• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time Attitude Control:A Finite-time Passivity Approach

    2015-08-11 11:56:48ShuochenLiuZhiyongGengandJunyongSun
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Shuochen Liu,Zhiyong Geng,and Junyong Sun

    Finite-time Attitude Control:A Finite-time Passivity Approach

    Shuochen Liu,Zhiyong Geng,and Junyong Sun

    —This paper studies the finite-time attitude control problem for a rigid body.It is known that linear asymptotically stabilizing control laws can be derived from passivity properties for the system which describes the kinematic and dynamic motion ofthe attitude.Our approach expands this framework by defining finite-time passivity and exploring the corresponding properties. For a rigid body,the desired attitude can be tracked in finite time using the designed finite-time attitude control law.Some finitetime passivity properties for the feedback connection systems are also shown.Numerical simulations are provided to demonstrate the effectiveness of the proposed control law.

    Index Terms—Attitude control,finite-time passivity,finite-time control,modified Rodrigues parameters.

    I.INTRODUCTION

    T HE attitude control of a rigid body has been extensively studied in the past years.It is a very interesting problem due to its importance in nonlinear controltheory and different applications in engineering,such as slewing and pointing of spacecrafts,helicopters,satellites,underwater vehicles and robot manipulation.

    The attitude stabilization problem of a rigid body has been investigated by many researchers,and differentnonlinear control methods have been proposed,such as adaptive control[1], hybrid control[2],PD+control[3].Among the existing results, most are asymptotically stable ones[1?7],which imply thatthe state trajectories of the system converge to its equilibrium as time goes to infinity.

    However,there is little literature about finite-time attitude control of a rigid body.Obviously,finite-time stabilization of a system makes it possible to achieve higher-precision performance and better disturbance rejection properties[8?10].For example,the terminal sliding mode control method employed in[9]guaranteed finite-time reachability of given desired attitude of a rigid spacecraft,but the proposed control law had a singularity problem.In[10],by the method of adding a power integrator,a finite-time attitude tracking control law using both attitude and angular velocity was designed.A distributed finite-time containment control scheme was reported in[11].

    The existing finite-time attitude control laws mainly depend on the methods explored in the study for generalnonlinear systems.Usually these control laws are obtained by complicated calculation and are noteasy to understand.In this case,using the inherent properties of system to simplify the designing process might be possible and desirable.

    The attitude control with the feedback of full state measurements(i.e.,attitude and angular velocity)has been changed to the control without the requirement of the angular velocity measurement due to the lack of tachometer of manipulators[6?7,12?16].This design process is based on the passivity property established for attitude motion of a rigid body.Egeland and Godhavn[7]derived the adaptive attitude controllaw for robotic manipulators based on the idea of passivity.Tsiotras[15]showed thatlinearasymptotically stabilizing control laws withoutangular velocity measurements could be obtained naturally and easily from the passivity properties.The stabilization controlmethod proposed in[16]used an auxiliary dynamical system to replace the angular velocity feedback. For multiple rigid bodies'case,Ren[17]used a similar idea to derive distributed passivity-based control laws.

    Differentfrom the existing finite-time attitude controlmethods,our approach focuses on designing a finite-time attitude control law based on the passivity properties of the attitude motion of a rigid body.We define the finite-time passivity for generalnonlinear systems and derive stability criterion for finite-time strictly passive systems.Also,we obtain different nonlinear finite-time control laws for different classes of passive systems.Based on the above results,by combining with sliding mode controlapproach and the properties of finitetime passivity,a finite-time attitude controller is proposed.To the best of authors'knowledge,this is a new solution to the finite-time attitude control problem.The proposed approach naturally expands the properties for passive systems and may provide a tool for the study of general nonlinear systems.

    The paper is organized as follows.In Section II,some preliminaries and problem formulation are given.In Section III,the finite-time passivity for dynamicalsystems is defined, and for the attitude set point control problem,a finite-time attitude control law is derived.Some finite-time passivity properties of the feedback connection system are shown in Section IV.In Section V,numerical simulations are given to illustrate the results.Finally,we make conclusion in Section VI.

    II.PRELIMINARIES AND PROBLEM FORMULATION

    A.Rotation Motion of a Rigid Body

    It is fundamental and important to select a nonsingular parameterization for attitude.Modified Rodrigues parameters (MRPs)are a popular parameterization of three-dimensional coordinate expression[18].We adoptthe MRPs to describe the rotation motion of a rigid body.

    Letσ=ηtan(θ/4)∈R3(?2π<θ<2π)stand for the MRPs for a rigid body,whereηis the Euler axis andθis the Euler angle.For a three-dimensional vectorν=[ν1,ν2,ν3]T, symbol s(ν)=[0,ν3,?ν2;?ν3,0,ν1;ν2,?ν1,0].The cross product of two vectors can be denoted by the multiplicationof a skew-symmetric matrix and a vector,that is to say, s(a)b=?a×b,a,b∈R3.Let u(t)∈R3be an external control torque vector acting on the rigid body.The mass moment of inertia is denoted by the positive and symmetric matrix J∈ R3×3which can be usually transformed to a diagonal matrix.ω(t)∈R3is the angular velocity of rigid body with respect to the inertial frame expressed in the body frame.I3denotes the 3×3 identity matrix.The attitude kinematics and dynamics of a rigid body are

    B.Passivity

    Definition 1[19].Consider a dynamical system represented by

    where f :Rn×Rn→ Rnis locally Lipschitz,h : Rn×Rn→Rnis continuous,f(0,0)=0,and h(0,0)=0.

