• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of subsurfacewastewater infiltration system to on-site treatment of domestic sewage under high hydraulic loading rate

    2015-09-03 07:29:29YinghuaLiHaiboLiXinyangXuXuanGongYongchunZhouSchoolofResourcesandCivilEngineeringNortheasternUniversityShenyang110004PRChinaReceived17February2014acceptedJanuary2015AvailableonlineFebruary2015
    Water Science and Engineering 2015年1期

    Ying-hua Li,Hai-bo Li*,Xin-yang Xu,Xuan Gong,Yong-chun ZhouSchool of Resources and Civil Engineering,Northeastern University,Shenyang 110004,PRChina Received 17 February 2014;accepted 4 January 2015 Available online 7 February 2015

    ?

    Application of subsurfacewastewater infiltration system to on-site treatment of domestic sewage under high hydraulic loading rate

    Ying-hua Li,Hai-bo Li*,Xin-yang Xu,Xuan Gong,Yong-chun Zhou
    School of Resources and Civil Engineering,Northeastern University,Shenyang 110004,PRChina Received 17 February 2014;accepted 4 January 2015 Available online 7 February 2015

    Abstract

    In order toenhance thehydraulic loading rate(HLR)of a subsurfacewastewater infiltration system(SW IS)used in treating domestic sewage,the interm ittent operation mode was employed in the SW IS.The results show that the interm ittent operation mode contributes to the improvementof the HLR and the pollutant removal rate.When thewetting-drying ratio(RWD)was1.0,the pollutant removal rate increased by(13.6±0.3)%for NH3-N,(20.7±1.1)%for TN,(18.6±0.4)%for TP,(12.2±0.5)%for BOD,(10.1±0.3)%for COD,and(36.2±1.2)%for SS,com pared w ith pollutant removal rates under the continuous operationmode.The pollutant removal rate declined w ith the increase of the HLR.Theeffluentqualitymet The ReuseofUrban RecyclingWater-Water Quality Standard for Scenic Environment Use(GB/T 18921-2002)evenwhen the HLRwasashigh as10 cm/d.Hydraulic conductivity,oxidation reduction potential(ORP),thequantity of nitrifying bacteria,and the pollutant removal rateof NH3-N increased with the decreaseof the RWD.For the pollutant removal rates of TP,BOD,and COD,therewere no significantdifference(p<0.05)under different RWDs.Thesuggested RWDwas1.0.Relative contributionof the pretreatmentand SW IS to the pollutant removalw as exam ined,and more than 80%removal of NH3-N,TN,TP,COD,and BOD occurred in the SW IS.

    ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Domestic sewage;Subsurface wastewater infiltration system;Interm ittent operationmode;Hydraulic loading rate;Pollutant removal rate

    1.Introduction

    In rural areas of Northeast China,conventional centralized sewer systemshave become impracticaldue to the topography and long distances between the connected facilities(Petter et al.,2010;Qian et al.,2007).Water shortage in these areas has created a need for both higher quality and a greater quantity of reclaimed water.Conventional system s,such as activated sludge,biological contactors,and chemical precipitation,are alternatives,but previous studieshave shown that it is difficult for them to meet the discharge standard for phosphorus concentration(Arve et al.,2006;Fan et al.,2009). Therefore,there isan urgentneed for simplemaintainable onsite system sw ith excellent treatment performance.

    A subsurface wastewater infiltration system(SW IS)w ith pretreatm ent(e.g.,septic tank,biological contractor,and biological filtration)has been pioneered in Northeast China(Li et al.,2011;Qian et al.,2007).Over the past 20 years,the SW IS has gained popularity as an effective and low-cost alternative forwastewater treatment,especially in villagesand small communities.The SW IS has shown excellent performance in organics,nitrogen,and phosphorus removal(Kadam et al.,2009).Table 1 summarizes the treatment efficiency of SW ISs.Up to now,themain research on SWISs has focused on system design,treatm ent perform ance,and pollutant removalm echanisms(Pan et al.,2012;Zhang et al.,2011).

    Previous studieshave suggested that,although the SW IS is a treatment system with simple mechanisms,the treatment process of pollutant removal is intricate(Zhang et al.,2011). The hydrology,microbiology,and water chemistry are complex and interconnected.Studies have presented relatively high removal efficiency for chem ical oxygen demand(COD),biochem ical oxygen demand(BOD),suspended solids(SS),and pathogens(Stewart and Louis,2010).However,nutrient removal efficiency is low and variable.Moreover,the nutrient removal decreasesw ith the increase of service age of a SW IS(Robertson,2010).In addition,compared to the conventional treatmentplants,SW ISsoccupy relatively largeareas resulting from the low hydraulic capacity.The cost of SW ISs is high due to the size requirement.If the hydraulic loading rate(HLR)could be higher,SWISs could be built smaller,and the initial costwould be lower,which would greatly enhance the market potential and application prospects of SW ISs.Therefore,the aims of this study were:(1)to examine the contribution of the interm ittent operation mode to the HLR encouragement in the SW IS;(2)to assess the pollutant removal contribution of both the SW IS and pretreatm ent;and(3)to evaluate the impact of the SW IS effluent on receivingwater quality under a high HLR.

    Table 1 Treatment efficiency of SW ISs.

    2.M aterials and m ethods

    2.1.System description

    Thewastewaterwas pretreated in a septic unitwith a hydraulic detention time of 4 h.The effluent flowed under the action of gravity through the distribution tank to four infiltration tanks.The dimension of each infiltration tank is 20 m long,15m w ide and 1.5m deep.Inflow ing pipeswere 0.5m underneath(100 mm in diameter w ith holes of 4 mm in diameter placed in the bottom side every 60mm).Collecting pipeswere1.5m underneath(80mm in diameterw ith holesof 6 mm in diameter placed in the bottom side every 60 mm). Thebedswereplantedw ith herbage(Poa annua and ryegrass),which wasmainly for landscape planting.A1,B1,C1,D1,E1,A2,B2,C2,D2,and E2(0.4 m intervals)were sampling positions for substrate samp les and bacteria numbering,as shown in Fig.1.The substrate samp les were taken tw ice a month from 0.2,0.4,0.6,0.8,and 1.0 m depths at each samp ling position,respectively.

