• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temporal variations of reference evapotranspiration and its sensitivity tometeorological factors in Heihe River Basin,China

    2015-09-03 07:29:22JieZhaoZongxueXuDepengZuoXuingWangCollegeofWaterSciencesBeijingNormalUniversityBeijing100875PRChinaReceived12July2014accepted22December2014Availableonline21January2015
    Water Science and Engineering 2015年1期

    Jie Zhao,Zong-xue Xu*,De-peng Zuo,Xu-m ing WangCollege ofWater Sciences,Beijing Normal University,Beijing 100875,PRChina Received 12 July 2014;accepted 22 December 2014 Available online 21 January 2015

    ?

    Temporal variations of reference evapotranspiration and its sensitivity tometeorological factors in Heihe River Basin,China

    Jie Zhao,Zong-xue Xu*,De-peng Zuo,Xu-m ing Wang
    College ofWater Sciences,Beijing Normal University,Beijing 100875,PRChina Received 12 July 2014;accepted 22 December 2014 Available online 21 January 2015

    Abstract

    On the basis of daily meteorological data from 15meteorological stations in the Heihe River Basin(HRB)during the period from 1959 to 2012,long-term trends of reference evapotranspiration(ET0)and keymeteorological factors thataffect ET0were analyzed using the Mann-Kendall test.The evaporation paradox was also investigated at 15meteorological stations.In order to explore the contribution of key meteorological factors to the temporal variation of ET0,a sensitivity coefficientmethod was employed in this study.The results show that:(1)mean annual air temperature significantly increased at all 15meteorological stations,while themean annual ET0decreased atmost of sites;(2)the evaporation paradox did existin the HRB,while theevaporation paradoxwasnotcontinuous in spaceand time;and(3)relativehumiditywas the mostsensitivemeteorological factorwith regard to the temporalvariation of ET0in the HRB,followed byw ind speed,air temperature,and solar radiation.Air temperature and solar radiation contributedmost to the temporal variation of ET0in the upper reaches;solar radiation and w ind speed were the determ ining factors for the temporal variation of ET0in them iddle-lower reaches.

    ?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    Reference evapotranspiration;Evaporation paradox;M eteorological factor;Heihe River Basin

    1.Introduction

    Evapotranspiration plays an important role in the hydrological cycleaswellas theglobalenergy budget.Itcontributes 2/3 of annual precipitation and has an essential influence on the Earth's climate system(Jayawardena,1989;Chahine,1992;Zhan et al.,2011;Zuo et al.,2012;Duhan et al.,2013). In addition,evapotranspiration is a key input to hydrological m odels(Liang et al.,1994;Gerten et al.,2004;Zhao et al.,2013).Therefore,a comprehensive understanding of temporal trends and spatial distribution of evapotranspiration is highly significant towater resourcemanagement,especially in places where thewater availability is limited.

    Globalwarm ing hasbeen oneof themostconcerning issues forgovernments.As reported in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC),the surface temperature of the Earth has increased by about 0.13°C per decade over the past 50 years(IPCC,2007).This has significant impacts on environmental system s,by causing glaciers tomelt,the sea level to rise,etc.Globalwarm ing also breaks thebalance of eco-systemsand threatens food supplies. Some studieson climate change have predicted thatone of the phenomena thatglobalwarm ingw illbring about isan increase in the rate of evaporation from terrestrial open water bodies,which will enhance the scarcity of water resources in arid regions(Jackson,2001;Scheffer et al.,2001;Yang et al.,2009;Jayantha et al.,2011;Sjoegersten,2013).

    Observed pan evaporation data have revealed the fact that evaporation from open water bodies has been decreasing over the past several decades in different regions around theworld(Brutsaert et al.,1998;Gao et al.,2012;Yesihrmak,2013),including Australia(Roderick and Farquhar,2004),Canada(Aziz and Burn,2006),Eurasia(Velichko et al.,2008),China(Cong et al.,2009),and India(Rao and Wani,2011).The contrast between the increase in air temperature and the decrease in observed pan evaporation rate is referred to as the evaporation paradox(Roderick and Farquhar,2002).Furthermore,a similar decreasing trend of reference evapotranspiration(ET0)wasalso found by Thomas(2000)and Roderick and Farquhar(2004).

    In order to investigate the evaporation paradox,many studies have been carried out.Generally,these studies can be divided into two categories.One includes studies meant to determ ine the key factors that impact pan evaporation and ET0and analyze variations of these key factors so as to explain the reason why pan evaporation and ET0have decreased over the past several decades.The other includes studies that focus on determining whether decreasing pan evaporation or ET0definitely leads to the decrease in actual evapotranspiration.Studies concerning spatial and temporal variations in pan evaporation and ET0have been carried out by researchers worldw ide.Gao et al.(2006)studied spatial and temporal variations in ET0at 580 stations in China during the period from 1956 to 2000,and,through a partial correlation analysis,the study determ ined that sunshine duration,w ind speed,and relative humidity have asignificant impact on ET0.Wang etal.(2014)analyzed the relationship between the variations of ET0and each climatic variable at Linhe Station,a representative weather station in the Hetao Irrigation District of China,during the period from 1954 to 2012.The results showed that ET0in the Hetao Irrigation District is most sensitive to mean daily air temperature,followed by w ind speed.Changes in sunshine duration had only a m inor effect on ET0during the study period.Recent analysis from Wang et al.(2012)indicated that the aerodynam ic component of ET0accounted for 86%of the longterm changes in global ET0from 1973 to 2008.However,Matsoukas et al.(2011)showed the opposite conclusion: trends in ET0more closely followed trends in energy availability than trends in atmospheric holding capability for vapor transfer.

    These studies have come to quite different conclusions in different regions,indicating a need for new methods to identify the most important meteorological factors in explaining changes in ET0at the regional level.Besides,most of these studies focused on the theoretical sensitivity of ET0,which is the expected variation of ET0due to changes in variables under the assumption that only one variable changes while other variables remain the same.In fact,the theoretical sensitivity of ET0does not consider the actual changes in meteorological variables.However,the explanation ofmeteorological factors controlling changes in ET0must consider both the sensitivity of and long-term changes in the meteorological factors themselves.

