• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project

    2015-09-03 07:29:29YuZhangWeiyaXuJianfuShaoHaiinZhaoWeiWangaCollegeofPipelineandCivilEngineeringChinaUniversityofPetroleumQingdao266555PRChinaGeotehnialResearhInstituteHohaiUniversityNanjing210098PRChinaHunanProvinialKeyLaoratoryofKeyTehno
    Water Science and Engineering 2015年1期

    Yu Zhang*,Wei-ya Xu,Jian-fu Shao,Hai-in Zhao,WeiWangaCollege of Pipeline and Civil Engineering,China University of Petroleum,Qingdao 266555,PRChinaGeotehnial Researh Institute,HohaiUniversity,Nanjing 210098,PRChinaHunan Provinial Key Laoratory of Key Tehnology on Hydropower Development,Changsha 410014,PRChina Reeived 10 April 2014;aepted 2 Deemer 2014Availale online 21 January 2015

    ?

    Experimental investigation of creep behavior of clastic rock in Xiangjiaba Hydropower Project

    Yu Zhanga,b,*,Wei-ya Xub,Jian-fu Shaob,Hai-bin Zhaoc,WeiWangbaCollege of Pipeline and Civil Engineering,China University of Petroleum,Qingdao 266555,PRChinabGeotechnical Research Institute,HohaiUniversity,Nanjing 210098,PRChinacHunan Provincial Key Laboratory of Key Technology on Hydropower Development,Changsha 410014,PRChina Received 10 April 2014;accepted 2 December 2014
    Available online 21 January 2015

    Abstract

    There aremany fracture zones crossing the dam foundation of the X iangjiaba Hydropow er Project in southw estern China.Clastic rock is the main media of the fracture zone and has poor physical and mechanical properties.In order to investigate the creep behavior of clastic rock,triaxial creep testsw ere conducted using a rock servo-controlling rheological testingmachine.The results show that the creep behavior of clastic rock issignificantatahigh levelof deviatoric stress,and less time-dependentdeformation occursathigh confining pressure.Based on the creep test results,the relationship between axialstrain and timeunder differentconfining pressureswas investigated,and the relationship between axial strain rate and deviatoric stresswas also discussed.The strain rate increases rapidly,and the rock sample failseventually underhigh deviatoric stress.Moreover,the creep failuremechanism under different confining pressureswas analyzed.Themain failuremechanism of clastic rock is p lastic shear,accompanied by a significant com pression and ductile dilatancy.On the other hand,w ith the determ ined parameters,the Burgers creepmodelw asused to fit the creep curves.The results indicate that the Burgersmodel can exactly describe the creep behavior of clastic rock in the Xiangjiaba Hydropower Project. ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Rock mechanics;Clastic rock;Creep behavior;Triaxial creep test;Burgers creep model;Xiangjiaba Hydropower Project

    1.Introduction

    The time-dependent(creep)behavior of rock refers to the continued deformation under the effects of constant stress,including deformations,slips,and failures(Sun,2007;M a,2004;Brantut et al.,2013).It is one of the most important m echanical properties of rockmaterial,and can be considered an importantbasis forexplaining and analyzing thephenomena of geological tectonic movement,as well as predicting longterm stability for rock engineering(Tsaietal.,2008;Yang and Jiang,2010;Zhang etal.,2013).Therefore,the time effectof geotechnical engineering stability is increasingly considered. Taking into accountdelayed deformations,it isconsidered that failure can take p lace over a large span of tim e in many geotechnical projects(Bayraktar et al.,2009;Yin et al.,2013;Yang et al.,2014).A lot of deformation failures and losses of stability in geotechnical projectsare not instancesof transient destruction,but develop over time(Dusseault and Fordham,1993;Boukharov etal.,1995;Dam janac and Fairhurst,2010). Deformation of thedam foundationsand abutmentscan last for severaldecades,and creep failureof rock tunnelscanoccurafter construction for several decades(Fan,1993;Gudmundsson etal.,2010;Zhang etal.,2012,2014b).Therefore,itisessential to study the creep propertiesof rocks.

    Laboratory testing is the most importantmethod of studying rock mechanical properties(Maranini and Brignoli,1999;Li and Xia,2000).It is also used to analyze rock creep constitutive relations and parameters meant to evaluate the long-term stability of rock engineering(Dahou et al.,1995;Pietruszczak et al.,2002;Barla et al.,2012).Many achievements in the experimental study of creep behavior of different types of rocks have been made in China and other countries. Based on a number of uniaxial and triaxial creep test results,the effects of confining pressure and axial pressure on the creep stress-strain behavior of salt rock were analyzed by Yang etal.(1999),and an exponential function was suggested tomodel the creep strain from transient to steady states.Carter etal.(1993)investigated the influence of temperature on creep behavior and found that the time-dependent properties of salt rock were strongly dependent on temperature.Chan et al.(1997)reported a large number of uniaxial and triaxial test resultsand analyzed the confining pressureeffectson the creep strain.Li et al.(2008)studied the relation of complete creep processesand triaxial stress-strain curves of rocks.Fabre and Pellet(2006)demonstrated the creep behavior of three kinds of rocks characterized by a high proportion of clay particles,and theviscosity of thesesedimentary rockswasstudied under different loading conditions.However,concerning thestudy of creepmechanical properties of rocks in some specific projects such as hydropower projects,little experimental data have been reported.

    There aremany existing large-scale hydropower projects in southwestern China,which create severe challenges for experiments and the theoretical and numerical research on the creep behavior of rocks and long-term stability of rock engineering.This study focused on the creep behavior of the clastic rock core from the Limeiwan fracture zone in the dam foundation of the Xiangjiaba Hydropower Project,which is located on the lower pool of the Jinsha River,at the border of Sichuan and Yunnan provinces.The dam is a concrete gravity dam w ith amaximum height of 161m and a length of 909m. The fracture zone crosses the dam foundation,and the area and thicknessof the fracture zone are relatively large(Fig.1). Clastic rock is themainmedia of the fracture zone and ithas poor physical and mechanical properties.The creep mechanical behavior of such rock has an important impact on the long-term stability of engineering structures and should be investigated carefully.This paper presents the results of triaxial creep tests on this clastic rock.Based on creep experim ents under different confining pressures,the creep constitutive relation and param eters have been determ ined.