    Fig.1.Sketch of SW IS profile(units:m).

    2.2.Wastewater characteristics

    Fieldexperimentswere carried outin Shenyang City,China. The influentto thepretreatmentunitwascombinedwastewater,from toilets,restaurants,etc.The rangesofmajorwaterquality indiceswere7.2-7.4 forthepH value,275-360mg/L forCOD,155-220mg/L forBOD,95-126mg/L forSS,30-45mg/L for total nitrogen(TN),3-4 mg/L for total phosphorus(TP),20-30mg/L forammonianitrogen(NH3-N),and0.2-0.3mg/L for nitrate nitrogen(NO-3-N).

    2.3.Substrate characteristics

    The packed substrate in the SW ISwasa kind of novelbiosubstrate,which was composed of 5%activated sludge,65% meadow brown soil,and 30%coal slag m ixed evenly in volume ratios.The activated sludge was obtained from the aeration tanks in the Shenyang Northern Municipal Sewage Treatment Plant,China,and air-dried after being centrifuged for 15 min at 1 500 r/min.The meadow brown soil was samp led from the top 20 cm of soil at the Shenyang Ecological Station.Other materials(gravel and coal slag)were purchased from a local market(particle size: 10-25 mm of gravel and 4-8 mm of coal slag).The infiltration rate,porosity,and surface area of the substratewere 0.37m3/(m2·d),59%,and 5.21m2/g,respectively.A previous study(Li et al.,2013)indicated that,in comparison w ith meadow brown soil,the bio-substrate provided a more favorable micro-environment for the pollutant removal.The m axim um adsorbing capacity for NH3-N was 0.724 mg/g,which was 0.253 mg/g higher than that of meadow brown soil.

    2.4.Analysismethod

    The ammonifying,nitrifying,and denitrifying bacteria in the substrate samples were counted using the most probable number(MPN)method tw icepermonth(Nie etal.,2011).The medium components are shown in Table 2.Aliquots(1 m L)were diluted w ith 12-fold sterile distilledwaterand transferredto m icrotiter plates containing each type of medium,then incubated at 28°C for seven days for the ammonifying bacteria,14 days for the nitrifying bacteria,and 15 days for the denitrifying bacteria.Meanwhile,10 g of the substrate sampleswere oven-dried at105°C for 12 h to produce a constant weight.

    During the study period,paired samplesof raw sewage and effluentwere collected every three days,stored at 4°C,and analyzed w ithin 24 h.The COD,BOD,SS,NO-3-N,NH3-N,TN,and TP concentrations of the water sam ples were analyzed according to the American Public Health Association(APHA,2003)guidelines.The potassium dichromatemethod wasused for COD determination,and the colorimetricmethod was used for NO-3-N and NH3-N measurements.Hydraulic conductivity wasmeasured according to themethod suggested by Lowe and Siegrist(2008).Oxidation reduction potential(ORP)was analyzed through pre-buried sensors,and the readings were recorded every three days.All statistical analyses were carried out using the com puter software package Origin 7.5.W ith respect to surfacewater quality from different sampling points,a parametric analysis of variancewasused to determine the significant difference(p).

    Table 2 M edium components list for three kinds of bacteria.

    2.5.Sampling and experimental operation

    Thewhole system wasoperated from June 2009.Sampling for this study was conducted from April to September 2013. The water quality of the stream adjacent to the SW IS was monitored every three days to assess the impact of the SW IS effluent on receiving-water and verify that the SW ISwas not polluting the receiving-water under a high HLR.The stream was located next to the SW IS,as shown in Fig.2.The stream water was sampled at four locations,one upstream of the discharge point and the other three approximately 100,300,and 500m downstream of the discharge point;these locations are labeled a,b,c,and d,respectively.Mean concentrationsof BOD,SS,NH3-N,TN,TP,and COD in the upstream water during theexperimentalperiodwere 3.3,10.4,0.5,10,0.3,and 38.2 mg/L,respectively.During the experimental period,the intermittent operation mode was adopted as a method of encouraging the HLR.Each cycle of the interm ittent operation included a continuous flow period of 24 h(between 9:00 AM and 9:00 AM the next day)and a drying period of 0,24,48,72,and 96 h,indicating a wetting-drying ratio(RWD)of∞(termed a continuousoperationmode),1.0,0.5,0.33,and 0.25,respectively.All experimentswere repeated three times.

    As for the HLR values,there is no exact information indicating what extent of the HLR is high.According to Sun and Li(2006),a value of the HLR lower than 8 cm/d is suggested for long lifespan of the SW IS.In this research,the intermittentoperationmodewasadopted to improve the HLR. Therefore,the HLR was gradually increased from 4 cm/d to 6 cm/d,8 cm/d,10 cm/d,and 12 cm/d.

    Fig.2.Sketch of SWISand monitoring sites in stream.

    3.Results and discussion

    3.1.Effectsof intermittent operationmode and HLR on treatment efficiency of SWIS

    Table 3 showspollutantconcentrationsand removal ratesat the discharge point under continuous and interm ittent operationmodes.The HLR was 8 cm/d for both operation modes.