    The system is said to be passive if there exists a continuously differentiable positive semi definite function V(x) (called the storage function)such that

    Moreover,it is said to be

    1)lossless if uTy= ˙V;

    2)output feedback passive if uTy≥ ˙V+yTρ(y)for some functionρ;

    3)output strictly passive if uTy ≥ ˙V+yTρ(y)and yTρ(y)>0,?y/=0;

    4)strictly passive if uTy≥ ˙V+Ψ(x)for some positive definite functionΨ.

    In all cases,the inequalities should hold for all(x,u).

    The definition of zero-state observability is quite useful in stating the following stability criterion for strictly passive system.

    Definition 2[19].The system(4a)and(4b)is said to be zero-state observable,if no solution of˙x=f(x,0)can stay identically in S={x∈Rn|h(x,0)=0},other than the trivial solution x(t)≡0.

    Lemma 1[19].Consider system(4a)and(4b),the origin of ˙x=f(x,0)is asymptotically stable if one of the following statements is satisfied:

    1)The system is strictly passive;

    2)The system is output strictly passive and zero-state observable.

    Furthermore,if the storage function is radially unbounded, the origin will be globally asymptotically stable.

    Ifwe require the storage function to be positive definite,one can obtain the following controllaw to globally asymptotically stabilize the origin of a nonlinear dynamical system.

    Lemma 2[19].If system(4a)and(4b)is

    1)passive with a radially unbounded positive definite storage function;

    2)zero-state observable.

    Then the origin x=0 can be globally stabilized by the control u=??(y),where?is any locally Lipschitz function such that?(0)=0 and yT?(y)>0 for all y/=0.

    In essence,the design procedure of a finite-time control law for a dynamical system is a process to make sure the trajectories of the states of closed-loop system reach desired points in finite time.The corresponding properties are described by finite-time stability.

    C.Finite-time Stability

    Lemma 3[20].Consider the system ˙x=f(x),where the continuous function f(·):Rn→ Rnsatisfies f(0)= 0,x∈Rn.Suppose there exists a continuous,positive definite storage function V(x):D→R,realnumbersα∈(0,1)and c>0,such that˙V(x)+c(V(x))α≤0 on D,where D is an open neighborhood of the origin,then the origin of system ˙x=f(x)is finite-time stable.Moreover,if T is the settling time,then T ≤ (V(x))1?α/(c(1?α)).The origin is said to be globally finite-times stable if it is finite-time stable and D=Rn.

    Remark 1.The statement that the origin of system ˙x= f(x)is finite-time stable means that the state variables reach the origin in finite time.

    Lemma 4[21].For any xi∈R(i={1,···,n}),the following inequality is satisfied:

    for any real number p∈(0,1].

    D.Problem Formulation

    Given the system described by(1a)and(1b),the control aim is to design a finite-time control law which guarantees the attitude of a rigid body tracks the desired steady attitude target in finite time.

    III.FINITE-TIME PASSIVITY AND ATTITUDE SET POINT CONTROL

    A.Finite-time Passivity

    Lyapunov stability is related nicely to passivity with the positive storage(energy)function.Since the requirements of the storage function in the definition of finite-time stability is stricter than Lyapunov function,it is naturalfor us to explore unique finite-time properties for a passive system.

    Definition 3(Finite-time passivity).Consider the system described by(4a)and(4b),

    The system is said to be finite-time strictly passive if there exists a continuously differentiable positive semidefinite function V(x)(called the storage function)such that

    for someα∈(0,1)and c>0.

    The finite-time stability of the origin of a system is determined by the finite-time passivity of the system.The results are as follows.

    Theorem 1.Consider the system(4a)and(4b),if the system is finite-time strictly passive,then the origin of˙x=f(x,0) is finite-time stable.Furthermore,if storage function V(x) is radially unbounded,the origin will be globally finite-time stable.

    The proof of Theorem 1 is in Appendix.

    Remark 2.Theorem 1 can be viewed as a stability criterion fora finite-time strictly passive system.Ifa passive system(4a) and(4b)is lossless,the origin of the closed-loop system will be finite-time stable once the controllaw is designed properly to make the closed-loop system finite-time strictly passive.

    Example.Consider the integrator system

    where x∈Rn,u∈Rn.Suppose the output system is

    where y∈Rn.Choose the storage function as

    Taking the time derivative of the storage function along the trajectories of(5)yields

    So the system is lossless.

    Suppose the feedback to be designed is h0(x)∈Rn,then the closed-loop system is

    where r∈Rnis the input.Then we get

    So we have

    for some real numbersα0∈(0,1)and c0>0.

    Suppose

    Then

    The closed-loop system is finite-time strictly passive for input r and output y according to Definition 3.From Theorem 1,the origin of the autonomous closed-loop system is finitetime stable.

    The corresponding control law is

    Based on the above results,itis possible to derive finite-time control laws for certain passive systems.

    Theorem 2.Consider the system described by

    where f:Rn×Rn→Rnis locally Lipschitz,f(0,0)=0, for some real numbersα∈(0,1)and c>0.

    1)If the system is lossless with storage function V = 2 ln(1+xTx),choosing V as the candidate Lyapunov function, the origin of the system is finite-time stable with control law u=?c·2α·x2α?1.