    In this study,overallanalysisof the variation of ET0in the arid region in northwestern Chinaw as carried out.The study mainly focused on both the temporal trends of annual and seasonal ET0and quantitative analysis of the contributions of different meteorological variables to the variation of ET0. The objectives of this study included:(1)to detect the longterm trends in ET0and air temperature using the Mann-Kendall(M-K)test;(2)to investigate the evaporation paradox at 15 stations by comparing the changing trends in annual ET0w ith the changing trends in air temperature,in order to compensate for the lack of pan evaporation data in the Heihe River Basin(HRB),because Zuo et al.(2010)found a linear relationship between pan evaporation and ET0in northwestern China and a coefficient of determ ination greater than 0.97,verifying the rationality of using the variation of ET0to reflect the variation of pan evaporation in this study;and(3)to quantify the contribution of key meteorological factors(air temperature,solar radiation,relative hum idity,and w ind speed)to the variation of ET0and explain the reason for the evaporation paradox using the sensitivity coefficientmethod.

    Fig.1.Meteorological stations in and around HRB.

    2.Study area and data

    2.1.Study area

    The HRB,covering an area of approxim ately 134 000 km2,is the second largest inland river basin in northwestern China and spans Qinghaiand Gansu provinces as well as the Inner Mongolia Autonomous Region from upper reaches to lower reaches.The HRB is located between latitude 37.50°N and 42.40°N,and longitude 98°E and 102°E(Fig.1).

    The HRB is situated in the interior of the Eurasian continentand dominated by arid hydrological characteristicsw ith a mean annual precipitation of approximately 400 mm and a m ean annual ET0of approximately 1 600 mm.The precipitation,temperature,evaporation,and runoff in the HRB vary greatly at both spatial and temporal scales.The dom inant land use types are desert land and grass land,occupying approximately 60%and 25%of the total area,respectively.Due to its important role inwater resourcesmanagement in northwestern China,the HRB has long been a focus of studies on inland rivers in arid regions.

    2.2.Data

    Six daily meteorological variables(observed daily mean,maximum and minimum air temperatures,relative humidity,w ind speed at the height of 2 m,and sunshine duration)derived from the ground surface climatic data sets at 15 nationalmeteorological stations from 1959 to 2012(Fig.1)in and around the HRB were obtained from the Environmental and Ecological Science Data Center forWest China.The six variables were used as input data for the FAO56 Penman-Monteith(FAO56 P-M)method to estimate daily values of ET0.The autocorrelation method was emp loyed in this study to analyze the persistence,which is the tendency for successive values of a m eteorological data series to remember the antecedent values(Gilesand Flocas,1984).The results reveal that,forall15 stations in theHRB,autocorrelation coefficients of annual and seasonal air temperatures and ET0series are quite low,whichmeans a low persistence in the data series.

    3.M ethods

    3.1.FAO56 P-M method

    The FAO56 P-M method,which is considered the most accurate method to estimate ET0under different climatic conditions,was employed to estimate the daily values of ET0in this study.Monthly and annualvaluesof ET0wereobtained by adding up thedaily values.The equation of the FAO56 P-M method(Allen et al.,1998)is as follows:

    where ET0is reference evapotranspiration(mm),⊿is the slope of the saturated vapor pressure(kPa/°C),Rnis net radiation at the surface(MJ/(m2·d)),G is soil heat flux density(M J/(m2·d)),γis thepsychrometric constant(kPa/°C),T is the mean air temperature at the height of 2 m(°C),u2is w ind speed at the heightof 2m(m/s),esissaturation vapor pressure(kPa),and eais actual vapor pressure(kPa).Each term in Eq.(1)was obtained usingmethods described by Allen et al.(1998).

    3.2.M-K test

    TheM-K test,whichwas developed by Mann and Kendall and is superior for detecting linear or non-linear trends(Hisdal et al.,2001),was employed to analyze the long-term trends in ET0and air temperature.This method has been w idely used for detecting trends in hydro-meteorological variables such as stream flow,air temperature,ET0,and precipitation in different regions around the world(Zuo et al.,2012;Gong et al.,2011).

    The related equations for calculating the M-K test statistic S and the standardized test statistic ZMKare as follow s:

    where Xiand Xjare the sequential data values of the time series in theyears i and j,n is the length of the timeseries,tpis the number of ties for the p th value,and q is the number of tried values.Positive valuesof ZMKindicate increasing trends,while negativevaluesof ZMKindicate decreasing trends in the time series.When,the null hypothesis,which assumes that there is no significant trend in the time series,is rejected and a significant trend exists in the time series.Z1-α/2is the critical value of Z from the standard normal table,and for the 5%significance level the value of Z1-α/2is 1.96.

    3.3.Sensitivity coefficientmethod

    Formultivariablemodels,such as the FAO56 P-M method,different variables have different dimensions and ranges of values,which makes it difficult to compare sensitivity w ith partial derivatives(Zuo et al.,2012).Therefore,the partial derivative is transform ed into a non-dimensional form to interpret the sensitivity of the variables(M cCuen,1974;Beven,1979):

    where SViis the sensitivity coefficient and Viis the i th variable.SVirepresents the subtle change in ET0resulting from the subtle change in Vi.GViindicates the contribution of the i th variable to thevariation of ET0.The sensitivity coefficienthas been w idely used in studies on evapotranspiration(Estevez et al.,2009).The positive SViof one variablemeans that the changing trends in ET0and thevariableare thesame,while the negative SViof one variablemeans that the changing trends inET0and the variable are opposite.It is the same for GVi. Sensitivity coefficients are different for different variables at different times.The larger the absolute value of the sensitivity coefficient is,the greater the effect the variable exertson ET0. Also,the larger the absolute value of GViis,the greater the contribution thevariablemakes to thevariation of ET0.In this study,SViand GVifor daily air temperature,solar radiation,relative humidity,and w ind speed were estimated to quantify the contribution of each factor selected to thevariation of ET0.

    Fig.2.Temporal variations of seasonal ET0of HRB from 1959 to 2012.