    When the RWDwas 0.25,the interm ittent operation mode improved pollutant removal ratesby(23.3±0.2)%for NH3-N,(10.7±0.3)%for TN,(19.5±1.1)%for TP,(12.7±0.3)%for BOD,(11.4±0.5)%for COD,and(37.8±2.5)%for SS,compared w ith pollutant removal rates under the continuous operation mode.As a general rule,the pollutant removal efficiency declines w ith the increase of the HLR.Experiments showed thatwhen the average HLR increased to 12 cm/d,the packed substrate in the SW IS clogged due to the excessive inflow of sewage and the permeability decreased quickly to a small value.The significantelevation of NH3-N concentration in effluent in this condition was attributed to deterioration of nitrification caused by substrate clogging.Under the interm ittent operation m ode,the NH3-N removal rate rose from(86.2±1.5)%at a RWDof 1.0 to(95.9±0.4)%at a RWDof 0.25,indicating that the oxidative condition of the substrate was improved through the drying period of the alteration operation,whichwas favorable for the nitrification process.In contrast,the TN removal rate decreased w ith the RWDdecline. Furthermore,Table 4 shows thathydraulic conductivity,ORP,and the number of nitrifying bacteria increased with the RWDdecline.On the other hand,the changes in water content andthe number of denitrifying bacteria showed an opposite trend. According to Liet al.(2013),therewas no significant difference in theammonifying bacteria numberwith the changing in R WD.

    Table 3 Effect of continuous and interm ittent operation modes on pollutant removal.

    Table 4 Effect of RWDon substrate characteristics.

    According to previous studies(Candelaetal.,2007;Kadam et al.,2009),the biologicalmaterial attaches to the substrate surface as the influent passes through the SW IS.As the operation time goes on,the packed substrate tends to be choked by themicrobialmetabolites,which shorten the lifespan of the system.Thus,periodic resting is an effective method for removing themicrobialmetabolites and restoring the hydraulic capacity.The substrate surfaces are rested by removing them from service for an extended period of time(Moreno Escobaretal.,2005).Second,themain reason for the low hydraulic conductivity in conventional systems is that,during the pollutant removal process,especially the nitrogen removal process,the produced gases,such as N2,CO2,and N2O,congest in and clog the packed substrate pores,thus reducing the hydraulic capacity.It is generally accepted(Nie et al.,2011;Wang et al.,2009)that the feasible hydraulic conductivity between 8.0×10-6and 7.2×10-5cm/s is essential in order for the SW IS to run smoothly and efficiently. Therefore,another function of the interm ittentoperationmode is to encourage the gases to escape from the system.According to the experimental resultsof pollutant removal(Table 3)and hydraulic conductivity(Table 4),the interm ittent operationmodew ith a RWDof 1.0wassuggested,and theHLR was chosen to be 10 cm/d.

    Fig.3.Relative contribution of pretreatment and SW IS to pollutant removal.

    3.2.Relative contribution to pollutant removal in pretreatment and SWIS

    Fig.3 shows the overall pollutant removal efficiencies in the pretreatmentand SW ISwhen the RWDis1.0 and the HLR is 10 cm/d.The results show that the hydrolytic acidification cellwas relativelymore efficient in the removalof SS than the removal of other pollutants.The average SS removal ratewas(60.2±0.3)%in the pretreatment,but NH3-N,TN,and TP concentrations changed little during this procedure.

    The overall removal rates of NH3-N and COD are 87.3% and 92.1%,respectively.More than 80%of the removal occurred in the SW IS,even though the HLR was 16.8%-50% higher than thatdescribed in previous reports(Nie etal.,2011;Wang etal.,2009).Such a high rate of removalwasattributed to the intermittentoperationmode and the packed substrate in the SW IS.Periodic resting is conducive to the relatively high oxygen availability in the packed substrate surface and the NH3-N removal.The bio-substrate around the inflowing pipes was favorable to the grow th of microorganisms,as well as ammonia adsorption(Lietal.,2013).After the sewage flowed in,the substrate first adsorbed refractory organic m atter,and then adsorbed organic matter was gradually converted intolow-molecularweightmatter by m icroorganisms,which were easily utilized by the denitrifier and other heterotrophs. Therefore,the removal rate of COD always gradually decreased because of adsorption saturation(Pavelic et al.,2011;Toze,2006).In this experiment,under the intermittent operation mode,the mean removal rate for COD was(92.4±1.2)%,16.8%-21.8%higher than in the continuous operation mode,as reported in other studies(Petter et al.,2010;Zhang et al.,2007).The SS removal process in the SWIS is based on sedimentation,adsorption,and biological processes.Previous studies have revealed that the permanent rem oval of SS usually occurs in the subsurfacew ith the effect of alum inum/iron compounds(Oladoja and Adem oroti,2006;Yang et al.,2007;Ye et al.,2008).Furthermore,studies have shown that the SS reduction capacity decreases w ith time because them ineral sediments become fully saturated w ithin the infiltration system(Hand et al.,2008;Morkved et al.,2007;Zhang et al.,2005).High influent SS concentration becomes the main reason for the SWIS clogging.Therefore,one encouraging method was to prolong the hydraulic detention time in pretreatment to remove more SS.Influent SS concentration less than 20 mg/L was suggested,as it can ensure a long lifespan of the SW IS(Sun and Li,2006).

    3.3.Receiving-water quality

    The stream,which isadjacent to the SWIS,wasmonitored for over seven months.The average values of variables are shown in Table 5.

    At the discharge point,mean concentrations of water quality indices in the effluent were 8.2 mg/L for BOD,25.3 mg/L for COD,1.2 mg/L for SS,4.8 mg/L for NH3-N,and 0.9 mg/L for TP.According to Table 5,although the pollutant concentrations of point b were slightly higher than thatof point a,the differenceswere not statistically significant(p<0.05).Likewise,no significant differences were found between the pollutant concentrations in point a,point c,and point d.These results indicate that the stream has sufficient assim ilative capacity,and that the SW IS effluent had little negative influence on the water quality of the stream even though the HLR was ashigh as 10 cm/d.

    Table 5 Water quality of receiving stream(mg/L).

    4.Conclusions

    Thisstudy demonstrated theperformanceofa full-scaleSW IS in treating domestic sewage.The contribution of the interm ittent operationmodeto theencouragementfortheHLRwasexamined. Relative contribution of the pretreatment and SW IS to the pollutant removalwere exam ined.Finally,the impact of SW IS effluenton the receiving-water quality wasassessed.