    2)If the system is lossless with storage function V =where the diagonalmatrix J=diag{J1,J2,···,Jn} is positive definite,choosing V as the candidate Lyapunov function,then the origin of the system is finite-time stable with control law u=?c·

    Proof.

    1)Since the system is lossless,we will design a state feedback to make the closed-loop system finite-time strictly passive.Suppose r is the input and h(x) = [h1(x),h2(x),···,hn(x)]T∈Rnis the state feedback to be designed.

    The closed-loop system is

    Choosing V as the Lyapunov candidate function,then the closed-loop system is finite-time strictly passive.Based on Theorem 1,when input r=0,the origin is finite-time stable. So the corresponding control law is

    2)The proof for case 2)is similar to case 1),thus omitted.□

    Remark 3.According to Lemma 4,the index 2α?1 should belong to interval(0,1].In addition,the definition of finitetime stability(Lemma 3)requiresα∈(0,1).Combining two inequalities,we have thatαshould belong to interval(1/2,1).

    It is very important to notice that the kinematics equation (1a)and dynamics equation(1b)describe two passive systems, respectively.

    Proposition 1[15].

    1)System(1a)is lossless with inputωand outputσ.

    2)System(1b)is lossless with input u and outputω.

    Proof.

    1)Taking the time derivative of function V1(σ)=2ln(1+ σTσ)along the trajectories of(1a)yields that˙V1(σ)=σTω. This shows the system is passive(lossless).

    2)Taking the time derivative of function V2(ω)=12ωTJω along the trajectories of(1b)yields that˙V2(ω)=ωTu.This shows the system is passive(lossless). □

    From Theorem 2,we obtain the finite-time control laws for subsystems(1a)and(1b),respectively.

    Proposition 2.If we can find real numbers satisfying α1∈(1/2,1)and c1> 0,then the origin of system(1a) is finite-time stable with control

    If we can find real numbers satisfyingα2∈ (1/2,1)and c2> 0,then the origin of system(1b)is fi nite-time stable with control

    B.Finite-time Set Point Control of A Rigid Body

    Letωd,σdrepresent the desired angular velocity and attitude,respectively.Define e=[e1,e2,e3]T∈ R3as the relative attitude error between the actual attitude and the desired attitude,where

    In order to describe the relative angular velocity error,the desired reference frame should be transformed to the body frame.Denote the transform matrix is Rbd,which is proper and orthogonal.Then Rbd=R(e)is given by

    The relative angular velocity error is then represented by

    The relative kinematic and dynamic equations are given as[10]

    This paper studies the set point controlproblem for a rigid body.In this case,ωd=0,˙ωd=0.So the whole system is represented by

    Therefore,we need to design control torque u which makes relative error e goes to zero in finite time.

    The relative attitude kinematics and dynamics rotation equations(10a)and(10b)represent a system in cascade form. Controltorque u drives the dynamicalequation and angularvelocityωdrives the kinematic equation.For systems in cascade connection,itis easy to use a two-step methodology to achieve closed-loop stability.First,we choose a propersliding surface, concentrating on the stabilization of the kinematic equation treating the driving state(the angular velocity vector)as a control-like variable.Second,we proceed to the stabilization of the dynamical system to the desired state calculated in the first step treating control torque u as the driving state,driving the motion of the system to the proposed sliding surface in finite time.

    Theorem 3.For system(10a)and(10b),if control torque u is chosen as

    whereω?=?kp·2p1·e2p1?1,kv>0,kp>0,1/2<p1,p2<1,symbol?denotes the Hadamard product.Then e converges to zero in finite time.

    Proof.

    The proof consists of two steps.First,angular velocityω is treated as the input for(10a)and is developed to make e converge to zero in finite time.Select the sliding surface to be z= ω?ψ(e)such that when state trajectory of the system is restricted to the surface,the reduced-order model ˙e=G(e)ψ(e)has a finite-time stable origin.Next,control torque u is calculated in orderthatsliding surface z=ω?ψ(e) goes to zero in finite time and remains there forallfuture time.

    Step 1.Angular velocityωdesign

    The storage function is chosen as

    along the trajectory of(10a),and using(3)we have

    By Proposition 2,we get

    so we obtain

    By Lemma 3,e and V0(t)converge to zero in finite time.

    Step 2.Control torque uuu design

    The system describing attitude motion of a rigid body can be transformed into the form of

    Design the sliding surface z=ω?ψ(e)and let J?1ν= J?1u? ˙ψ,we obtain

    Takingν=?s(ω)Jω+?(z),the task is simplified to design ?(z)to make z reach zero in finite time and remain there afterwards.

    Choosing the candidate Lyapunov function as V1=12zTJ z, along(10b),we haveTaking

    and by Lemma 4,we get

    Thus z goes to zero in finite time and stays there afterwards.

    Based on the above steps,we get the result proposed in Theorem 3. □

    IV.FINITE-TIME PASSIVITY OF FEEDBACK SYSTEMS

    In this section,some finite-time passivity properties for the feedback connection system determined by the finite-time passivity property of each component are shown.

    Consider the feedback connection of two finite-time passive systems in Fig.1 represented by the state model

    Fig.1. Feedback connection.