    4.Result analysis and discussion

    4.1.Temporal trend of ET0

    Fig.2 shows inter-annual variation of seasonal ET0in each season.Itcan be seen that seasonal ET0in themiddle reaches was similar to that across the whole basin in both values of seasonal ET0and the inter-annual trends.

    The M-K testwas carried out at the 15 stations to investigate the changing trends in annual ET0seriesduring the period from 1959 to 2012 in the HRB at the significance levelof 5%. The results show that the annual ET0series exhibited decreasing trends at most of meteorological stations(Fig.3(a)).Fig.3(a)also show s thatseven stations in the basin showed a significant decreasing trend.In the legend of Fig.3,Decrease Sig,Decrease Insig,Increase Sig,and Increase Insig mean decrease significant,decrease insignificant,increase significant,and increase insignificant,respectively.

    Changing trends in seasonal ET0at each station were also detected using theM-K test.Results reveal that the spring ET0of all15 stationsexhibited an insignificantdecreasing trend.A decreasing trend in the summer ET0took place atmostof the 15 stations,except at Yeniugou,M azongshan,and Guaizihu stations.Of the three stations,Guaizihu Station,located in the lower reaches of the HRB,exhibited a significant increasing trend,while Yeniugou Station in the upper reaches and Mazongshan Station in the lower reaches exhibited an insignificant increasing trend.In autumn,eight stations showed an increasing trend in ET0,much m ore than in other seasons.For the eightstations,the autumn ET0at five stations increased significantly.The other seven stations showed a significant decreasing trend,except for Jiuquan Station and Zhangye Station in themiddle reaches.Four stations showed an increasing trend in thew inter ET0,two ofwhich are located in the upper reaches,while Shandan Station and Guaizihu Station are in them iddle and lower reaches,respectively.

    Generally,at the temporal scale,most of the stations showed a decreasing trend over the four seasons,especially in spring.An increasing trend in annual and seasonal ET0m ostly took p lace at stations in the upper and lower reaches.

    4.2.Temporal trend of air temperature

    In order to investigate the evaporation paradox in the HRB,it is necessary to study the changing trend in air temperature. Fig.4 shows the results of the M-K test performed on the annualmean air temperature aswell as the seasonalmean air temperature.The HRB is dominated by an increasing trend in air temperature at the annual and seasonal scales,w ith all 15 stations experiencing warmer conditions.The seasonalmean air temperature in autumn and w inter increases significantly at most stations,while the increase of the seasonal mean air temperature in spring and summer is insignificant.Thismeans that the increase of air temperature in autumn and w inter contributes more to the increase of annual mean air temperature.

    4.3.Evaporation paradox

    As described above,therewasawarm ing trend in the HRB during the period from 1959 to 2012,and annual ET0exhibited a decreasing trend in the m iddle and lower reaches of the HRB.Accordingly,it can be concluded that the evaporation paradox did exist in the HRB,except in the upper reachesandat two stations in the lower reaches,where the annual ET0showed an increasing trend oran insignificantdecreasing trend(Fig.5).In other words,the evaporation paradox mainly existed in them idd le-lower reaches of the HRB.

    Fig.3.Spatial distributions of annual and seasonal ET0trends in HRB from 1959 to 2012.

    4.4.Sensitivity of keymeteorological factors for ET0

    In order to quantify the contribution of keymeteorological factors to the spatial and temporal variations of ET0and determine the reasonwhy theevaporation paradox exists in the HRB,the sensitivity coefficients ofmain meteorological variablesof ET0,i.e.,air temperature(STA),solar radiation(SRS),relative humidity(SRH),and w ind speed(SWS),in different regions of the HRB were calculated and are plotted in Fig.6.

    From Fig.6(a),it can be seen that the sensitivities of relative hum idity are all negative in different regions of the HRB,which means that ET0w ill decreasewhen relative hum idity increases.SRHreaches its peak in summer around July and attains its minimum value in December and January. Generally,the curvesexhibita single-peak shape,though they retain fluctuation over short temporalperiods.SRHin the lower reaches is obviously smaller than in other regions.In other words,relative humidity has a greater negative effect on the variation of ET0in the lower reaches than in the upper-middle reaches.Similarly,the sensitivity coefficient curves shown in Fig.6(b)for the air temperature present a single-peak shape and reach their peak in May and June.STAin the lower reaches ishigher than in the upper-m iddle reaches throughout the year.Curves of SRS(Fig.6(c))are sim ilar to those of SRHand STA,reaching theirmaximum andminimum values in summer and w inter,respectively.In the m iddle-lower reaches,the effect of solar radiation on ET0in early summer(May and June)is the greatest,while in the upper reaches the peak comes around a little later in August.Fig.6(d)shows that,in themiddle-lower reaches,ET0ismoresensitive tow ind speed in summer,while SWSin the upper reaches,which ismuch smaller than that in themiddle-lower reaches,remainsalmost unchanged throughout the year,and does not show a significant peak.

    A comparison of the four subgraphsof Fig.6 shows that for the fourmeteorological factors considered in this study,relative humiditywas themost sensitive factor for ET0at the daily scale with absolute values of sensitivity coefficients reaching 6.0 in summer,several times higher than that of othermeteorological factors.Wind speed was the second greatest sensitive factor to ET0,especially in the middle-lower reaches.Air temperature and solar radiation were the two least sensitivemeteorological factors to ET0.

    Fig.4.Spatial distributions ofmean annual and seasonal air temperature trends in HRB from 1959 to 2012.

    Fig.5.Evaporation paradox in HRB from 1959 to 2012.