    The results indicate that interm ittent operation of the SW IS significantly encouraged the pollutant removal.When the RWDwas 1.0,the intermittent operation mode improved pollutant removal ratesby(13.6±0.3)%for NH3-N,(20.7±1.1)%for TN,(18.6±0.4)%for TP,(12.2±0.5)%for BOD,(10.1±0.3)%for COD,and(36.2±1.2)%for SS,compared w ith pollutant removal rates under the continuous operation mode.The pollutant removal efficiency declined w ith the increase of the HLR.With the drying days prolonged,hydraulic conductivity,ORP,the num ber of nitrifying bacteria,and the NH3-N removal rate increased,while water content,the num ber of denitrifying bacteria,and the TN rem oval rate decreased.There was no significant difference(p<0.05)between TP,BOD,and COD removal rates under different RWDs.The intermittentoperationmodew ith a RWDof 1.0was tested.Under this condition,the HLR increased to 10 cm/d. More than 80%of the removaloccurred in the SW IS for NH3-N,TN,TP,COD,and BOD.The main function of the pretreatmentwas to removemore SS to minimize the clogging risk of the SW IS.The analysis of receiving-water quality indicated that the SW IS had little negative influence on the nearby stream.

    Acknow ledgem ents

    Wew ish to givea special thanks to Dr.HongWang and Dr. XinWang from Shenyang University,who reviewed thispaper for its language quality.

    References

    American Public Health Association(APHA),2003.Standard Methods for the Examination ofWater and Wastewater.American Public Health Association,AmericanWaterWorks Association,and Water Environment Federation,Washington,D.C.

    A rve,H.,Adam,M.P.,Lasse,V.,Kinga,.,Petter,D.J.,2006.A high-performance compact filter system treating domestic wastewater.Ecol.Eng. 28(4),374-379.http://dx.doi.org/10.1016/j.ecikebg.2006.06.011.

    Candela,L.,Fabregat,S.,Josa,A.,Surilo,J.,Vigus,N.,Mas,J.,2007. Assessment of soil and groundwater impacts by treated urban wastewater reuse.A casestudy:application on agolf course(Girona,Spain).Sci.Total Environ.374(1),26-35.http://dx.doi.org/10.1016/j.scitotenv.2006.12.028.

    Fan,C.,Chang,F.C.,Ko,C.H.,Teng,C.J.,Chang,T.C.,Sheu,Y.S.,2009. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.J.Environ.Health 71(7),56-60.

    Greenan,C.M.,Moorman,T.B.,Kaspar,T.C.,Parkin,T.B.,Jaynes,D.B.,2006. Comparing carbon substrates fordenitrification ofsubsurfacedrainagewater. J.Environ.Qual.35,824-829.http://dx.doi.org/10.2134/jeq2005.0247.

    Hand,V.L.,Lloyd,J.R.,Vaughan,D.J.,Wilkins,M.J.,Boult,S.,2008. Experimentalstudiesof the influenceofgrain size,oxygen availability and organic carbon availability on bio-clogging in porousmedia.Environ.Sci. Technol.42(5),1485-1491.http://dx.doi.org/10.1021/es072022s.

    Howarth,R.W.,Sharpley,A.W.,Walker,D.,2002.Sources of nutrient pollution to coastal waters in the United States:implications for achieving coastal water quality goals.Estuaries 25,656-676.http://dx.doi.org/ BF02804898.

    Kadam,A.M.,Nemade,P.D.,Oza,G.H.,Shankar,H.S.,2009.Treatment of municipal wastewater using laterite-based constructed soil filter.Ecol. Eng.35(7),1051-1061.http://dx.doi.org/10.1016/j.ecoleng.2009.03.008.

    Li,Y.H.,Li,H.B.,Sun,T.H.,Wang,X.,2011.Study on nitrogen removal enhanced by shunt distributing wastewater in a constructed subsurface infiltration system under interm ittent operation mode.J.Hazard.M ater. 189(1-2),336-341.http://dx.doi.org/10.1016/j.hazmat.2011.02.039.

    Li,Y.H.,Li,H.B.,Wang,H.,Wang,X.,Zou,Y.,Sun,T.H.,2013.Comparisonof the treatmentperformanceofbio-substrate based andmeadow brown soilbased subsurface infiltration systems for domesticwastewater treatment.Water Sci. Technol.67(3),506-513.http://dx.doi.org/10.2166/wat.2012.576.

    Lowe,K.S.,Siegrist,R.L.,2008.Controlled field experiment for performance evaluation of septic tank effluent treatment during soil infiltration.J.Environ.Eng.134(2),93-101.http://dx.doi.org/10.1061/(ASCE)0733-9372(2008)134:2(93).

    Moreno Escobar,B.,Gomez Nieto,M.A.,Hontoria García,E.,2005.Simple tertiary treatmentsystems.WaterSci.Technol.WaterSupply 5(3-4),35-41. Morkved,P.T.,Dorsch,P.,Bakken,L.R.,2007.The N2O product ratio of nitrificationand itsdependenceon long-term changesinsoilpH.SoilBiol.Biochem. 39(8),2048-2057.http://dx.doi.org/10.1016/j.soilbio.2007.03.006.

    Nie,J.Y.,Zhu,N.W.,Zhao,K.,Wu,L.,Hu,Y.H.,2011.Analysis of the bacterial community changes in soil for septic tank effluent treatment in response to bio-clogging.Water Sci.Technol.63(7),1412-1417.http:// dx.doi.org/10.2166/wst.2011.319.

    Oladoja,N.A.,Ademoroti,C.M.A.,2006.The use of fortified soil-clay as onsite system for domestic wastewater purification.Water Res.40(3),613-620.http://dx.doi.org/10.1016/j.watres.2005.11.031.

    Pan,J.,Yu,L.,Wang,Y.,2012.Clogging process caused by organic particle accumulation and biofilm grow in subsurfacewastewater infiltration system.J.Donghua Univ.2(29),187-191.http://dx.doi.org/1672-5220(2012)02-0187-06.