    We require u1,y1,u2,y2to be vectors of the same dimension and the feedback connection to have a well-defined state model.The closed-loop state model takes the form of

    where x=[x1,x2]T,u=[u1,u2]T,y=[y1,y2]Tand

    We assume that f is locally Lipschitz,h is continuous,and f(0,0)=0,h(0,0)=0.Vi(i=1,2)are the storage functions of the two subsystem,respectively.V denotes the storage function of the feedback connection system as

    It is known that the feedback connection of two passive systems in Fig.1 is passive[19].That is to say

    For the fi nite-time passive systems,some new definitions and notions are given as follows.

    Definition 4.The feedback connection of two finite-time strictly passive systems is

    1)Lyapunov strictly passive if

    for some ci>0 andαi∈(0,1),i∈{1,2};

    2)finite-time strictly passive if

    for some c>0 andα∈(0,1).

    Now we are ready to present the finite-time stability of the feedback connection of finite-time strictly passive systems.

    Theorem 4.The feedback connection of two finite-time strictly passive systems is Lyapunov strictly passive if input u=0.Furthermore,the closed-loop system is also a finitetime strictly passive system if the storage functions satisfy the following conditions:

    Proof.Since every component is a finite-time strictly passive system,we get

    From the feedback connection,we see that

    as the storage function for the feedback connection,we obtain

    So we know the closed-loop system is Lyapunov finite-time stable when

    Now the closed-loop system is finite-time strictly stable. □

    Remark 4.Theorem 4 shows thatfor the feedback connection oftwo finite-time strictly passive systems,the closed-loop system is also a finite-time strictly passive system for some region of the system energy.

    V.NUMERICAL SIMULATIONS

    We now illustrate the above results by means of some numerical simulations.We first show the effectiveness of the results of Proposition 2.

    Consider system(1a),we suppose the initial MRP vector is σ0=[0.3,0.5,0.8]T.The values for the gains are chosen as c=1,4,6,10,andα=0.8.

    The results are shown in Fig.2.Under control law(9a), the origin of system(1a)can be finite-time stabilized.The finite time T will decrease as we increase the value of parameter c which has the maximum value cmaxsatisfying ˙V(x)+cmax(V(x))α≤0.

    Fig.2. Stabilization for system(1a).

    For system(1b),we suppose the initial angular velocity is ω0=[0.3,0.5,0.8]Tand the inertia matrix is represented by J=diag{1,0.63,0.85}.The values of the gains are chosen as c=1,4,6,10,andα=0.8.Fig.3 shows thatundercontrol law(9b),the origin ofsystem(1b)can be finite-time stabilized. The finite time T will decrease as we increase the value of parameter c which has the maximum value cmaxsatisfying ˙V(x)+cmax(V(x))α≤0.

    An example considered in[5]is addressed here to demonstrate the results proposed in Section III.Suppose a rigid body is with the inertia matrix(expressed in the body frame) J=diag{1,0.63,0.85},the initial orientation correspondsrepresentation,the desired attitude target corresponds to an eigenaxis/angle representation given by

    The values of the gains are selected to be kp=6 and kv=6.In order to satisfy the finite-time stability theorem,we select p1=0.9 and p2=0.9.These values are chosen by trial and error to achieve good performance.Based on control law (11),we get the following results:Fig.4 depicts the behavior of the MRP vector,and Fig.5 shows the time history of the corresponding control effort.

    Fig.3. Stabilization for system(1b).

    Fig.4. Stabilization for system(10a)and(10b).

    Fig.5.Control input for system(10a)and(10b).

    VI.CONCLUSION

    In this paper,we propose a finite-time attitude control law for a rigid body based on the finite-time passivity.Some additionalfinite-time passivity results for feedback connection systems are also shown.Further meaningful problem worth of studying is the same attitude control problem without angularvelocity measurement and finite-time formation control for multi rigid spacecrafts.

    APPENDIX

    Proof of Theorem 1.Suppose the system is finite-time strictly passive and let V(x)be its storage function with

    Now we willuse the inequality to show that V(x)is positive definite.Suppose the equation˙x=f(x,0)has a solution ?(t,x),starting from x at t=0 and defined on some interval [0,δ].Integrating(A1)yields

    Suppose that there isˉx/=0 such that V(ˉx)=0.Then(A2) goes to

    which contradicts the claim that

    This qualifies V(x)as a Lyapunov function candidate,and since

    for some c>0 andα∈(0,1),we conclude thatthe origin is finite-time stable. □

    REFERENCES

    [1]Akella M R.Rigid body attitude tracking without angular velocity feedback.Systemand Control Letter,2001,42(4):321?326

    [2]Luo W,Chu Y,Ling K V.Inverse optimal adaptive control for attitude tracking of spacecraft.IEEE Transactions on Automatic Control,2005, 50(11):1639?1654

    [3]Mayhew C G,Sanfelice R G,TeelA R.Quaternion-based hybrid control for robust global attitude tracking.IEEE Transactions on Automatic Control,2011,56(11):2555?2566

    [4]Schlanbusch R,Loria A,Kristiansen R,Nicklasson P J.PD+based output feedback attitude control of rigid bodies.IEEE Transactions on Automatic Control,2012,57(8):2146?2152

    [5]Crouch P E.Spacecraft attitude control and stabilization:applications of geometric controltheory to rigid body models.IEEE Transactionson Automatic Control,1984,29(4):321?331

    [6]Wen J T,Kenneth K D.The attitude controlproblem.IEEETransactions on AutomaticControl,1991,36(10):1148?1162