    The sensitivity coefficient(SVi)indicates the sensitivity of ET0to themeteorological factor(Vi),under the condition that changes in allmeteorological factors are the same.However,at the 15 selected stations in the HRB,the changing percentage varies greatly for each meteorological factor.Thus,GViwas employed in this study to indicate the relative change in ET0resulting from eachmeteorological factor.Table 1 lists the annual GVivalue for eachmeteorological factor estimated by Eq.(7).The total estimated contribution was obtained by summ ing up the GViof each factor.From the tablewe can see that,in the upper reaches,GVivalues of air temperature and solar radiation aremuch larger than those of other two factors,which means that air temperature and solar radiation contribute the most to the variation of ET0,while relative humidity and w ind speed hardly make contributions to the variation of ET0,due to the quite low relative change of hum idity and w ind speed in the upper reaches.In the middle reaches,the large decrease in solar radiation and w ind speed lead to the decrease in ET0at all stations except Shandan Station,which is consistentw ith results of the changing trend of ET0(Fig.3(a)).Though relative hum idity is themost sensitive factor for ET0,its relative change is little during the study period,and contributed least to the variation of ET0.In the lower reaches,solar radiation and w ind speed are the two determining factors for the variation of ET0because of theirlarge impacton ET0and significantvariations during the study period.

    Fig.6.Sensitivity coefficients in different regions of HRB.

    Table 1 Contribution ofmeteorological factors to variation of ET0.

    5.Conclusions

    In thisstudy,temporalvariation of ET0wasestimated using the FAO56 P-M method and keymeteorological factorswere analyzed at 15meteorological stations in the HRB during the period from 1959 to 2012.Conclusions can be summed up as follow s:

    (1)Both annual and seasonal ET0for most of the HRB displayed a decreasing trend throughout years,especially in spring.As for air temperature,all 15 stations showed increasing trends,whichmeans that therewasawarm ing trend in the HRB during the period from 1959 to 2012.

    (2)From the fact thatmean annual ET0and air temperature exhibited contrasting trends,it can be concluded that the evaporation paradox did exist in the HRB,mainly in the middle-lower reaches.

    (3)The resultsof sensitivity analysis show that relative humiditywas themostsensitive factor for ET0atthedaily scale in the HRB,followed by w ind speed,air temperature,and solar radiation.In the upper reaches,air temperature and solar radiation contributedmost to the temporal variation of ET0,and in them iddle-lower reaches,solar radiation and w ind speed were the determ ining factors for the temporal variation of ET0.

    References

    A llen,R.G.,Pereira,L.S.,Raes,D.,Sm ith,M.,1998.Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements FAO Irrigation andDrainage Paper 56.Food and Agriculture Organization of the United Nations(FAO),Rome.

    Aziz,O.,Burn,D.H.,2006.Trends and variability in the hydrological regime of the Mackenzie River Basin.J.Hydrol.319(1-4),282-294.http:// dx.doi.org/10.1016/j.jhydrol.2005.06.039.

    Beven,K.,1979.A sensitivity analysis of the Penman-M onteith actual evapotranspiration estimates.J.Hydrol.44(3-4),169-190.http:// dx.doi.org/10.1016/0022-1694(79)90130-6.

    Brutsaert,W.,Parlange,M.B.,1998.Hydrologic cycle explains the evaporation paradox.Nature 396(6706),30.http://dx.doi.org/10.1038/23845.

    Chahine,M.T.,1992.The hydrological cycle and its influence on climate. Nature 359(6394),373-380.http://dx.doi.org/10.1038/359373a0.

    Cong,Z.T.,Yang,D.W.,Ni,G.H.,2009.Does evaporation paradox exist in China?Hydrol.Earth Syst.Sci.13(3),357-366.http://dx.doi.org/ 10.5194/hess-13-357-2009.

    Duhan,D.,Pandey,A.,Pandey,R.P.,2013.Analysing trends in reference evapotranspiration and weather variables in the tons river basin in Central India.Stoch.Environ.Res.Risk Assess.27(6),1407-1421.http:// dx.doi.org/10.1007/s00477-012-0677-7.

    Estevez,J.,Gavilan,P.,Berengena,J.,2009.Sensitivity analysisof a Penman-Monteith type equation to estimate reference evapotranspiration in southern Spain.Hydrol.Process.23(23),3342-3353.http://dx.doi.org/ 10.1002/hyp.7439.

    Gao,G.,Chen,D.,Ren,G.,Chen,Y.,Liao,Y.,2006.Spatial and temporal variationsand controlling factorsof PET in China:1956-2000.J.Geogr. Sci.16(1),3-12.http://dx.doi.org/10.1007/s11442-006-0101-7.

    Gao,G.,Xu,C.Y.,Chen,D.L.,Singh,V.P.,2012.Spatial and temporal characteristics of actual evapotranspiration over Haihe River basin in China. Stoch.Environ.Res.Risk Assess.26(5),655-669.http://dx.doi.org/ 10.1007/s00477-011-0525-1.

    Gerten,D.,Schaphoff,S.,Haberlandt,U.,Lucht,W.,Sitch,S.,2004. Terrestrial vegetation and water balance:hydrological evaluation of a dynamic global vegetationmodel.J.Hydrol.286(1-4),249-270.http:// dx.doi.org/10.1016/j.jhydrol.2003.09.029.

    Giles,B.D.,Flocas,A.A.,1984.Air temperature variations in Greece.Part1. Persistence,trend,and fluctuations.J.Climatol.4(5),531-539.http:// dx.doi.org/10.1002/joc.3370040508.

    Gong,L.,Halldin,S.,Xu,C.,2011.Large-scale runoff generation:parsimonious parameterisation using high-resolution topography.Hydrol.Earth Syst.Sci.15(8),2481-2494.http://dx.doi.org/10.5194/hess-15-2481-2011.

    Hisdal,H.,Stahl,K.,Tallaksen,L.M.,Demuth,S.,2001.Have stream flow droughts in Europe becomemore severe or frequent?Int.J.Climatol.21(3),317-325.http://dx.doi.org/10.1002/joc.619.

    IPCC,2007.Climate Change:the Physical Science Basis.Contribution of Working Group I to the Fourth Assessment.Cambridge University Press,New York.

    Jackson,J.,2001.Historical overfishing and the recent collapse of coastal ecosystems.Science 293(5530),629-637.http://dx.doi.org/10.1126/ science.1059199.

    Jayantha,O.,M ichelle,I.,Joseph,P.,Jenifer,B.,Tibebe,D.,2011.Climate change and its implications for water resources management in south Florida.Stoch.Environ.Res.Risk Assess.25(4),495-516.http:// dx.doi.org/10.1007/s00477-010-0418-8.