    Fig.1.Xiangjiaba Hydropower Project and fracture zone in dam foundation.

    Fig.2.Geological distribution of clastic rock in Xiangjiaba Hydropower Project.

    2.Lithologic characteristics and experim ental p rogram

    2.1.Lithologic characteristics of rock samples

    The clastic rock materials were obtained from the T32-6sub-petrofabric in the fracture zone in cataclastic and clastic shapes(Fig.2).They were soft rocks w ith poor integrity,which were highly weathered and had the characteristics of low specific gravity,medium porosity,loose organizational structure,and high moisture content.The results of basic physical property tests showed that the averages of natural density and dry density were 2.375 g/cm3and 2.225 g/cm3,respectively.The averages of moisture content and porosity were 6.59%and 18.23%,respectively.Furthermore,the flow behavior showed that the permeability coefficient varied from 0.14×10-5to 16.3×10-5cm/s in the natural state,and its values were alm ost the sam e in the directions parallel and perpendicular to the bedding plane.In view of this,it can be concluded that at the sample scale,the rock wasmid-permeablew ith isotropic permeability(Zhang etal.,2014a).

    Opticalmicroscopic tests were performed to analyze the m icrostructure and mineral composition of the clastic rock(Fig.3).The results indicated that the clastic rock retained fine-grained texture w ith an extremely complex microstructure.Also,themainmineral composition consisted of quartz,chalcedony,feldspar(K-feldspar and plagioclase),sericite,chlorite,a small amount of iron com pounds,and tracem inerals.The trace minerals mainly included tourmaline,zircon,phosphorites,zoisite,and glauconite.The main chemical constituent was SiO2(accounting for 80.75%-83.52%),followed by Al2O3,and asmallamountofmixtureof Fe2O3,CaO,and MgO.

    2.2.Test equipment and procedure

    The experiments were performed w ith the rock servocontrolling rheological testingmachine(Zhang etal.,2014b). This equipment can be used to carry out conventional compression testsand rheological tests such asuniaxial creep tests and triaxial creep tests.The confining pressure ranged from 0 to 60 MPa,and themaximum deviatoric stress could reach 500MPa.Themulti-step loadingmethod wasadopted in axial loading,with steps ranged from 4 to 6.The temperature and hum idity were kept constant during all tests.The sam ples were standard cylindrical,50 mm in diameter and 100 mm in height.Due to the poor quality of some rock samples,extreme care was necessary in handling of the samples,and some special preparationswere required.For instance,the samples were stored with a sealing technique.Thesame testprocedures were described in Zhang et al.(2013).

    Fig.3.Opticalm icroscopic test results of clastic rock sample.

    Fig.4.Typical com pression stress-strain curves under different confining pressures.

    3.Behavior of conventional triaxial com pression tests

    In order to confirm multi-step stress levels of triaxial creep tests,conventional triaxial compression tests on clastic rock samples under the confining pressures of 1.0 MPa,1.5 MPa,and 2.0 MPa were carried out first.Typical conventional compression stress-strain curvesof the clastic rock are shown in Fig.4,whereσandεare the deviatoric stress and strain of rock,respectively,and mechanical parameters are listed in Table 1.The stress-strain curves show approximate plastic platforms when the strain exceeds a limit value.It is also worthwhile to point out that the samp le fails when the axial strain exceeds 5.0%,which ismuch larger than that for hard rock.We can conclude that the peak strength increases gradually with the confining pressure.It can be seen that the sample is not at an obvious stage of crack closure.

    In general,the response can be decomposed into four phases for all tests.During the initial loading,a quasi-linear and reversible stress-strain relation is obtained,indicating the elastic compressibility of the rock skeleton,and the elastic modulus can be determined from the slope of the stress-strain curve in this phase.W hen the stress reaches a certain value,called the yield stress,a nonlinear p lastic phase is observed,w ith significant increase of strain,and the slope of the curve decreases.Under different confining pressures,nonlinear behavior begins at axial strains of about 1.0%.With the incremental stress,a general strain-hardening phase is produced w ith the increase of the contact surface among grains.Followed by a large axial strain,the phase of plastic failure occurs,in which cracks coalesce.These phases are similar to plastic consolidation in soilmechanics.Due to the hardening behavior of stress-strain curves of the clastic rock,the deformationmodulus is slightly lower than the elasticmodulus.The deformation modulus of the rock sample has a close relation w ith the nonlinear deformation under prim ary loading.

    Table 1 Conventionalmechanical parameters of compression tests of clastic rock(MPa).

    4.Results of triaxial creep tests

    4.1.Analysis of creep strain

    Triaxial creep tests were performed at ambient temperatures of(20.0±1.5)°C.The confining pressures in the creep tests were the same as those in the conventional triaxial compression tests.Under the confining pressure of 1.0 MPa,the deviatoric stresses of 1.00,1.50,2.50,and 3.00 MPawereselected,while under the confining pressures of 1.5 and 2.0 MPa,the deviatoric stress was increased by 0.75 MPa per step from 1.00 to 4.75MPa until failure of laboratory samp les occurred.Ateach loading step,the deviatoric stresswas kept constant for a time interval ofmore than 48 h w ith the axial strain continuously recorded.

    The axial strain-time curves under different confining pressures are presented in Fig.5.Creep curves are smooth w ithout fluctuation,indicating that the creep strain has continuity over time.The resultsshow thatata low deviatoric stress level,the axial creep strain is unnoticeable,while the creep phenomenon of the clastic rock becom es significantw ith the increase of the deviatoric stress.The main feature associated w ith the failure is the high axial plastic strain as well as the high strain ratedue to long-term accumulation of creep effects. Therefore,no brittle damage is observed in the rock samples.