    Pavelic,P.,Dillon,P.J.,Mucha,M.,Nakai,T.,Barry,K.E.,Bestland,E.,2011. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems.Water Res.45(10),3153-3163.http://dx.doi.org/ 10.1016/j.watres.2011.03.027.

    Petter,D.J.,Tore,K.,Adam,M.P.,Trond,M.,Kinga,A.,Carlos,A.A.,Arve,H.,Lena,J.,Daniel,H.,Hans,B.,et al.,2010.Filter bed systems treating domestic wastewater in the Nordic countries-Performance and reuse of filtermedia.Ecol.Eng.36(12),1651-1659.http://dx.doi.org/ 10.1016/j.ecoleng.2010.07.004.

    Qian,Y.,Wen,X.H.,Huang,X.,2007.Developmentand application of some renovated technologies for municipal wastewater treatment in China. Front.Environ.Sci.Eng.China 1(1),1-12.http://dx.doi.org/10.1007/ s11783-007-0001-9.

    Robertson,W.D.,2010.Ratesofnitrate removal inwoodchipmediaof varying age.Ecol.Eng.36,1581-1587.http://dx.doi.org/S0925857410000340.

    Stewart,G.C.,Louis,A.S.,2010.Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds.Ecol.Eng.36,1588-1595.http://dx.doi.org/S0925857410000704.

    Sun,T.H.,Li,X.F.,2006.M ethods for Eco-treatmentand Resources Reuse of Domestic Wastewater.Chem ical Industry Press,Beijing(in Chinese).

    Toze,S.,2006.Reuseof effluentwater-benefitsand risks.Agric.WaterManag. 80(1-3),147-159.http://dx.doi.org/10.10.16/j.agwat.2005.07.010.

    Wang,P.F.,Ding,Q.S.,Ding,W.M.,Pan,G.X.,2009.A measurementmethod of soil porosity.Exp.Technol.Manag.26(7),50-51(in Chinese).

    Yang,Q.,Peng,Y.Z.,Liu,X.H.,Zeng,W.,Mino,T.,Satoh,H.,2007. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to opim ize nitrifying communities. Environ.Sci.Technol.41(23),8159-8164.http://dx.doi.org/10.1021/ es070850f.

    Ye,C.,Hu,Z.B.,Kong,H.N.,Wang,X.Z.,He,S.B.,2008.A new soil infiltration technology for decentralized sewage treatment:two-stage anaerobic tank and soil trench system.Pedosphere 18(3),401-408.http:// dx.doi.org/10.1016/S1002-0160(08)60031-4.

    Zhang,J.,Huang,X.,Liu,C.X.,Shi,H.C.,Hu,H.Y.,2005.Nitrogen removal enhanced by intermittentoperation in a subsurfacewastewater infiltration system.Ecol.Eng.25(4),419-428.http://dx.doi.org/10.1016/ j.ecoleng.2005.06.011.

    Zhang,L.B.,Xing,M.Y.,Wu,Y.F.,Huang,Z.D.,Yang,J.,2011.Spatial distributions of biofilm properties and flow pattern in NiiM i process. Bioresour.Technol.102(2),1406-1414.http://dx.doi.org/10.1016/ j.biortech.2010.09.047.

    Zhang,Z.Y.,Lei,Z.F.,Sugiura,N.,Xu,X.T.,Yin,D.D.,2007.Organics removal of combined wastewater through shallow soil infiltration treatment:a field and laboratory study.J.Hazard.M ater.149(3),657-665. http://dx.doi.org/10.1016/j.jhazmat.2007.04.026.

    This work was supported by the National Natural Science Foundation of China(Grant No.51108275),the Program for Liaoning Excellent Talents in Universities(LNET)(Grant No.LJQ2012101),the Program for New Century Excellent Talents in Universities(GrantNo.NCET-11-1012),the Science and Technology Program of Liaoning Province(Grants No.2011229002 and 2013229012),and the Basic Science Research Fund in Northeastern University(Grants No.N130501001 and N140105003).

    *Corresponding author.

    E-mail address:graceli_2003@163.com(Hai-bo Li). Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.w se.2015.01.008