    Jayawardena,A.W.,1989.Calibration of some empirical equations for evaporation and evapotranspiration in Hong Kong.Agric.For.Meteorol.47(1),75-81.http://dx.doi.org/10.1016/0168-1923(89)90086-5.

    Liang,X.,Lettenmaier,D.P.,Wood,E.F.,Burges,S.J.,1994.A simple hydrologically based model of land-surface water and energy fluxes for general-circulation models.J.Geophys.Res.Atmos.99(D7),14415-14428.http://dx.doi.org/10.1029/94JD00483.

    M atsoukas,C.,Benas,N.,Hatzianastassiou,N.,Pavlakis,K.G.,Kanakidou,M.,Vardavas,I.,2011.Potentialevaporation trendsover land between 1983-2008 driven by radiative fluxesor vapour-pressure deficit?A tmos.Chem.Phys.11(15),7601-7616.http://dx.doi.org/10.5194/acp-11-7601-2011.

    M cCuen,R.H.,1974.A sensitivity and error analysis of procedures used for estimating evaporation.Water Resour.Bull.10(3),486-497.

    Rao,A.V.,Wani,S.P.,2011.Evapotranspiration paradox at a sem i-arid location in India.J.Agro-Meteorol.13(1),3-8.

    Roderick,M.L.,Farquhar,G.D.,2002.The cause of the decreased pan evaporation over the past 50 years.Science 298(5597),1410-1411.http:// dx.doi.org/10.1126/science.1075390.

    Roderick,M.L.,Farquhar,G.D.,2004.Changes in Australian pan evaporation from 1970 to 2002.Int.J.Climatol.24(9),1077-1090.http://dx.doi.org/ 10.1002/joc.1061.

    Scheffer,M.,Carpenter,S.,Foley,J.A.,Folke,C.,Walker,B.,2001.Catastrophic shifts in ecosystems.Nature 413(6856),591-596.http:// dx.doi.org/10.1038/35098000.

    Sjoegersten,S.,Atkin,C.,Clarke,M.L.,Mooney,S.J.,Wu,B.,West,H.M.,2013.Responses to climate change and farm ing policies by rural communities in northern China:a report on field observation and farmers' perception in dryland north Shaanxi and Ningxia.Land Use Policy 32,125-133.http://dx.doi.org/10.1016/j.landusepol.2012.09.014.

    Thomas,A.,2000.Spatial and temporal characteristics of PET trends over China.Int.J.Climatol.20(4),381-396.http://dx.doi.org/10.1002/(SICI)1097-0088(20000330)20:4<381::AID-JOC477>3.0.CO;2-K.

    Velichko,A.A.,Borisova,O.K.,Zelikson,E.M.,2008.Paradoxes of the last interglacial climate:reconstruction of the northern Eurasia climate based on palaeofloristic data.Boreas 37(1),1-19.http://dx.doi.org/10.1111/ j.1502-3885.2007.00001.x.

    Wang,K.,Dickinson,R.E.,Liang,S.L.,2012.Globalatmospheric evaporative demand over land from 1973 to 2008.J.Clim.25(23),8353-8361.http:// dx.doi.org/10.1175/JCLI-D-11-00492.1.

    Wang,X.,Liu,H.,Zhang,L.,Zhang,R.,2014.Climate change trend and its effects on reference evapotranspiration at Linhe Station,Hetao irrigation District.Water Sci.Eng.7(3),250-266.http://dx.doi.org/10.3882/ j.issn.1674-2370.2014.03.002.

    Yang,Y.H.,Zhang,Z.Y.,Xiang,X.Y.,2009.Spatialvariation of reference crop evapotranspiration on Tibetan Plateau.Water Sci.Eng.2(1),112-120. http://dx.doi.org/10.3882/j.issn.1674-2370.2009.01.011.

    Yesihrmak,E.,2013.Temporal changes ofwarm-season pan evaporation in a semi-arid basin in Western Turkey.Stoch.Environ.Res.Risk Assess.27(2),311-321.http://dx.doi.org/10.1007/s00477-012-0605-x.

    Zhan,C.S.,Zhao,J.,Wang,H.X.,Yin,J.,2011.Quantitativeestimation of land surfaceevapotranspiration in Taiwanbased onMODISdata.Water Sci.Eng. 4(3),237-245.http://dx.doi.org/10.3882/j.issn.1674-2370.2011.03.001.

    Zhao,L.,2013.Evapotranspiration estimation methods in hydrological models.J.Geogr.Sci.23(2),359-369.http://dx.doi.org/10.1007/s11442-013-1015-9(in Chinese).

    Zuo,D.P.,Xu,Z.X.,Cheng,L.,Zhao,F.F.,2010.Assessment on radiationbased methods to estimate.PET.Arid.Land Geogr.34(4),565-574(in Chinese).

    Zuo,D.P.,Xu,Z.X.,Yang,H.,Liu,X.C.,2012.Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the WeiRiver basin,China.Hydrol.Process. 26(8),1149-1160.

    This work was supported by the National Natural Science Foundation of China(Grant No.91125015)and the Central Nonprofit Research Institutes Fundamental Research of the Yellow River Institute of Hydraulic Research(Grant No.HYK-JBYW-2013-18).

    *Corresponding author.