    As shown in Fig.5(a),under the confining pressure of 1.0 MPa,when the deviatoric stress is less than 2.5MPa,the creep strain is unnoticeable.When the deviatoric stress increases to 2.5 MPa,the increment of axial creep strain is 0.71%.W hen the deviatoric stress reaches 3.00MPa,the creep strain isgreater than at previous stress levels.After five hours of constant loading,the creep strain increases by 0.83%,and,eventually,the rock sample fails via the large creep strain.

    As shown in Fig.5(b),under the confining pressure of 2.0MPa,when the deviatoric stress is less than 3.25MPa,the creep strain is unnoticeable.When the deviatoric stress reaches 4.75 MPa,the creep strain increasesmore quickly than before.After three hours of constant loading,the creep strain increases by 0.82%,and the rock samp le fails eventually.In general,the confining pressure has a significant influence on the creep strain of rock samples.Under the same condition,the greater the confining pressure is,the lesser the corresponding creep strain w ill be.

    Fig.5.Relation between creep strain and time under different confining pressures.

    4.2.Analysis of creep strain rate

    It can be deduced from Fig.(5)that for a certain value of the deviatoric stress,the strain rate increases first and then gradually decreases to a constant value after a period of time. According to the evolution of the creep strain rate,the creep curve can be divided into transient and steady stages.The creep strain rate tends to be a value close to zero at low deviatoric stress.Athigh deviatoric stress,the evolution of the creep strain rate is similar to itsperformance at low deviatoric stress,but thevalue isgreater.Under the confining pressure of 2.00MPa,the creep strain rate tends to be a constant value of 0.8×10-3h-1ata deviatoric stressof 1.0MPa,and thevalue increases to 5.53×10-3h-1atadeviatoric stressof 4.00MPa. After the stressof 4.75MPa isapplied at the last loading step,the strain rate significantly increases until the rock sam ple fails,and the process lasts about three hours.Therefore,the strain rate increases w ith the deviatoric stress.

    4.3.Creep failuremode and mechanism

    The creep failure patterns under different confining pressuresare shown in Fig.6.Themain failuremechanism of the rock sample is plastic shear accompanied by a significant compression and ductile dilatancy.Sample failure is classically produced by the pore compression and crack coalescence.It can be said that the essential failure is the result of synthetic effects of the material defects,heterogeneity,and long-term accum ulation of m icrocrack dam age.Under time and loading effects,micromovement is caused by the crystal displacement and m ineral cleavage.Thus,the rock deformation includes the diffusion of lattice dislocations,crack expansion,and compatible deformation among grains.The rock has different scales of initialmicrodefects,such as fissures,joints,dislocations,etc.,which determine the macroscopic behavior of the rock.It is very easy form icrodefects to develop and dislocate between grains and cleavages under constant loading.Then,ductile deform ation accom panied by m oderate dilation or even com paction results in a number of smallmacrocracks on the sample surface.

    Fig.6.Typical creep failure patterns of clastic rock.

    Based on the m icroscale and m esoscale analyses,this section discusses the shapes of internal m icrodefects after creep failure.The sampleswere selected along the surface of the fracture zone in this study.From the scanning electron m icroscope(SEM)observations(Fig.7),itcan be seen that the m icroscopic failure patterns are slightly different under various confining pressures.There aremore grow ing cracks,and the fracture surface is coarsew ith lessmicro grainsunder low confining pressures.With the increase of the confining pressure,the porosity decreasesw ithmoremicro grainson the fracture surface.During the testing process,m icrofissure damage inside the rock sample continuously accumulates,and then,the cracks,originating from the defectsof initial internal voids,extend and interpenetrate,and eventually lead to the failure.

    Fig.7.SEM observations of rock samples after creep failure at magnification of 1000.

    5.Creep m odel and param eter identification

    The creep curves in Fig.5 show that the clastic rock sample experiences a transient creep stage and a steady creep stage under each step of loading,and the creep strain rate first increasesand then decreases toward a constantvalue.According to the creep behaviorshown by these curves,the Burgerscreep model,which can be regarded as the combination of the Maxwell m odel and Kelvin model,was chosen to describe those results(Fig.8).

    Fig.8.Illustration of Burgers creep model.

    The constitutive equation of the Burgers creepmodel isas follows:

    whereσM,εM,and˙εMare thedeviatoricstress,strain,and strain rate of the Maxwell body,respectively;σK,εK,and˙εKare the deviatoric stress,strain,and strain rate of the Kelvin body,respectively;EMandηMare the elastic modulus and viscosity coefficientof the Maxwellbody;and EKandηKare the elastic modulusand viscosity coefficientof the Kelvin body.

    Using the Laplace transform to solve Eq.(1),the corresponding creep constitutive equation can be expressed:

    The datameasured undermulti-step loading in the testwere processed using Boltzmann superposition(Zhang,2012).In order to determ ine creep m echanical parameters at different deviatoric stresses,an iteration procedure was used based on the Quasi-New ton searchmethod.The relevant parametersof the Burgerscreepmodelwere identified from data processing,as shown in Table 2,and the fitted curves could be obtained w ith the required precision.Through analysis of the obtained creep mechanical parameters(Table 2),it can be determ ined that the Burgersmodel parameters vary w ith the deviatoric stress and the time-dependent deformation of the clastic rock increases w ith the long-term constant deviatoric stress.

    Table 2 Creep parameters of clastic rock under different confining pressures.

    As shown in Table 2,under the confining pressures of 1.5 MPa and 2.0MPa,the elastic modulus EMis high at the first deviatoric stress.Then,EMgradually decreases w ith the increase of the deviatoric stress.The rock is linear elastic in this stage.W hen the deviatoric stress increases to a certain value,the rock sample enters the plastic phase and,at this stage,eventually fails.During this stage,EMshows a further decrease.Therefore,by analyzing the evolutions of EM,we observe that the degradation of the elastic modulus is decelerated w ith the increase of the deviatoric stress,and the value of EMvaries by a power function w ith the deviatoric stress during creep tests(Fig.9(a)).Because of the high heterogeneity of the rock sample,the evolution of the elasticmodulus is insignificant under the confining pressure of 1.0MPa.