    [7]Egeland O,Godhavn J M.Passivity-based adaptive attitude control of a rigid spacecraft.IEEE TransactionsonAutomatic Control,1994,39(10): 842?846

    [8]Yu S H,Yu X H,Shirinzadeh B,Meng Z H.Continuous finite-time controlforrobotic manipulators with terminalsliding mode.Automatica, 2005,41(11):1957?1964

    [9]Jin E,Zhao S.Robustcontrollers design with finite time convergence for rigid spacecraftattitude tracking control.AerospaceScienceTechnology, 2008,12(4):324?330

    [10]Du H,Li S,Qian C.Finite-time attitude tracking control of spacecraft with application to attitude synchronization.IEEE Transactions on AutomaticControl,2011,56(11):2711?2717

    [11]Meng Z Y,Ren W,You Z.Distributed finite-time attitude containment controlfor multiple rigid bodies.Automatica,2010,46(12):2092?2099

    [12]Scharf D P,Hadeagh F Y,Ploen S R.A survey of spacecraft formation flying guidance and control(Part II):Control.In:Proceedings of the 2004 American Control Conference.Boston,USA:IEEE,2004. 2976?2985

    [13]Lizarralde F,Wen J T.Attitude controlwithoutangularvelocity measurement:a passivity approach.IEEE Transactions on Automatic Control, 1996,41(3):468?472

    [14]Tsiotras P.Stabilization and optimality results for the attitude control problem.Journal of Guidance,Control,and Dynamics,1996,19(4): 772?779

    [15]Tsiotras P.Further passivity results for the attitude control problem. IEEE Transactionson AutomaticControl,1998,43(11):1597?1600

    [16]Tayebi A.Unit quaternion based output feedback for the attitude tracking problem.IEEE TransactionsonAutomaticControl,2008,53(6): 1516?1520

    [17]Ren W.Distributed cooperative attitude synchronization and tracking for multiple rigid bodies.IEEE Transactions on Control Systems Technology,2010,18(2):383?392

    [18]Shuster M D.Survey of attitude representations.The Journal of the Astronautical Science,1993,41(4):439?517

    [19]Khalil H K.Nonlinear Systems(Third Edition).Jersey:Prentice Hall, 2002.

    [20]Bhat S,Bernstein D.Finite-time stability of continuous autonomous systems.SIAM Journal on Control and Optimization,2000,38(3): 751?766

    [21]Hardy G,Littlewood J,Polya G.Inequalities.Cambridge,UK:Cambridge University Press,1952.

    Shuochen Liu Master student in the Department of Mechanics and Engineering Science,Peking University.His main research interest is nonlinear control of mechanical systems.

    Zhiyong Geng Professor in the Department of Mechanics and Engineering Science,Peking University. His research interests include robust and nonlinear control,nonlinear control of mechanical systems. Corresponding author of the paper.

    Junyong Sun Ph.D.candidate in the Department of Mechanics and Engineering Science,Peking University.His research interests include cooperative control,multi-agent systems and nonlinear control of mechanical systems.

    t

    October 17,2013;accepted March 24,2014.This work was supported by NationalNatural Science Foundation(NNSF)of China (61374033).Recommended by Associate Editor Changyin Sun

    :Shuochen Liu,Zhiyong Geng,Junyong Sun.Finite-time attitude control:a finite-time passivity approach.IEEE/CAA Journal of Automatica Sinica,2015,2(1):102?108

    Shuochen Liu,Zhiyong Geng,and Junyong Sun are with the State Key Laboratory of Turbulence and Complex System,Beijing 100871,China(email:shchliu@pku.edu.cn;zygeng@pku.edu.cn;sjymath@pku.edu.cn).