    E-mail address:zongxuexu@vip.sina.com(Zong-xue Xu). Peer review under responsibility of HohaiUniversity.

    http://dx.doi.org/10.1016/j.w se.2015.01.004

    1674-2370/?2015 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    国产成人欧美在线观看| 亚洲精品在线美女| 99久久精品热视频| 夜夜爽天天搞| 久久久久国产一级毛片高清牌| 久久人妻av系列| 国产黄片美女视频| 日韩欧美一区二区三区在线观看| 男女之事视频高清在线观看| 成人亚洲精品av一区二区| 国产成+人综合+亚洲专区| 又粗又爽又猛毛片免费看| 丰满人妻一区二区三区视频av | ponron亚洲| 精品人妻1区二区| 91国产中文字幕| 国产一区二区在线av高清观看| 国产精品九九99| 九九热线精品视视频播放| 床上黄色一级片| av天堂在线播放| 一本综合久久免费| 国产伦在线观看视频一区| 欧美日韩国产亚洲二区| 欧美乱色亚洲激情| 国产精品亚洲一级av第二区| 成人国产一区最新在线观看| 亚洲美女黄片视频| 国产亚洲精品第一综合不卡| 国产av一区二区精品久久| 久久精品影院6| 国产黄色小视频在线观看| 国产精品 国内视频| 18禁裸乳无遮挡免费网站照片| 国产真实乱freesex| 欧美成人免费av一区二区三区| 国产aⅴ精品一区二区三区波| 久久热在线av| 国产精品免费视频内射| 亚洲国产看品久久| 亚洲精品久久国产高清桃花| 50天的宝宝边吃奶边哭怎么回事| 亚洲 国产 在线| 亚洲熟妇熟女久久| 香蕉国产在线看| 久久热在线av| 999久久久国产精品视频| 久久中文看片网| 日韩高清综合在线| 国产又黄又爽又无遮挡在线| 亚洲专区国产一区二区| 日本精品一区二区三区蜜桃| 午夜精品久久久久久毛片777| 夜夜躁狠狠躁天天躁| 一区二区三区激情视频| 国产成年人精品一区二区| 桃红色精品国产亚洲av| 黄色毛片三级朝国网站| 亚洲乱码一区二区免费版| 舔av片在线| 很黄的视频免费| 日韩欧美在线乱码| 亚洲国产精品sss在线观看| 亚洲人成77777在线视频| 美女 人体艺术 gogo| 免费一级毛片在线播放高清视频| 色在线成人网| 亚洲黑人精品在线| 男女那种视频在线观看| 老熟妇仑乱视频hdxx| 九色成人免费人妻av| 久久久国产成人免费| 高潮久久久久久久久久久不卡| 欧美日韩黄片免| 天堂动漫精品| 在线观看日韩欧美| 欧美乱色亚洲激情| 亚洲激情在线av| www.www免费av| 九色国产91popny在线| 精品一区二区三区视频在线观看免费| 欧美一区二区国产精品久久精品 | 波多野结衣巨乳人妻| 久久欧美精品欧美久久欧美| 亚洲七黄色美女视频| 老司机福利观看| www日本在线高清视频| 丁香欧美五月| 亚洲精品久久国产高清桃花| 欧美久久黑人一区二区| 18禁观看日本| 亚洲九九香蕉| 校园春色视频在线观看| 日本成人三级电影网站| 亚洲熟妇熟女久久| 国产v大片淫在线免费观看| 亚洲一区中文字幕在线| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 免费无遮挡裸体视频| 国产av一区二区精品久久| 桃红色精品国产亚洲av| 色综合婷婷激情| 女人高潮潮喷娇喘18禁视频| 一级片免费观看大全| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 18禁国产床啪视频网站| 欧美色视频一区免费| 日韩大尺度精品在线看网址| 村上凉子中文字幕在线| 国产精品 国内视频| 制服人妻中文乱码| 嫩草影视91久久| 黄色视频,在线免费观看| 两性夫妻黄色片| 亚洲人成电影免费在线| 国产激情久久老熟女| 可以免费在线观看a视频的电影网站| 国产精华一区二区三区| 亚洲精品中文字幕一二三四区| 99精品欧美一区二区三区四区| 国产精品精品国产色婷婷| 国产av又大| 亚洲欧美精品综合久久99| 9191精品国产免费久久| 我的老师免费观看完整版| 久久天堂一区二区三区四区| 欧美一区二区国产精品久久精品 | 日韩中文字幕欧美一区二区| 三级国产精品欧美在线观看 | 欧美不卡视频在线免费观看 | 国产成人精品无人区| www国产在线视频色| 国产精品国产高清国产av| 国产精品久久久久久精品电影| 午夜精品在线福利| 亚洲专区字幕在线| 99热只有精品国产| 桃色一区二区三区在线观看| 黑人巨大精品欧美一区二区mp4| 十八禁网站免费在线| 国产精品美女特级片免费视频播放器 | xxx96com| 午夜精品在线福利| 波多野结衣巨乳人妻| 午夜影院日韩av| 色播亚洲综合网| 91大片在线观看| 亚洲成人久久性| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 一个人免费在线观看的高清视频| 黄色丝袜av网址大全| 亚洲国产高清在线一区二区三| 国产三级黄色录像| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看影片大全网站| 亚洲欧美一区二区三区黑人| 日韩大尺度精品在线看网址| 美女大奶头视频| 亚洲精华国产精华精| 亚洲在线自拍视频| 日韩成人在线观看一区二区三区| 久久性视频一级片| 久久精品国产综合久久久| 色噜噜av男人的天堂激情| 亚洲五月婷婷丁香| 日韩国内少妇激情av| 国产精品一及| 99久久精品国产亚洲精品| 欧美精品亚洲一区二区| 90打野战视频偷拍视频| 国产片内射在线| 一区二区三区高清视频在线| 亚洲av熟女| 久久久久久久久免费视频了| 在线视频色国产色| 精品欧美国产一区二区三| 好看av亚洲va欧美ⅴa在| 免费av毛片视频| 别揉我奶头~嗯~啊~动态视频| 国产免费男女视频| 亚洲男人天堂网一区| 午夜激情福利司机影院| 小说图片视频综合网站| 国产精品av久久久久免费| 法律面前人人平等表现在哪些方面| 999精品在线视频| 丝袜美腿诱惑在线| 精品一区二区三区av网在线观看| 免费看a级黄色片| 一边摸一边抽搐一进一小说| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 99热这里只有精品一区 | 欧美+亚洲+日韩+国产| 人成视频在线观看免费观看| 看片在线看免费视频| 巨乳人妻的诱惑在线观看| 欧美成狂野欧美在线观看| 国产伦在线观看视频一区| 18禁国产床啪视频网站| 老司机福利观看| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 美女扒开内裤让男人捅视频| 国产精品影院久久| 