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    91成年电影在线观看| 亚洲中文av在线| 久久亚洲精品不卡| 亚洲九九香蕉| 亚洲国产av新网站| 青春草亚洲视频在线观看| 两个人看的免费小视频| 99re6热这里在线精品视频| 日本精品一区二区三区蜜桃| 91麻豆精品激情在线观看国产 | 国产又色又爽无遮挡免| 99精品欧美一区二区三区四区| 久久久久精品人妻al黑| 男女床上黄色一级片免费看| 亚洲成人国产一区在线观看| 黄片大片在线免费观看| 久久综合国产亚洲精品| 蜜桃国产av成人99| 亚洲成人国产一区在线观看| 69精品国产乱码久久久| av一本久久久久| 亚洲午夜精品一区,二区,三区| 国产精品影院久久| 日韩电影二区| 国产xxxxx性猛交| 午夜精品国产一区二区电影| 国产视频一区二区在线看| 咕卡用的链子| 桃花免费在线播放| 久久久国产一区二区| netflix在线观看网站| 久久久久久人人人人人| 欧美激情极品国产一区二区三区| 亚洲国产av影院在线观看| 黄色毛片三级朝国网站| 18禁观看日本| 成在线人永久免费视频| 精品久久久久久电影网| 亚洲七黄色美女视频| 一区二区av电影网| 亚洲欧美清纯卡通| 一区二区日韩欧美中文字幕| 国产成人影院久久av| 国产成人啪精品午夜网站| 亚洲午夜精品一区,二区,三区| 青春草视频在线免费观看| 亚洲欧美精品自产自拍| av网站在线播放免费| 老司机深夜福利视频在线观看 | 老司机午夜福利在线观看视频 | 精品福利观看| 精品一品国产午夜福利视频| 18在线观看网站| 成年女人毛片免费观看观看9 | 一本色道久久久久久精品综合| 亚洲欧美一区二区三区久久| 老熟女久久久| 黑丝袜美女国产一区| 三级毛片av免费| 国产av国产精品国产| 免费在线观看影片大全网站| 午夜福利在线免费观看网站| 久久久久国产一级毛片高清牌| 不卡av一区二区三区| 波多野结衣av一区二区av| 丝袜美腿诱惑在线| 日本vs欧美在线观看视频| 亚洲av片天天在线观看| 欧美在线黄色| 大型av网站在线播放| av网站在线播放免费| 国产精品99久久99久久久不卡| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 国产成人欧美在线观看 | 亚洲成av片中文字幕在线观看| 免费观看人在逋| 中文字幕人妻熟女乱码| 国产精品 欧美亚洲| 高潮久久久久久久久久久不卡| 一区二区三区乱码不卡18| 激情视频va一区二区三区| 黄片小视频在线播放| 大香蕉久久成人网| 少妇猛男粗大的猛烈进出视频| 亚洲全国av大片| 人人妻人人澡人人爽人人夜夜| 国产麻豆69| 丰满少妇做爰视频| 精品人妻在线不人妻| a级毛片在线看网站| 久久午夜综合久久蜜桃| 狠狠精品人妻久久久久久综合| 五月开心婷婷网| 国产成人av教育| 王馨瑶露胸无遮挡在线观看| 欧美黑人精品巨大| 操出白浆在线播放| www日本在线高清视频| 男人添女人高潮全过程视频| 电影成人av| 伦理电影免费视频| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 人人妻人人澡人人看| 丰满少妇做爰视频| 国产精品国产av在线观看| 免费高清在线观看视频在线观看| 99国产精品99久久久久| 美女午夜性视频免费| 伊人亚洲综合成人网| 高清在线国产一区| 好男人电影高清在线观看| 大陆偷拍与自拍| 国产成人欧美在线观看 | 午夜福利影视在线免费观看| 午夜免费观看性视频| 麻豆av在线久日| 亚洲情色 制服丝袜| 成人av一区二区三区在线看 | 亚洲一区中文字幕在线| 中文字幕人妻丝袜一区二区| 最新在线观看一区二区三区| 日韩 亚洲 欧美在线| 亚洲成人国产一区在线观看| 国产精品秋霞免费鲁丝片| 一区二区三区乱码不卡18| 美女中出高潮动态图| 这个男人来自地球电影免费观看| 丝袜美足系列| 少妇被粗大的猛进出69影院| 99热国产这里只有精品6| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| 最近最新中文字幕大全免费视频| 精品一区二区三区av网在线观看 | 国产真人三级小视频在线观看| 国产精品久久久久久人妻精品电影 | 国产高清国产精品国产三级| 丝瓜视频免费看黄片| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 激情视频va一区二区三区| videosex国产| www.熟女人妻精品国产| 99久久人妻综合| 狠狠狠狠99中文字幕| 欧美国产精品一级二级三级| 18禁观看日本| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| av天堂在线播放| 国产免费福利视频在线观看| 精品国内亚洲2022精品成人 | 欧美国产精品va在线观看不卡| 青春草视频在线免费观看| 久久性视频一级片| 中文字幕精品免费在线观看视频| 精品乱码久久久久久99久播| 各种免费的搞黄视频| 亚洲欧美精品综合一区二区三区| 色94色欧美一区二区| 亚洲第一欧美日韩一区二区三区 | 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 亚洲国产精品一区二区三区在线| 一级毛片女人18水好多| 午夜影院在线不卡| av福利片在线| 不卡av一区二区三区| a级片在线免费高清观看视频| 美女主播在线视频| 一二三四在线观看免费中文在| 精品人妻熟女毛片av久久网站| 亚洲国产av影院在线观看| 下体分泌物呈黄色| 国产一区二区三区在线臀色熟女 | 亚洲精品粉嫩美女一区| 精品久久蜜臀av无| 美女视频免费永久观看网站| 99国产精品一区二区蜜桃av | 午夜成年电影在线免费观看| 国产深夜福利视频在线观看| 麻豆av在线久日| 真人做人爱边吃奶动态| 国产精品国产av在线观看| 欧美精品一区二区免费开放| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 日韩制服骚丝袜av| 欧美成人午夜精品| 国产精品九九99| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 日日夜夜操网爽| 国产成人系列免费观看| 精品国产乱码久久久久久小说| 久久久久网色| 99re6热这里在线精品视频| 