    The viscosity coefficientηMcan reflect the variation of the strain rate of steady creep.Generally,the strain rateof thisstage isquasi-independentof the loading history and dependsonly on the currentstressstate(Yang etal.,1999).Asshown in Table2,ηMdemonstratesan overall increasing trendw ith thedeviatoric stress,indicating thatthestrain rateofsteady creep continues to increase until the deviatoric stress reaches itsmaximum.The relationships betweenηMand deviatoric stress can also be expressed by a power function(Fig.9(b)).EK/ηKreflects the duration from the transient creep to steady creep.It takes the rock more time to reach a steady statewhen EK/ηKis lower. Results show that relationship between EK/ηKand deviatoric stress can be expressed by an exponential function(Fig.9(c)).

    The comparison between the Burgersmodel's predictionsof creep curvesand tested creep resultsunder different confining pressures is shown in Fig.10.The Burgersmodel can describe well the time-dependentbehaviorof the clastic rock aswell as transient and steady creeps.

    Fig.9.Relations between Burgersmodel parameters and deviatoric stress.

    6.Conclusions

    (1)The creep behavior of clastic rock is not significant at low deviatoric stress.However,at high deviatoric stress,the creep behavior is very significant,and the time-dependent deformation is large.Two creep phases,the transient and steady stages,appear to a significant degree when the deviatoric stress ishigh.The time-dependent deformation decreases w ith the increase of the confining pressure,indicating that less creep of the rock samp lemay occur athigh confining pressure.

    (2)The creep strain rate of the rock sam ple varies w ith the deviatoric stress.The strain rate tends to be a value close to zero over timeat low deviatoric stress.However,the strain rate increasesw ith the deviatoric stress.When the deviatoric stress is increased to a certain value,the strain rate increases rapidly,and the rock sample fails eventually.

    (3)Themain failure mechanism of clastic rock is plastic shear,accompanied by a significant compression and ductile dilatancy.The failure may be due to the occurrence,development,and coalescence of m icrocracks under long-term constant stresses.As shown by SEM experiments,creepstrains and microscopic failure patterns are different under different confining pressures.The reason is that the microfissure damages inside the rock sample continuously accumulate in the process of creep testing.

    (4)Based on the tested results,the creep parametersof the Burgers creep model are determ ined through curve fitting of measured data.The results demonstrate a high precision of the Burgers creep model in prediction of the creep curve as compared w ith the measured curve.Thus,the model can describe the overall time-dependentbehaviorof clastic rock.It can provide a basis for creep numerical simulation,which is vital for predicting the long-term stability of the Xiangjiaba Hydropower Project.

    Fig.10.Comparison between Burgers model's prediction of creep curves and tested results.

    References

    Barla,G.,Debernardi,D.,Sterpi,D.,2012.Time-dependent modeling of tunnels in squeezing conditions.Int.J.Geomech.12(6),697-710.http:// dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000163.

    Bayraktar,A.,Kartal,M.E.,Basaga,H.B.,2009.Reservoirwater effects on earthquake performance evaluation of Torul Concrete-faced Rockfill Dam. Water Sci.Eng.2(1),43-57.http://dx.doi.org/10.3882/j.issn.1674-2370.2009.01.005.

    Boukharov,G.N.,Chanda,M.W.,Boukharov,N.G.,1995.The three processes of brittle crystalline rock creep.Int.J.Rock M ech.M in.Sci.32(4),325-335.http://dx.doi.org/10.1016/0148-9062(94)00048-8.

    Brantut,N.,Heap,M.J.,Meredith,P.G.,Baud,P.,2013.Time-dependent cracking and brittle creep in crustal rocks:a review.J.Struct.Geol.52,17-43.http://dx.doi.org/10.1016/j.jsg.2013.03.007.

    Carter,N.L.,Horseman,S.T.,Russell,J.E.,Handin,J.,1993.Rheology of rocksalt.J.Struct.Geol.15(9-10),1257-1271.http://dx.doi.org/10.1016/ 0191-8141(93)90168-A.

    Chan,K.S.,Bodner,S.R.,F(xiàn)ossum,A.F.,M unson,D.E.,1997.A damage mechanics treatment of creep failure in rock salt.Int.J.Damage M ech. 6(2),122-152.http://dx.doi.org/10.1177/105678959700600201.

    Dahou,A.,Shao,J.F.,Bederiat,M.,1995.Experimental and numerical investigations on transient creep of porous chalk.M ech.Mater.21(1),147-158.http://dx.doi.org/10.1016/0167-6636(95)00004-6.

    Dam janac,B.,F(xiàn)airhurst,C.,2010.Evidence fora long-term strength threshold in crystalline rock.Rock Mech.Rock Eng.43(5),513-531.http:// dx.doi.org/10.1007/s00603-010-0090-9.

    Dusseault,M.B.,F(xiàn)ordham,C.J.,1993.Time dependentbehaviour of rocks.In: Comprehensive Rock Engineering:Principles,Practice and Projects.Pergamon Press,Oxford,pp.119-149.

    Fabre,G.,Pellet,F(xiàn).,2006.Creep and time-dependent damage in argillaceous rocks.Int.J.Rock Mech.M in.Sci.43(6),950-960.http://dx.doi.org/ 10.1016/j.ijrmms.2006.02.004.

    Fan,G.Q.,1993.RheologicalMechanicsof Geotechnical Engineering.China Coal Industry Publishing House,Beijing(in Chinese).

    Gudmundsson,A.,Simmenes,T.H.,Belinda,L.,Sonja,L.P.,2010.Effects of internalstructure and localstresseson fracturepropagation,deflection,and arrest in faultzones.J.Struct.Geol.32(11),1643-1655.http://dx.doi.org/ 10.1016/j.jsg.2009.08.013.

