | 欧美亚洲日本最大视频资源| 日本av免费视频播放| 国产黄色视频一区二区在线观看| 母亲3免费完整高清在线观看| 超碰成人久久| 日本a在线网址| 在线 av 中文字幕| 亚洲一码二码三码区别大吗| 在线 av 中文字幕| 交换朋友夫妻互换小说| 亚洲欧美中文字幕日韩二区| cao死你这个sao货| 亚洲欧美中文字幕日韩二区| 男女之事视频高清在线观看 | 久久久精品免费免费高清| 黑人猛操日本美女一级片| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 成年动漫av网址| 久久久久精品国产欧美久久久 | 日韩制服丝袜自拍偷拍| bbb黄色大片| 精品人妻1区二区| 日韩大片免费观看网站| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 欧美激情 高清一区二区三区| 日本av手机在线免费观看| 久久国产精品大桥未久av| 侵犯人妻中文字幕一二三四区| 极品人妻少妇av视频| 欧美激情 高清一区二区三区| 一本大道久久a久久精品| 男人操女人黄网站| 在线观看免费视频网站a站| 亚洲中文日韩欧美视频| 久久天躁狠狠躁夜夜2o2o | 高清av免费在线| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 国产国语露脸激情在线看| 午夜免费男女啪啪视频观看| 午夜福利影视在线免费观看| 午夜av观看不卡| avwww免费| 王馨瑶露胸无遮挡在线观看| 在线观看免费日韩欧美大片| 搡老岳熟女国产| 黄色毛片三级朝国网站| 免费看十八禁软件| 一个人免费看片子| 日日夜夜操网爽| 亚洲精品自拍成人| 国产日韩欧美亚洲二区| 午夜免费鲁丝| 电影成人av| videos熟女内射| 看免费av毛片| 久久久亚洲精品成人影院| 国产亚洲精品第一综合不卡| 久久99热这里只频精品6学生| 老鸭窝网址在线观看| 亚洲图色成人| 天堂8中文在线网| 欧美精品一区二区大全| 亚洲国产精品国产精品| 天堂8中文在线网| 国产精品久久久久久人妻精品电影 | 又大又黄又爽视频免费| 女人爽到高潮嗷嗷叫在线视频| 日韩视频在线欧美| 一级毛片电影观看| 亚洲av美国av| 大片免费播放器 马上看| 国产成人精品久久久久久| 久热爱精品视频在线9| 欧美日韩视频精品一区| 久久人人97超碰香蕉20202| 久久久久国产一级毛片高清牌| 国产一卡二卡三卡精品| 99国产精品99久久久久| 国产成人精品久久二区二区91|