首页视频小说图片口味搜索| 老熟妇仑乱视频hdxx| 日本a在线网址| av天堂久久9| 日韩一区二区三区影片| 亚洲视频免费观看视频| 黄色片一级片一级黄色片| www日本在线高清视频| 99国产精品免费福利视频| 国产97色在线日韩免费| 悠悠久久av| 纵有疾风起免费观看全集完整版| 午夜日韩欧美国产| 亚洲成av片中文字幕在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美激情在线| 男女免费视频国产| 91精品国产国语对白视频| 精品国产一区二区三区四区第35| 别揉我奶头~嗯~啊~动态视频 | 一区在线观看完整版| 老司机影院成人| 国产欧美日韩精品亚洲av| 日韩中文字幕视频在线看片| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 午夜日韩欧美国产| 免费在线观看完整版高清| 久久久久久亚洲精品国产蜜桃av| 欧美 日韩 精品 国产| 在线看a的网站| 久久青草综合色| 日韩精品免费视频一区二区三区| 成人国产av品久久久| 亚洲第一av免费看| 久久这里只有精品19| 一边摸一边做爽爽视频免费| cao死你这个sao货| 女人爽到高潮嗷嗷叫在线视频| 一本一本久久a久久精品综合妖精| 国产97色在线日韩免费| 久久久久久人人人人人| 中文欧美无线码| 超碰成人久久| 99国产综合亚洲精品| 亚洲国产精品一区三区| 国产淫语在线视频| 各种免费的搞黄视频| 午夜视频精品福利| 国产一区二区三区av在线| 欧美精品啪啪一区二区三区 | 国产日韩一区二区三区精品不卡| 波多野结衣av一区二区av| 69精品国产乱码久久久| 啦啦啦啦在线视频资源| 亚洲精华国产精华精| 国产免费一区二区三区四区乱码| 黄色视频不卡| 天堂8中文在线网| 精品一区二区三卡| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| 嫁个100分男人电影在线观看| 夜夜骑夜夜射夜夜干| 一二三四社区在线视频社区8| 日本猛色少妇xxxxx猛交久久| av天堂在线播放| 久久九九热精品免费| 色婷婷久久久亚洲欧美| 国内毛片毛片毛片毛片毛片| 黑人操中国人逼视频| 亚洲男人天堂网一区| 亚洲综合色网址| 国产深夜福利视频在线观看| 久9热在线精品视频| 国产精品一区二区精品视频观看| 51午夜福利影视在线观看| 男男h啪啪无遮挡| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 午夜福利一区二区在线看| 久久久久视频综合| 在线观看人妻少妇| 精品一区二区三区四区五区乱码| 在线亚洲精品国产二区图片欧美| 国产一区二区三区av在线| 777久久人妻少妇嫩草av网站| 俄罗斯特黄特色一大片| 午夜91福利影院| 十八禁网站网址无遮挡| 亚洲精品国产色婷婷电影| 国产一区有黄有色的免费视频| 黄色片一级片一级黄色片| 久久久久久免费高清国产稀缺| a级毛片在线看网站| 亚洲va日本ⅴa欧美va伊人久久 | 高潮久久久久久久久久久不卡| 两个人免费观看高清视频| 日韩中文字幕视频在线看片| 国产一区有黄有色的免费视频| 精品国产一区二区久久| 中文字幕制服av| 欧美精品一区二区免费开放| 啦啦啦啦在线视频资源| 1024视频免费在线观看| a级毛片黄视频| 国产有黄有色有爽视频| 咕卡用的链子| 欧美日韩亚洲综合一区二区三区_| 少妇猛男粗大的猛烈进出视频| 国产精品二区激情视频| 色视频在线一区二区三区| 欧美午夜高清在线| 正在播放国产对白刺激| 久久精品国产亚洲av香蕉五月 | e午夜精品久久久久久久| 成人av一区二区三区在线看 | 涩涩av久久男人的天堂| 久久久久久亚洲精品国产蜜桃av| 亚洲成人免费av在线播放| 热99re8久久精品国产| 蜜桃国产av成人99| 久久久国产成人免费| 国产亚洲一区二区精品| 成人手机av| 亚洲欧美精品综合一区二区三区| 麻豆av在线久日| 日本av手机在线免费观看| 久久精品aⅴ一区二区三区四区| 777米奇影视久久| 无遮挡黄片免费观看| 热99re8久久精品国产| 中文字幕制服av| 后天国语完整版免费观看| 亚洲熟女毛片儿| 男女边摸边吃奶| 手机成人av网站| 天堂中文最新版在线下载| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| 国产成人精品久久二区二区免费| 国产精品一区二区在线观看99| 亚洲色图综合在线观看| 日韩熟女老妇一区二区性免费视频| 久久久久久久精品精品| 大香蕉久久网| 中文字幕高清在线视频| 久久女婷五月综合色啪小说| 亚洲国产欧美网| 女人久久www免费人成看片| 免费在线观看日本一区| 女性生殖器流出的白浆| 国精品久久久久久国模美| 一二三四社区在线视频社区8| 91老司机精品| 国产欧美亚洲国产| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 久久 成人 亚洲| 国产一区二区激情短视频 | 精品免费久久久久久久清纯 | 国产免费一区二区三区四区乱码| 久久人妻福利社区极品人妻图片| 欧美性长视频在线观看| 亚洲黑人精品在线| 黑人巨大精品欧美一区二区mp4| 电影成人av| 亚洲精品一卡2卡三卡4卡5卡 | 两性午夜刺激爽爽歪歪视频在线观看 | 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 国产在视频线精品| 欧美xxⅹ黑人| 精品福利观看| 免费人妻精品一区二区三区视频| 亚洲精品在线美女| 在线观看免费午夜福利视频| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷丁香在线五月| 在线观看免费视频网站a站| av网站在线播放免费| 成年动漫av网址| 首页视频小说图片口味搜索| 久久狼人影院| 久久ye,这里只有精品| 蜜桃在线观看..