    Li,Y.P.,Wang,Z.Y.,Tang,M.M.,Wang,Y.,2008.Relations of comp lete creep processes and triaxial stress-strain curves of rock.J.Cent.South Univ. Technol.15(1),311-315.http://dx.doi.org/10.1007/s11771-008-0370-7.

    Li,Y.S.,Xia,C.C.,2000.Time-dependent tests on intact rocks in uniaxial compression.Int.J.Rock M ech.M in.Sci.37(3),467-475.http:// dx.doi.org/10.1016/S1365-1609(99)00073-8.

    Ma,L.,2004.Experimental Investigation of Time DependentBehavior ofWelded Topopah Spring Tuff.Ph.D.dissertation.University of Nevada,Reno.

    Maranini,E.,Brignoli,M.,1999.Creep behaviour of a weak rock:experimental characterization.Int.J.Rock Mech.M in.Sci.36(1),127-138. http://dx.doi.org/10.1016/S0148-9062(98)00171-5.

    Pietruszczak,S.,Lydzba,D.,Shao,J.F.,2002.Modelling of inherent anisotropy in sedimentary rocks.Int.J.Solids Struct.39(3),637-648.http:// dx.doi.org/10.1016/S0020-7683(01)00110-X.

    Sun,J.,2007.Rock rheologicalmechanics and its advance in engineering applications.Chin.J.Rock Mech.Eng.26(6),1081-1106(in Chinese).

    Tsai,L.S.,Hsieh,Y.M.,Weng,M.C.,Huang,T.H.,Jeng,F(xiàn).S.,2008.Timedependent deformation behaviors of weak sandstones.Int.J.Rock M ech. Min.Sci.45(2),144-154.http://dx.doi.org/10.1016/j.ijrmms.2007.04.008.

    Yang,C.H.,Daemen,J.J.K.,Yin,J.H.,1999.Experimental investigation of creep behavior of salt rock.Int.J.Rock M ech.M in.Sci.36(2),233-242. http://dx.doi.org/10.1016/S0148-9062(98)00187-9.

    Yang,S.Q.,Jiang,Y.Z.,2010.Triaxialmechanical creep behavior of sandstone.M in.Sci.Technol.20(3),339-349.http://dx.doi.org/10.1016/ S1674-5264(09)60206-4.

    Yang,W.D.,Zhang,Q.Y.,Li,S.C.,Wang,S.G.,2014.Time-dependent behavior of diabase and a nonlinear creepmodel.Rock Mech.Rock Eng. 47,1211-1224.http://dx.doi.org/10.1007/s00603-013-0478-4.

    Yin,D.S.,Li,Y.Q.,Wu,H.,Duan,X.M.,2013.Fractional description of mechanical property evolution of soft soils during creep.Water Sci.Eng. 6(4),446-455.http://dx.doi.org/10.3882/j.issn.1674-2370.2013.04.008.

    Zhang,Y.,2012.Experimental InvestigationonRheologicalMechanicsofDam Foundation Deflection ZoneCataclastic Rock and its Study of Constitutive Model.Ph.D.dissertation.HohaiUniversity,Nanjing(in Chinese).

    Zhang,Y.,Xu,W.Y.,Gu,J.J.,Wang,W.,2013.Triaxial creep tests of weak sandstone from the deflection zone of high dam foundation.J.Cent.South Univ.Technol.20(9),2528-2536.http://dx.doi.org/10.1007/s11771-013-1765-7.

    Zhang,Y.,Shao,J.F.,Xu,W.Y.,Zhao,H.B.,Wang,W.,2014a.Experimental and numerical investigations on strength and deformation behavior of cataclastic sandstone.Rock M ech.Rock Eng.http://dx.doi.org/10.1007/ s00603-014-0623-8.Published online athttp://link.springer.com/article/10. 1007%2Fs00603-014-0623-8#page-1 on July 11,2014.

    Zhang,Y.,Shao,J.F.,Xu,W.Y.,Jia,Y.,Zhao,H.B.,2014b.Creep behaviourand permeability evolution of cataclastic sandstone in triaxial rheological tests. Eur.J.Environ.Civ.Eng.http://dx.doi.org/10.1080/19648189.2014.960103. Published online at http://www.tandfonline.com/doi/abs/10.1080/ 19648189.2014.960103#.VMsZIvRAXlA on September19,2014.

    Zhang,Z.L.,Xu,W.Y.,Wang,W.,2012.Triaxial creep tests of rock from the compressive zone of dam foundation in Xiang-jiaba Hydropower Station. Int.J.Rock Mech.M in.Sci.50(1),133-139.http://dx.doi.org/10.1016/ j.ijrmms.2012.01.003.

    This work was supported by the National Natural Science Foundation of China(Grants No.51409261 and 11172090),the Natural Science Foundation of Shandong Province(Grants No.ZR2014EEQ014),and the Applied Basic Research Programs of Qingdao City(Grant No.14-2-4-67-jch).

    *Corresponding author.

    E-mail address:zhangyuhohai@gmail.com(Yu Zhang).

    Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.w se.2015.01.005

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    男女高潮啪啪啪动态图| 最近的中文字幕免费完整| 天天躁夜夜躁狠狠躁躁| 宅男免费午夜| 日韩一本色道免费dvd| 日韩中文字幕视频在线看片| 国产精品久久久久成人av| 熟妇人妻不卡中文字幕| 岛国毛片在线播放| 最黄视频免费看| 久久午夜综合久久蜜桃| 国产无遮挡羞羞视频在线观看| 国产午夜精品一二区理论片| 精品人妻偷拍中文字幕| 又粗又硬又长又爽又黄的视频| 日日爽夜夜爽网站| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av涩爱| 超色免费av| 啦啦啦在线观看免费高清www| av电影中文网址| 亚洲图色成人| 国产白丝娇喘喷水9色精品| 欧美人与性动交α欧美精品济南到 | freevideosex欧美| 亚洲国产精品一区三区| 美女视频免费永久观看网站| 国产精品.久久久| 观看av在线不卡| 久久综合国产亚洲精品| 久久久久久人人人人人| 欧美最新免费一区二区三区| 一本色道久久久久久精品综合| 精品国产国语对白av| 18禁观看日本| 人人妻人人澡人人爽人人夜夜| 看非洲黑人一级黄片| 视频中文字幕在线观看| 内地一区二区视频在线| 欧美最新免费一区二区三区| 五月玫瑰六月丁香| 亚洲精品日本国产第一区| 国产一区有黄有色的免费视频| 99视频精品全部免费 在线| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区四区激情视频| 精品亚洲乱码少妇综合久久| 国产成人精品久久久久久| 免费不卡的大黄色大毛片视频在线观看| 欧美日韩国产mv在线观看视频| 内地一区二区视频在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲av.av天堂| 午夜91福利影院| 高清毛片免费看| 久久精品人人爽人人爽视色| 日韩制服骚丝袜av| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 成人国语在线视频| 亚洲综合精品二区| 亚洲精品久久成人aⅴ小说| 精品人妻偷拍中文字幕| 黄色怎么调成土黄色| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看| 精品一区二区三区四区五区乱码 | 99国产精品免费福利视频| 欧美精品一区二区免费开放| 毛片一级片免费看久久久久| 乱码一卡2卡4卡精品| 免费观看在线日韩| 大码成人一级视频| 日韩一区二区三区影片| 五月开心婷婷网| 国产国语露脸激情在线看| 男男h啪啪无遮挡| 日日啪夜夜爽| 国产永久视频网站| 日本av手机在线免费观看| 黄色 视频免费看| 久久鲁丝午夜福利片| 久久精品国产自在天天线| 一二三四中文在线观看免费高清| 国产精品麻豆人妻色哟哟久久| 欧美xxⅹ黑人| 亚洲国产精品一区三区| 亚洲国产欧美日韩在线播放| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 在现免费观看毛片| 国产成人一区二区在线| 亚洲伊人久久精品综合| 国产精品99久久99久久久不卡 | 欧美97在线视频| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 高清av免费在线| 最近的中文字幕免费完整| 宅男免费午夜| www.色视频.com| 日本欧美国产在线视频| kizo精华| 日韩制服骚丝袜av| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看 | 男人添女人高潮全过程视频| 国产黄频视频在线观看| videossex国产| 久久久a久久爽久久v久久| 大话2 男鬼变身卡| 视频中文字幕在线观看| 久久久a久久爽久久v久久| 男人爽女人下面视频在线观看| 美女中出高潮动态图| 亚洲精品乱码久久久久久按摩| 久久人人爽av亚洲精品天堂| 精品人妻一区二区三区麻豆| 寂寞人妻少妇视频99o| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 亚洲人成77777在线视频| 亚洲成国产人片在线观看| 国产精品久久久久久精品电影小说| 免费看不卡的av| 国产一区二区三区av在线| 黄色毛片三级朝国网站| 国产日韩欧美亚洲二区| 成人毛片a级毛片在线播放| 中国国产av一级| 欧美日韩亚洲高清精品| 天堂中文最新版在线下载| 男女边吃奶边做爰视频| 久久久久久人人人人人| 人成视频在线观看免费观看| 亚洲色图综合在线观看| 国产日韩欧美在线精品| 只有这里有精品99| 国产1区2区3区精品| 国产亚洲av片在线观看秒播厂| 成人毛片60女人毛片免费| 成人影院久久| 新久久久久国产一级毛片| 亚洲av欧美aⅴ国产| 精品第一国产精品| videos熟女内射| 欧美精品人与动牲交sv欧美| 久久 成人 亚洲| 国产亚洲av片在线观看秒播厂| 精品人妻偷拍中文字幕| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 国产精品偷伦视频观看了| 十分钟在线观看高清视频www| 国产亚洲精品久久久com| 熟妇人妻不卡中文字幕| 你懂的网址亚洲精品在线观看| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| 国产日韩欧美在线精品| 日韩中字成人| 狂野欧美激情性bbbbbb| 最近中文字幕2019免费版| √禁漫天堂资源中文www| 另类精品久久| 国产福利在线免费观看视频| 亚洲色图综合在线观看| 热99久久久久精品小说推荐| 亚洲综合色惰| 最近的中文字幕免费完整| 在线天堂中文资源库| 十分钟在线观看高清视频www| 51国产日韩欧美| 免费大片黄手机在线观看| 18禁裸乳无遮挡动漫免费视频| 久久久久网色| 国产免费又黄又爽又色| 午夜免费观看性视频| 日韩欧美精品免费久久| 丰满饥渴人妻一区二区三| 熟女av电影| 纵有疾风起免费观看全集完整版| 色婷婷av一区二区三区视频| 18禁在线无遮挡免费观看视频| 成人二区视频| 亚洲,欧美精品.| 亚洲,欧美精品.