    国产精品亚洲美女久久久| 真人做人爱边吃奶动态| 精品人妻一区二区三区麻豆 | 国产综合懂色| 亚洲美女搞黄在线观看 | 午夜a级毛片| 国产高清激情床上av| 3wmmmm亚洲av在线观看| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久色成人| 俺也久久电影网| 亚洲高清免费不卡视频| 国产精品久久久久久av不卡| 午夜福利在线观看吧| 国产单亲对白刺激| 欧美丝袜亚洲另类| av女优亚洲男人天堂| 成人亚洲精品av一区二区| 国产91av在线免费观看| 欧美+日韩+精品| 亚洲精品在线观看二区| 亚洲精品国产成人久久av| 国产淫片久久久久久久久| 中文在线观看免费www的网站| 国产免费男女视频| 看非洲黑人一级黄片| 免费观看人在逋| 久久人人爽人人片av| 免费人成在线观看视频色| 亚洲第一区二区三区不卡| 久久久久久伊人网av| 欧美成人a在线观看| 女的被弄到高潮叫床怎么办| h日本视频在线播放| 午夜影院日韩av| a级毛片免费高清观看在线播放| 国产精品嫩草影院av在线观看| 最近最新中文字幕大全电影3| 国内精品一区二区在线观看| 色噜噜av男人的天堂激情| 乱人视频在线观看| 欧美3d第一页| 少妇熟女aⅴ在线视频| 人人妻,人人澡人人爽秒播| 国产一区二区激情短视频| 99在线视频只有这里精品首页| 国产精品一区二区免费欧美| 日本黄色视频三级网站网址| 波多野结衣高清作品| 成人无遮挡网站| 国产91av在线免费观看| 夜夜看夜夜爽夜夜摸| 看非洲黑人一级黄片| 99国产精品一区二区蜜桃av| 精品人妻一区二区三区麻豆 | 一夜夜www| 一级av片app| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品成人久久久久久| 午夜亚洲福利在线播放| 亚洲图色成人| 小说图片视频综合网站| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 真实男女啪啪啪动态图| 高清午夜精品一区二区三区 | 男人的好看免费观看在线视频| 久久精品国产鲁丝片午夜精品| 小说图片视频综合网站| 亚洲国产欧洲综合997久久,| 人妻少妇偷人精品九色| 搞女人的毛片| 国产精品av视频在线免费观看| а√天堂www在线а√下载| 成人二区视频| 免费看光身美女| 国产三级在线视频| 亚洲国产精品成人综合色| 老司机午夜福利在线观看视频| 欧美绝顶高潮抽搐喷水| 最新中文字幕久久久久| 亚洲五月天丁香| 亚洲一区高清亚洲精品| 丰满人妻一区二区三区视频av| 九色成人免费人妻av| 欧美一区二区亚洲| 久99久视频精品免费| 校园春色视频在线观看| 久久久久久久久中文| h日本视频在线播放| 欧美又色又爽又黄视频| 日本精品一区二区三区蜜桃| 狠狠狠狠99中文字幕| 午夜精品在线福利| 极品教师在线视频| 国产色婷婷99| 免费av不卡在线播放| 又粗又爽又猛毛片免费看| 日韩制服骚丝袜av| 综合色av麻豆| 性色avwww在线观看| 中文字幕精品亚洲无线码一区| a级毛色黄片| 国产久久久一区二区三区| 大又大粗又爽又黄少妇毛片口| 尾随美女入室| 白带黄色成豆腐渣| 国产精品久久久久久久电影| av中文乱码字幕在线| 欧美日本亚洲视频在线播放| 日韩av不卡免费在线播放| 成年女人看的毛片在线观看| 午夜福利在线在线| 99国产极品粉嫩在线观看| 亚洲乱码一区二区免费版| 成人国产麻豆网| 国产精品爽爽va在线观看网站| 免费看美女性在线毛片视频| 一区二区三区免费毛片| 三级毛片av免费| 欧美国产日韩亚洲一区| 精品国内亚洲2022精品成人| 黄色一级大片看看| 12—13女人毛片做爰片一| 欧美bdsm另类| 成人特级av手机在线观看| 一个人观看的视频www高清免费观看| 亚洲欧美日韩高清专用| 免费看日本二区| 国内精品久久久久精免费| 成人高潮视频无遮挡免费网站| av在线蜜桃| 18禁黄网站禁片免费观看直播| 男人舔奶头视频| 成人漫画全彩无遮挡| 91精品国产九色| h日本视频在线播放| 99热网站在线观看| 国产日本99.免费观看| 中国美白少妇内射xxxbb| 国产不卡一卡二| 男插女下体视频免费在线播放| 成人美女网站在线观看视频| 亚洲成人精品中文字幕电影| 午夜福利在线观看吧| 中文字幕久久专区| 国产一区二区三区av在线 | 久久午夜亚洲精品久久| av在线亚洲专区| 国产不卡一卡二| 午夜福利视频1000在线观看| 欧美高清成人免费视频www| 欧美日本亚洲视频在线播放| 一区二区三区免费毛片| 亚洲国产日韩欧美精品在线观看| 免费av毛片视频| 简卡轻食公司| 国产黄片美女视频| 97超视频在线观看视频| 午夜爱爱视频在线播放| 国产白丝娇喘喷水9色精品| 97超视频在线观看视频| 可以在线观看的亚洲视频| 免费av观看视频| www日本黄色视频网| 嫩草影院入口| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 一夜夜www| 国产 一区 欧美 日韩| 国产精品一区二区性色av| 乱人视频在线观看| 国产精品永久免费网站| 内射极品少妇av片p| 免费看av在线观看网站| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 亚洲欧美日韩高清在线视频| 一个人看的www免费观看视频| 精品人妻偷拍中文字幕| 日韩欧美三级三区| av视频在线观看入口| 中文字幕精品亚洲无线码一区| 国产又黄又爽又无遮挡在线| 成人永久免费在线观看视频| 成人毛片a级毛片在线播放| 国内揄拍国产精品人妻在线| 日韩强制内射视频| 麻豆成人午夜福利视频| av黄色大香蕉| 色综合色国产| 看非洲黑人一级黄片| av卡一久久| 亚洲三级黄色毛片| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| .