香蕉国产在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜激情福利司机影院| 亚洲电影在线观看av| 亚洲av日韩精品久久久久久密| 校园春色视频在线观看| 波多野结衣高清无吗| 日本 欧美在线| 成人精品一区二区免费| 久久久久久久久久黄片| 欧美成人免费av一区二区三区| 三级国产精品欧美在线观看 | 免费看日本二区| 国产一区二区三区视频了| 51午夜福利影视在线观看| 精品一区二区三区av网在线观看| 色噜噜av男人的天堂激情| 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 欧美日韩乱码在线| 国产1区2区3区精品| 在线观看一区二区三区| 99久久国产精品久久久| 亚洲欧美精品综合一区二区三区| 午夜亚洲福利在线播放| 日日爽夜夜爽网站| 99热只有精品国产| 高清在线国产一区| 18禁黄网站禁片免费观看直播| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 国产一区二区激情短视频| 国产精品久久电影中文字幕| 男人舔奶头视频| 久久精品成人免费网站| 在线十欧美十亚洲十日本专区| АⅤ资源中文在线天堂| 法律面前人人平等表现在哪些方面| www.自偷自拍.com| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 亚洲九九香蕉| 久久久久久久久中文| 国产精品,欧美在线| 又爽又黄无遮挡网站| 悠悠久久av| 啪啪无遮挡十八禁网站| 天天一区二区日本电影三级| 极品教师在线免费播放| 麻豆一二三区av精品| 日韩成人在线观看一区二区三区| 最近最新中文字幕大全免费视频| 久久久久久亚洲精品国产蜜桃av| 夜夜躁狠狠躁天天躁| 成人av一区二区三区在线看| 视频区欧美日本亚洲| 女警被强在线播放| 不卡av一区二区三区| 波多野结衣高清无吗| 宅男免费午夜| 真人一进一出gif抽搐免费| 看免费av毛片| 欧美精品亚洲一区二区| 成人国产综合亚洲| 欧美午夜高清在线| 麻豆国产av国片精品| 欧美日本视频| 午夜免费观看网址| 国产成人aa在线观看| 香蕉久久夜色| 在线免费观看的www视频| 久久这里只有精品19| 亚洲av五月六月丁香网| 免费高清视频大片| 又爽又黄无遮挡网站| 精品国产亚洲在线| 制服丝袜大香蕉在线| 日韩欧美免费精品| 国产精品 欧美亚洲| 久久精品人妻少妇| 久久精品国产亚洲av高清一级| 高清毛片免费观看视频网站| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲av高清不卡| 国产精品日韩av在线免费观看| 中文字幕精品亚洲无线码一区| 成人欧美大片| 久久久国产欧美日韩av| 中亚洲国语对白在线视频| 99久久综合精品五月天人人| 老司机在亚洲福利影院| 亚洲精品色激情综合| 黄色片一级片一级黄色片| 国产成+人综合+亚洲专区| 男女做爰动态图高潮gif福利片| 制服诱惑二区| 久久 成人 亚洲| 亚洲国产精品sss在线观看| 午夜福利在线观看吧| 怎么达到女性高潮| 久久久久亚洲av毛片大全| 久久精品国产亚洲av高清一级| 一本精品99久久精品77| 少妇粗大呻吟视频| 黄频高清免费视频| 日韩大尺度精品在线看网址| 五月玫瑰六月丁香| 精品国产乱子伦一区二区三区| 国产精品久久久人人做人人爽| 夜夜夜夜夜久久久久| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 变态另类成人亚洲欧美熟女| 麻豆av在线久日| 白带黄色成豆腐渣| 国产精品久久久久久人妻精品电影| 欧美高清成人免费视频www| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 国产主播在线观看一区二区| 国产精品久久电影中文字幕| 国产高清激情床上av| 可以免费在线观看a视频的电影网站| 日本五十路高清| 日韩有码中文字幕| 亚洲全国av大片| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看www视频免费| 这个男人来自地球电影免费观看| 三级男女做爰猛烈吃奶摸视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲性夜色夜夜综合| 国产精品电影一区二区三区| 国产成年人精品一区二区| 日本三级黄在线观看| 精华霜和精华液先用哪个| 首页视频小说图片口味搜索| 国产亚洲精品第一综合不卡| 日本撒尿小便嘘嘘汇集6| 国内少妇人妻偷人精品xxx网站 | 日韩大尺度精品在线看网址| 99在线人妻在线中文字幕| 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 欧美大码av| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 宅男免费午夜| 亚洲欧美日韩高清在线视频| 亚洲精品美女久久av网站| xxx96com| 中文字幕人妻丝袜一区二区| 国产99久久九九免费精品| 男女床上黄色一级片免费看| 伦理电影免费视频| 国产91精品成人一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 一进一出好大好爽视频| 在线播放国产精品三级| 美女黄网站色视频| 久久热在线av| 99在线人妻在线中文字幕| 国产99久久九九免费精品| 哪里可以看免费的av片| 精品高清国产在线一区| 国产一区二区三区在线臀色熟女| 国产午夜精品论理片| 嫩草影院精品99| 亚洲国产日韩欧美精品在线观看 | 亚洲,欧美精品.| 国产又黄又爽又无遮挡在线| 88av欧美| 丁香六月欧美| 中文字幕熟女人妻在线| 国产成+人综合+亚洲专区| 国产亚洲精品久久久久5区| 免费在线观看视频国产中文字幕亚洲| 日本a在线网址| 国内精品一区二区在线观看| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 高清毛片免费观看视频网站| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站| 两个人的视频大全免费| 中文字幕精品亚洲无线码一区| 婷婷精品国产亚洲av在线| 两人在一起打扑克的视频| 亚洲真实伦在线观看| 在线看三级毛片| 午夜福利18| 首页视频小说图片口味搜索| av欧美777| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产清高在天天线| 人妻久久中文字幕网| 国产三级中文精品| 亚洲精品久久国产高清桃花| 国产伦在线观看视频一区| 色在线成人网| 色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 