| 精品国产一区二区三区久久久樱花| 国产精品一国产av| 黑人猛操日本美女一级片| 亚洲人与动物交配视频| 99久久人妻综合| 午夜视频国产福利| 18+在线观看网站| 男女边摸边吃奶| √禁漫天堂资源中文www| 午夜激情av网站| 丁香六月天网| 国产女主播在线喷水免费视频网站| 亚洲成国产人片在线观看| 日韩 亚洲 欧美在线| 伦精品一区二区三区| 国产 一区精品| 9色porny在线观看| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 国产精品免费大片| 成人二区视频| 亚洲成人av在线免费| 一边亲一边摸免费视频| 水蜜桃什么品种好| 伦精品一区二区三区| 丝袜人妻中文字幕| 国产视频首页在线观看| 国产精品蜜桃在线观看| 91精品三级在线观看| 波多野结衣一区麻豆| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 香蕉国产在线看| 精品少妇久久久久久888优播| 18禁观看日本| 精品少妇黑人巨大在线播放| 欧美人与性动交α欧美精品济南到 | a级片在线免费高清观看视频| 如日韩欧美国产精品一区二区三区| 精品国产国语对白av| 国产高清三级在线| 久久久久精品人妻al黑| av免费在线看不卡| 国产精品久久久久成人av| 日韩欧美一区视频在线观看| 如日韩欧美国产精品一区二区三区| 美国免费a级毛片| 国产av一区二区精品久久| 99热国产这里只有精品6| 91精品国产国语对白视频| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 少妇猛男粗大的猛烈进出视频| 香蕉精品网在线| 九九在线视频观看精品| 亚洲av男天堂| 91久久精品国产一区二区三区| 亚洲欧美日韩另类电影网站| 久久久久国产网址| 免费不卡的大黄色大毛片视频在线观看| av电影中文网址| 巨乳人妻的诱惑在线观看| 99热网站在线观看| 国产亚洲欧美精品永久| 亚洲人与动物交配视频| 捣出白浆h1v1| 最新中文字幕久久久久| 亚洲精品日本国产第一区| 热99久久久久精品小说推荐| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 久久狼人影院| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 亚洲综合精品二区| 亚洲精品一区蜜桃| 看十八女毛片水多多多| 日本vs欧美在线观看视频| av电影中文网址| 久久这里有精品视频免费| 最新的欧美精品一区二区| 黄色怎么调成土黄色| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| av又黄又爽大尺度在线免费看| 午夜激情av网站| 精品少妇黑人巨大在线播放| 一区二区av电影网| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区| 久久久精品区二区三区| 亚洲精品久久久久久婷婷小说| 国产1区2区3区精品| 久久久久久人人人人人| 咕卡用的链子| 亚洲精品成人av观看孕妇| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 色哟哟·www| 99久国产av精品国产电影| 精品亚洲乱码少妇综合久久| 国产av精品麻豆| 久久人人爽人人爽人人片va| 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区 | 在线看a的网站| 一边亲一边摸免费视频| 一二三四在线观看免费中文在 | 看非洲黑人一级黄片| 又黄又粗又硬又大视频| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 午夜福利视频精品| 国产免费又黄又爽又色| 一区二区三区精品91| 精品少妇内射三级| 美女中出高潮动态图| 91国产中文字幕| 好男人视频免费观看在线| 国产xxxxx性猛交| 欧美亚洲 丝袜 人妻 在线| 中文字幕av电影在线播放| 成人综合一区亚洲| 国产精品人妻久久久影院| 亚洲伊人色综图| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 亚洲av中文av极速乱| 老司机影院成人| 美女脱内裤让男人舔精品视频| 少妇猛男粗大的猛烈进出视频| 久久精品国产亚洲av涩爱| 制服人妻中文乱码| 国产精品不卡视频一区二区| 成人影院久久| 久久av网站| 国产亚洲最大av| 久久婷婷青草| 多毛熟女@视频| 亚洲第一av免费看| 国产成人精品婷婷| 午夜免费观看性视频| 国产国拍精品亚洲av在线观看| 国产精品久久久av美女十八| 亚洲综合色网址| 在线观看一区二区三区激情| 亚洲国产欧美在线一区| 青春草视频在线免费观看| 99热网站在线观看| 欧美精品高潮呻吟av久久| 七月丁香在线播放| 一个人免费看片子| 大码成人一级视频| h视频一区二区三区| 国产精品国产三级国产av玫瑰| 麻豆乱淫一区二区| 少妇人妻精品综合一区二区| 国产乱来视频区| 亚洲,欧美精品.| 国产欧美日韩综合在线一区二区| 最后的刺客免费高清国语| 另类亚洲欧美激情| 日本wwww免费看| 久久精品夜色国产| 国产精品一区二区在线观看99| 一级a做视频免费观看| 久久久久久人妻| 亚洲激情五月婷婷啪啪| 大片免费播放器 马上看| 考比视频在线观看| 精品久久久久久电影网| 狂野欧美激情性bbbbbb| 亚洲av电影在线进入| 国产片内射在线| 乱码一卡2卡4卡精品| 国产 一区精品| 亚洲欧美一区二区三区国产| 这个男人来自地球电影免费观看 | 十分钟在线观看高清视频www| 乱码一卡2卡4卡精品| 色吧在线观看| 国产亚洲av片在线观看秒播厂| 成人国语在线视频| 日韩视频在线欧美| www.