国产精品久久| 国产黄a三级三级三级人| 亚洲av不卡在线观看| 国产午夜福利久久久久久| 丰满乱子伦码专区| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| videossex国产| 成人精品一区二区免费| 免费电影在线观看免费观看| 欧美丝袜亚洲另类| .国产精品久久| 91久久精品国产一区二区三区| 又爽又黄无遮挡网站| 欧美潮喷喷水| 午夜a级毛片| 美女内射精品一级片tv| 国产大屁股一区二区在线视频| 国产极品精品免费视频能看的| 亚洲熟妇中文字幕五十中出| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 欧美日韩乱码在线| 亚洲国产精品国产精品| 国产午夜福利久久久久久| 日韩欧美一区二区三区在线观看| 一个人观看的视频www高清免费观看| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 草草在线视频免费看| 免费人成视频x8x8入口观看| 中文字幕免费在线视频6| 精品福利观看| 菩萨蛮人人尽说江南好唐韦庄 | 丝袜喷水一区| 日本-黄色视频高清免费观看| 亚洲av免费在线观看| 97热精品久久久久久| 亚洲人成网站高清观看| 国产极品精品免费视频能看的| 久久精品国产清高在天天线| 国产精华一区二区三区| 99久久精品一区二区三区| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6| 国产探花在线观看一区二区| 久久99热这里只有精品18| 国产淫片久久久久久久久| 看十八女毛片水多多多| 日本爱情动作片www.在线观看 | 18禁在线播放成人免费| 欧美成人免费av一区二区三区| 欧美最新免费一区二区三区| 国产高清视频在线观看网站| 在现免费观看毛片| 精品人妻一区二区三区麻豆 | 丰满人妻一区二区三区视频av| 亚洲精品影视一区二区三区av| 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三| 免费电影在线观看免费观看| 男人的好看免费观看在线视频| 啦啦啦韩国在线观看视频| 成人亚洲欧美一区二区av| 美女黄网站色视频| 一本一本综合久久| 免费观看精品视频网站| 欧美日本亚洲视频在线播放| av视频在线观看入口| 性欧美人与动物交配| 18+在线观看网站| 国产v大片淫在线免费观看| 国产亚洲精品av在线| 日本与韩国留学比较| 超碰av人人做人人爽久久| 欧美成人精品欧美一级黄| 免费无遮挡裸体视频| 久久精品国产亚洲av香蕉五月| 精品欧美国产一区二区三| 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 久久精品国产99精品国产亚洲性色| 两性午夜刺激爽爽歪歪视频在线观看| 五月伊人婷婷丁香| 91久久精品国产一区二区成人| 国产综合懂色| 久久热精品热| 欧美性感艳星| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 欧美性感艳星| 天堂av国产一区二区熟女人妻| 久久99热这里只有精品18| 99热这里只有是精品在线观看| 国产免费一级a男人的天堂| 久久天躁狠狠躁夜夜2o2o| 欧美日韩国产亚洲二区| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久亚洲中文字幕| 草草在线视频免费看| 桃色一区二区三区在线观看| 国产av在哪里看| 别揉我奶头~嗯~啊~动态视频| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 又黄又爽又免费观看的视频| 午夜亚洲福利在线播放| 日韩成人伦理影院| 在线免费观看的www视频| 久久99热6这里只有精品| 日韩精品中文字幕看吧| 亚洲美女视频黄频| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 亚洲电影在线观看av| 亚洲自偷自拍三级| 国产成人aa在线观看| 国产精品人妻久久久久久| 看非洲黑人一级黄片| 欧美色视频一区免费| 欧美日韩国产亚洲二区| eeuss影院久久| 一本久久中文字幕| 亚洲丝袜综合中文字幕| 亚洲美女黄片视频| 一区二区三区免费毛片| 欧美潮喷喷水| 黄片wwwwww| 18禁裸乳无遮挡免费网站照片| 联通29元200g的流量卡| 国产av不卡久久| 国产久久久一区二区三区| 国产精品无大码| 麻豆精品久久久久久蜜桃| 亚洲激情五月婷婷啪啪| 亚洲人与动物交配视频| ponron亚洲| 好男人在线观看高清免费视频| 免费av不卡在线播放| 一夜夜www| 欧美+日韩+精品| 国产精品爽爽va在线观看网站| 国产色婷婷99| 麻豆国产97在线/欧美| 精品人妻一区二区三区麻豆 | 亚洲精品456在线播放app| 日韩av在线免费看完整版不卡| 免费观看的影片在线观看| 夫妻性生交免费视频一级片| 久久 成人 亚洲| 国产探花极品一区二区| 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| 精品久久国产蜜桃| 人人妻人人看人人澡| 成人特级av手机在线观看| a级一级毛片免费在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲精品国产色婷婷电影| 日韩一区二区视频免费看| 日韩大片免费观看网站| 国产免费又黄又爽又色| 国产男人的电影天堂91| 观看免费一级毛片| 亚州av有码| 国产色爽女视频免费观看| 18禁裸乳无遮挡动漫免费视频| 老女人水多毛片| 国产成人91sexporn| 精品99又大又爽又粗少妇毛片| 深夜a级毛片| 啦啦啦啦在线视频资源| 国产精品福利在线免费观看| 啦啦啦啦在线视频资源| 如日韩欧美国产精品一区二区三区 | 最后的刺客免费高清国语| 欧美区成人在线视频| 午夜91福利影院| 99视频精品全部免费 在线| 一本久久精品| 国产av码专区亚洲av| 18禁在线无遮挡免费观看视频| 欧美激情极品国产一区二区三区 | 国产综合精华液| 麻豆成人av视频| 久久影院123| 熟女av电影| 青青草视频在线视频观看| kizo精华| 