狂野欧美激情性xxxx| 亚洲国产精品999在线| 亚洲第一欧美日韩一区二区三区| 亚洲片人在线观看| 最新美女视频免费是黄的| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 精品久久久久久久毛片微露脸| 国产亚洲精品av在线| 91av网站免费观看| 国产乱人伦免费视频| 亚洲精品久久国产高清桃花| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器 | 成人国产一区最新在线观看| 性欧美人与动物交配| 国产真人三级小视频在线观看| 亚洲国产精品久久男人天堂| 99精品欧美一区二区三区四区| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 欧美乱色亚洲激情| 久久天躁狠狠躁夜夜2o2o| 一边摸一边做爽爽视频免费| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 欧美极品一区二区三区四区| 婷婷六月久久综合丁香| 怎么达到女性高潮| av在线天堂中文字幕| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| 特大巨黑吊av在线直播| 色噜噜av男人的天堂激情| 级片在线观看| 国产精品九九99| 久久久久免费精品人妻一区二区| 久久久久久久精品吃奶| 日本黄色视频三级网站网址| 99久久国产精品久久久| 巨乳人妻的诱惑在线观看| 国产av一区在线观看免费| 欧美午夜高清在线| 国产高清videossex| 久久香蕉精品热| 色在线成人网| 久久久久性生活片| 午夜精品在线福利| 免费无遮挡裸体视频| 中文字幕熟女人妻在线| 国产高清videossex| 亚洲全国av大片| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 日日干狠狠操夜夜爽| 国产1区2区3区精品| 1024香蕉在线观看| √禁漫天堂资源中文www| 1024香蕉在线观看| 一区二区三区国产精品乱码| 欧美性猛交╳xxx乱大交人| 国产精品一区二区三区四区免费观看 | 成人高潮视频无遮挡免费网站| 欧美日韩乱码在线| 欧美高清成人免费视频www| 欧美最黄视频在线播放免费| 伊人久久大香线蕉亚洲五| 国产伦人伦偷精品视频| 国产1区2区3区精品| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 亚洲真实伦在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲专区国产一区二区| 99riav亚洲国产免费| 久久久久久免费高清国产稀缺| 制服诱惑二区| 日本免费一区二区三区高清不卡| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 人成视频在线观看免费观看| 91九色精品人成在线观看| 19禁男女啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 在线免费观看的www视频| 中文字幕最新亚洲高清| 久久婷婷人人爽人人干人人爱| 日韩欧美在线二视频| 久久亚洲精品不卡| 美女扒开内裤让男人捅视频| 99re在线观看精品视频| 成熟少妇高潮喷水视频| 色噜噜av男人的天堂激情| 精品午夜福利视频在线观看一区| 亚洲自拍偷在线| 欧美3d第一页| 日韩欧美精品v在线| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 国产97色在线日韩免费| 无遮挡黄片免费观看| 国产单亲对白刺激| 99re在线观看精品视频| 亚洲国产中文字幕在线视频| 日韩精品免费视频一区二区三区| 特大巨黑吊av在线直播| 亚洲美女视频黄频| 人妻丰满熟妇av一区二区三区| 丝袜美腿诱惑在线| 日本黄色视频三级网站网址| 国产亚洲欧美98| 国产91精品成人一区二区三区| 亚洲国产欧美网| 午夜福利在线观看吧| 日韩精品青青久久久久久| 午夜成年电影在线免费观看| 国产一区二区激情短视频| 婷婷亚洲欧美| 女警被强在线播放| 国产精品av视频在线免费观看| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 国内少妇人妻偷人精品xxx网站 | 啦啦啦韩国在线观看视频| а√天堂www在线а√下载| 妹子高潮喷水视频| 精品欧美一区二区三区在线| 久久精品影院6| 757午夜福利合集在线观看| 真人一进一出gif抽搐免费| 一级a爱片免费观看的视频| 久久热在线av| 一夜夜www| 999精品在线视频| 婷婷丁香在线五月| 亚洲精品国产精品久久久不卡| 欧美精品啪啪一区二区三区| tocl精华| 男人舔女人下体高潮全视频| 国产1区2区3区精品| 亚洲国产欧美一区二区综合| 日韩欧美国产一区二区入口| 中文字幕最新亚洲高清| 日韩欧美免费精品| 麻豆久久精品国产亚洲av| 亚洲第一欧美日韩一区二区三区| 久久精品影院6| 欧美不卡视频在线免费观看 | 午夜福利欧美成人| 亚洲精品av麻豆狂野| 亚洲国产欧美一区二区综合| 人人妻,人人澡人人爽秒播| 级片在线观看| 欧美日韩乱码在线| 12—13女人毛片做爰片一| 亚洲国产中文字幕在线视频| 国产精品爽爽va在线观看网站| 三级男女做爰猛烈吃奶摸视频| 免费在线观看亚洲国产| 免费在线观看完整版高清| 超碰成人久久| 国产欧美日韩一区二区精品| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲男人天堂网一区| 亚洲最大成人中文| 国产精品美女特级片免费视频播放器 | 亚洲激情在线av| 亚洲专区字幕在线| 国产真实乱freesex| 久久精品国产亚洲av香蕉五月| 99国产精品99久久久久| 日韩大码丰满熟妇| 日韩成人在线观看一区二区三区| 国产探花在线观看一区二区| 啪啪无遮挡十八禁网站| 午夜免费成人在线视频| 国产成人av激情在线播放| cao死你这个sao货| 午夜福利在线在线| 久久久久久久久免费视频了| 99国产精品一区二区蜜桃av| 国产精品久久久久久亚洲av鲁大| 国产aⅴ精品一区二区三区波| 亚洲av第一区精品v没综合| 天天躁夜夜躁狠狠躁躁| 亚洲天堂国产精品一区在线| 18禁美女被吸乳视频| 亚洲 国产 在线| 观看免费一级毛片| 成人午夜高清在线视频| 伊人久久大香线蕉亚洲五| 观看免费一级毛片| 岛国在线免费视频观看| 999久久久国产精品视频| 午夜久久久久精精品| а√天堂www在线а√下载| 97碰自拍视频| 久久久久久久久免费视频了| cao死你这个sao货| 国产三级在线视频| 国产探花在线观看一区二区| 国模一区二区三区四区视频 | 欧美成人性av电影在线观看|