| 久久热在线av| 国产三级黄色录像| 精品久久久精品久久久| 亚洲七黄色美女视频| 色老头精品视频在线观看| 欧美精品人与动牲交sv欧美| 亚洲成人免费电影在线观看| 免费观看a级毛片全部| 少妇粗大呻吟视频| 最黄视频免费看| 18禁观看日本| 一本—道久久a久久精品蜜桃钙片| 国产在线观看jvid| 多毛熟女@视频| 国产91精品成人一区二区三区 | 老司机靠b影院| 99热国产这里只有精品6| 国产在线一区二区三区精| 免费不卡黄色视频| 国产xxxxx性猛交| 午夜成年电影在线免费观看| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 国产有黄有色有爽视频| 欧美日韩av久久| 日韩大码丰满熟妇| 成人av一区二区三区在线看 | 国产主播在线观看一区二区| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区| 国产亚洲精品一区二区www | 精品免费久久久久久久清纯 | 老司机深夜福利视频在线观看 | 欧美日韩亚洲高清精品| 日本撒尿小便嘘嘘汇集6| 久久久国产欧美日韩av| 高清av免费在线| 久久精品国产亚洲av香蕉五月 | 国产精品 欧美亚洲| 久久中文看片网| 黄色怎么调成土黄色| 国产欧美亚洲国产| 亚洲专区字幕在线| 男女边摸边吃奶| 999久久久精品免费观看国产| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 首页视频小说图片口味搜索| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 精品久久久久久久毛片微露脸 | 免费高清在线观看日韩| 不卡av一区二区三区| 色精品久久人妻99蜜桃| 12—13女人毛片做爰片一| 极品人妻少妇av视频| 巨乳人妻的诱惑在线观看| 午夜久久久在线观看| kizo精华| 中文字幕高清在线视频| 国产精品久久久久久人妻精品电影 | 午夜两性在线视频| 香蕉国产在线看| 在线亚洲精品国产二区图片欧美| e午夜精品久久久久久久| 青春草视频在线免费观看| 中文字幕最新亚洲高清| 久久久水蜜桃国产精品网| 欧美日韩国产mv在线观看视频| 男女免费视频国产| 欧美成人午夜精品| 国产欧美日韩综合在线一区二区| 男女午夜视频在线观看| 欧美中文综合在线视频| 男女床上黄色一级片免费看| 大片免费播放器 马上看| 狠狠狠狠99中文字幕| 欧美成人午夜精品| 久久精品久久久久久噜噜老黄| av在线老鸭窝| 国产片内射在线| 国产欧美亚洲国产| 又黄又粗又硬又大视频| 中国美女看黄片| 999精品在线视频| e午夜精品久久久久久久| 亚洲精品久久成人aⅴ小说| 淫妇啪啪啪对白视频 | 久久久久久久精品精品| 国产av精品麻豆| 水蜜桃什么品种好| 久9热在线精品视频| 精品亚洲成a人片在线观看| 国产亚洲欧美精品永久| 男女床上黄色一级片免费看| 在线观看舔阴道视频| 欧美精品一区二区大全| 久久久精品区二区三区| 精品国产一区二区久久| 精品视频人人做人人爽| 人人妻人人添人人爽欧美一区卜| 国产精品av久久久久免费| 国产精品一区二区精品视频观看| 久久久国产成人免费| av在线老鸭窝| 91大片在线观看| 国产精品.久久久| 热99国产精品久久久久久7| 黄片大片在线免费观看| 午夜免费成人在线视频| 国产精品免费大片| 国产一区二区三区综合在线观看| 免费在线观看视频国产中文字幕亚洲 | 亚洲专区字幕在线| 日韩大码丰满熟妇| 久久精品国产a三级三级三级| 大片电影免费在线观看免费| 欧美黄色片欧美黄色片| 精品久久久精品久久久| 亚洲国产欧美日韩在线播放| 国产区一区二久久| 1024香蕉在线观看| netflix在线观看网站| 久久免费观看电影| 成年av动漫网址| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区| 高清欧美精品videossex| 嫁个100分男人电影在线观看| 亚洲伊人色综图| 一级毛片电影观看| 女性生殖器流出的白浆| 手机成人av网站| 中文字幕人妻熟女乱码| 日韩视频在线欧美| 久久青草综合色| 国产免费福利视频在线观看| 婷婷色av中文字幕| 久久久久国产一级毛片高清牌| 男女床上黄色一级片免费看| 欧美 亚洲 国产 日韩一| 亚洲人成电影观看| 国产野战对白在线观看| 亚洲欧洲日产国产| 国产免费现黄频在线看| 少妇 在线观看| 18禁黄网站禁片午夜丰满| 精品一区二区三卡| 亚洲色图综合在线观看| 人成视频在线观看免费观看| 欧美 日韩 精品 国产| 一级片'在线观看视频| 国产欧美亚洲国产| 老熟妇乱子伦视频在线观看 | 亚洲精品在线美女| 久久久久视频综合| 国产欧美日韩精品亚洲av| 女性被躁到高潮视频| 最黄视频免费看| av欧美777| 91精品伊人久久大香线蕉| a级毛片在线看网站| 亚洲av成人不卡在线观看播放网 | 日韩熟女老妇一区二区性免费视频| 亚洲国产精品成人久久小说| 中文字幕人妻熟女乱码| 美女午夜性视频免费| 一级毛片精品| 欧美精品人与动牲交sv欧美| 日韩欧美国产一区二区入口| 欧美大码av| 狠狠婷婷综合久久久久久88av| 亚洲精品中文字幕在线视频| 高清av免费在线| 久久精品人人爽人人爽视色| 亚洲精品第二区| 最新在线观看一区二区三区| 在线精品无人区一区二区三| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 人妻 亚洲 视频| 久久精品国产综合久久久| 最新的欧美精品一区二区| 午夜福利视频在线观看免费| 久久青草综合色| 久久久久久久久久久久大奶| 日本五十路高清| 亚洲国产精品一区三区| 亚洲七黄色美女视频| 18禁观看日本| 久久午夜综合久久蜜桃| 久久人妻熟女aⅴ| 在线亚洲精品国产二区图片欧美| www.熟女人妻精品国产| 日韩欧美免费精品| 黄色 视频免费看| 2018国产大陆天天弄谢| 亚洲av日韩精品久久久久久密| 精品少妇一区二区三区视频日本电影| 国产区一区二久久| 久久久久精品人妻al黑| 国产精品1区2区在线观看. | 高清黄色对白视频在线免费看| 成年av动漫网址| 青春草亚洲视频在线观看| 亚洲精品中文字幕一二三四区 | 99精国产麻豆久久婷婷| 国产精品久久久久久精品古装| 国产精品免费大片| 99精国产麻豆久久婷婷| 黄色 视频免费看| www.熟女人妻精品国产| 中文字幕人妻丝袜制服| 久久久久久人人人人人| 国产人伦9x9x在线观看| 亚洲欧美一区二区三区黑人| 男人舔女人的私密视频| 丰满迷人的少妇在线观看| 亚洲精品中文字幕一二三四区 | 国内毛片毛片毛片毛片毛片| 飞空精品影院首页| √禁漫天堂资源中文www| 亚洲性夜色夜夜综合| 飞空精品影院首页| 欧美精品av麻豆av| 亚洲av日韩在线播放| 亚洲精品一区蜜桃|