熟女人妻精品国产 | 一二三四中文在线观看免费高清| 亚洲人成77777在线视频| 成人无遮挡网站| 国产av码专区亚洲av| 高清欧美精品videossex| 制服丝袜香蕉在线| 亚洲人与动物交配视频| 久久99蜜桃精品久久| 婷婷成人精品国产| 久久久久精品久久久久真实原创| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 国产午夜精品一二区理论片| 综合色丁香网| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 久久久国产精品麻豆| 99九九在线精品视频| 全区人妻精品视频| 曰老女人黄片| 超色免费av| 少妇 在线观看| 在线观看免费日韩欧美大片| 久久久久久人人人人人| 国产精品偷伦视频观看了| 国产精品嫩草影院av在线观看| 日本黄大片高清| 亚洲精品国产av成人精品| 日韩,欧美,国产一区二区三区| 狂野欧美激情性xxxx在线观看| 国产成人一区二区在线| 男男h啪啪无遮挡| 99国产综合亚洲精品| 久久国内精品自在自线图片| 日韩一本色道免费dvd| 午夜福利在线观看免费完整高清在| 99久久精品国产国产毛片| 男女下面插进去视频免费观看 | 国产欧美日韩综合在线一区二区| 涩涩av久久男人的天堂| 国产精品免费大片| 亚洲精品一二三| 日本av手机在线免费观看| 成人免费观看视频高清| 亚洲精品国产av成人精品| 国产成人精品无人区| 少妇人妻精品综合一区二区| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 国产精品欧美亚洲77777| 日韩成人伦理影院| 久久 成人 亚洲| 国产av精品麻豆| 五月天丁香电影| 亚洲精品日韩在线中文字幕| 亚洲国产成人一精品久久久| 18禁裸乳无遮挡动漫免费视频| 青春草视频在线免费观看| 亚洲精品国产色婷婷电影| 久久精品国产亚洲av涩爱| 丝袜美足系列| 亚洲三级黄色毛片| 在线观看三级黄色| 18禁国产床啪视频网站| 国产av国产精品国产| 国产高清不卡午夜福利| 国产精品一区www在线观看| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 五月玫瑰六月丁香| 久久亚洲国产成人精品v| 日日爽夜夜爽网站| 久久人妻熟女aⅴ| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 丝瓜视频免费看黄片| 黑人高潮一二区| 80岁老熟妇乱子伦牲交| 国产av国产精品国产| 在线天堂最新版资源| 9热在线视频观看99| 国产黄频视频在线观看| 十八禁高潮呻吟视频| 亚洲内射少妇av| 高清视频免费观看一区二区| 最后的刺客免费高清国语| 国产熟女欧美一区二区| 精品久久久精品久久久| 亚洲精华国产精华液的使用体验| www.av在线官网国产| 免费久久久久久久精品成人欧美视频 | 国产精品一区二区在线不卡| 国产乱人偷精品视频| 日韩伦理黄色片| 热re99久久精品国产66热6| 1024视频免费在线观看| 9热在线视频观看99| 亚洲第一区二区三区不卡| 精品卡一卡二卡四卡免费| 国产精品.久久久| 久久精品久久精品一区二区三区| a级片在线免费高清观看视频| 激情五月婷婷亚洲| 亚洲国产看品久久| 大码成人一级视频| 午夜影院在线不卡| av免费在线看不卡| av在线app专区| 精品一区二区免费观看| 九九爱精品视频在线观看| 日韩伦理黄色片| 中文字幕亚洲精品专区| 日本色播在线视频| 久热久热在线精品观看| 各种免费的搞黄视频| 国产精品人妻久久久久久| 在线观看免费高清a一片| 国产福利在线免费观看视频| 美女视频免费永久观看网站| 日韩三级伦理在线观看| 深夜精品福利| 亚洲欧美清纯卡通| 只有这里有精品99| videos熟女内射| 久久ye,这里只有精品| 性高湖久久久久久久久免费观看| 国产精品久久久久久精品电影小说| 制服诱惑二区| 国产成人精品一,二区| 丰满迷人的少妇在线观看| 国产男女超爽视频在线观看| 51国产日韩欧美| 免费在线观看黄色视频的| 亚洲第一av免费看| xxxhd国产人妻xxx| 亚洲欧美一区二区三区黑人 | 高清视频免费观看一区二区| videossex国产| 午夜日本视频在线| 日日啪夜夜爽| 亚洲av电影在线观看一区二区三区| 亚洲成色77777| 狂野欧美激情性bbbbbb| 日本wwww免费看| 赤兔流量卡办理| 毛片一级片免费看久久久久| 91午夜精品亚洲一区二区三区| 久久人人97超碰香蕉20202| 精品久久国产蜜桃| 国产免费现黄频在线看| 免费黄色在线免费观看| 亚洲国产精品专区欧美| 亚洲,欧美精品.| 日韩免费高清中文字幕av| 91国产中文字幕| tube8黄色片| 国产精品三级大全| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| 高清在线视频一区二区三区| 久久久国产精品麻豆| 一二三四中文在线观看免费高清| 精品酒店卫生间| 成人无遮挡网站| 国产有黄有色有爽视频| 我要看黄色一级片免费的| 亚洲第一区二区三区不卡| 在线 av 中文字幕| 一级片免费观看大全| 97精品久久久久久久久久精品| 婷婷色麻豆天堂久久| 性色av一级| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区蜜桃 | a 毛片基地| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 又大又黄又爽视频免费| 精品人妻一区二区三区麻豆| 精品久久蜜臀av无| 久久婷婷青草| 成人漫画全彩无遮挡| 十八禁网站网址无遮挡| 国产亚洲精品久久久com| 国产熟女午夜一区二区三区| 秋霞伦理黄片| 久久精品国产综合久久久 | 亚洲国产精品国产精品| 成人18禁高潮啪啪吃奶动态图| 熟女电影av网| 欧美亚洲日本最大视频资源| 午夜久久久在线观看| 亚洲成色77777| a级毛色黄片| av又黄又爽大尺度在线免费看| 欧美激情极品国产一区二区三区 | 搡女人真爽免费视频火全软件| 国产午夜精品一二区理论片| 亚洲欧美清纯卡通| 五月伊人婷婷丁香| 秋霞伦理黄片| 人妻人人澡人人爽人人| 欧美精品一区二区免费开放| 免费人成在线观看视频色| 美女内射精品一级片tv| 在线观看免费日韩欧美大片| 精品国产一区二区三区四区第35| 国产成人免费无遮挡视频| 亚洲精品自拍成人| 少妇精品久久久久久久| 久久国产亚洲av麻豆专区| 2022亚洲国产成人精品| 精品亚洲成国产av| 最近中文字幕高清免费大全6| 国产精品 国内视频| 国产亚洲av片在线观看秒播厂| 日本爱情动作片www.在线观看| 天天躁夜夜躁狠狠久久av| 新久久久久国产一级毛片| 看免费av毛片| 亚洲av中文av极速乱| 又黄又爽又刺激的免费视频.| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 久久国产精品男人的天堂亚洲 | 欧美精品一区二区大全| 久久精品国产鲁丝片午夜精品| 人人妻人人添人人爽欧美一区卜| 欧美精品人与动牲交sv欧美| videos熟女内射| 国产av国产精品国产| 国产极品天堂在线| 国产xxxxx性猛交| 9191精品国产免费久久|