亚洲情色 制服丝袜| 内射极品少妇av片p| av国产精品久久久久影院| 少妇高潮的动态图| 欧美日韩国产mv在线观看视频| 国产有黄有色有爽视频| 在线 av 中文字幕| 亚洲精品日韩在线中文字幕| 人妻系列 视频| freevideosex欧美| 国产精品久久久久久久久免| 久久99蜜桃精品久久| 三级国产精品片| 天天操日日干夜夜撸| 下体分泌物呈黄色| 国产亚洲5aaaaa淫片| a级毛色黄片| 亚洲真实伦在线观看| 国产精品久久久久久精品古装| 最黄视频免费看| 国产在线一区二区三区精| 日韩大片免费观看网站| 秋霞伦理黄片| 2018国产大陆天天弄谢| 日韩一区二区视频免费看| 一级a做视频免费观看| av视频免费观看在线观看| 成人漫画全彩无遮挡| 色5月婷婷丁香| 最近中文字幕高清免费大全6| 一个人看视频在线观看www免费| av国产精品久久久久影院| 色94色欧美一区二区| 亚洲欧美清纯卡通| 中文天堂在线官网| 狂野欧美激情性bbbbbb| 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| av福利片在线| 一个人免费看片子| 一级毛片电影观看| 人妻 亚洲 视频| 国产亚洲午夜精品一区二区久久| 一级爰片在线观看| 久久久久精品久久久久真实原创| 久久精品夜色国产| 肉色欧美久久久久久久蜜桃| 一级毛片我不卡| 亚洲久久久国产精品| 国产高清国产精品国产三级| 久久这里有精品视频免费| 亚洲精品乱久久久久久| 中文字幕免费在线视频6| 久久99精品国语久久久| 一本大道久久a久久精品| h日本视频在线播放| 久久人人爽av亚洲精品天堂| 在线观看免费视频网站a站| 七月丁香在线播放| 晚上一个人看的免费电影| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩卡通动漫| 欧美日本中文国产一区发布| 国产日韩一区二区三区精品不卡 | 亚洲在久久综合| 欧美 亚洲 国产 日韩一| 欧美人与善性xxx| 精品午夜福利在线看| 高清毛片免费看| 成人毛片a级毛片在线播放| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 精品亚洲乱码少妇综合久久| 日韩伦理黄色片| 超碰97精品在线观看| 日韩av不卡免费在线播放| 亚洲va在线va天堂va国产| 日韩,欧美,国产一区二区三区| 9色porny在线观看| 人人妻人人看人人澡| 一级毛片电影观看| 日韩欧美一区视频在线观看 | 又爽又黄a免费视频| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 国产精品成人在线| 在线观看www视频免费| 汤姆久久久久久久影院中文字幕| 性色av一级| 人人妻人人澡人人看| 国产高清三级在线| 国产亚洲最大av| 久久久久久久久久成人| 一区二区三区免费毛片| 一级,二级,三级黄色视频| 成人二区视频| www.色视频.com| 日韩电影二区| 啦啦啦中文免费视频观看日本| 一级毛片黄色毛片免费观看视频| 久久人人爽人人片av| 黄片无遮挡物在线观看| 亚洲图色成人| 一级片'在线观看视频| 熟女av电影| 美女内射精品一级片tv| 寂寞人妻少妇视频99o| 欧美精品亚洲一区二区| 99热国产这里只有精品6| 成人美女网站在线观看视频| 国产日韩一区二区三区精品不卡 | 伊人亚洲综合成人网| 丝袜在线中文字幕| 一本—道久久a久久精品蜜桃钙片| 80岁老熟妇乱子伦牲交| 男男h啪啪无遮挡| 欧美精品一区二区大全| 婷婷色av中文字幕| 亚洲av.av天堂| kizo精华| av卡一久久| 日本-黄色视频高清免费观看| 亚洲人与动物交配视频| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 亚洲国产av新网站| 国产日韩欧美亚洲二区| 精品久久久久久电影网| 又爽又黄a免费视频| 中文精品一卡2卡3卡4更新| 国产高清三级在线| 大片电影免费在线观看免费| 在线观看免费视频网站a站| 精品一区在线观看国产| 久久亚洲国产成人精品v| 在线观看国产h片| 人妻一区二区av| 国精品久久久久久国模美| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 高清黄色对白视频在线免费看 | 亚洲国产精品专区欧美| 国产伦精品一区二区三区四那| 国产成人免费无遮挡视频| 中文天堂在线官网| 如何舔出高潮| 国产男人的电影天堂91| 亚洲,欧美,日韩| 久久国内精品自在自线图片| 欧美亚洲 丝袜 人妻 在线| 高清在线视频一区二区三区| 我要看日韩黄色一级片| 你懂的网址亚洲精品在线观看| 麻豆精品久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| h视频一区二区三区| 美女福利国产在线| 亚洲精品视频女| 久久久久久久久久久丰满| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕精品免费在线观看视频 | 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| 国产视频首页在线观看| 伦理电影大哥的女人| 国产精品一区www在线观看| 美女主播在线视频| 99久久精品一区二区三区| av卡一久久| 在线观看av片永久免费下载| 亚洲av综合色区一区| 亚洲综合色惰| 日韩欧美一区视频在线观看 | 国产成人freesex在线| 99九九线精品视频在线观看视频| 99精国产麻豆久久婷婷| 欧美丝袜亚洲另类| 亚洲一级一片aⅴ在线观看| 久久亚洲国产成人精品v| 亚洲国产最新在线播放| 国产黄色免费在线视频| 国产精品久久久久久精品古装| 草草在线视频免费看| 又黄又爽又刺激的免费视频.| 日日撸夜夜添| 99久久人妻综合| 亚洲国产av新网站| 少妇精品久久久久久久| 成人特级av手机在线观看| 精品少妇黑人巨大在线播放| 午夜91福利影院| 久久久久久久久久久久大奶| 久久精品久久久久久久性| av在线观看视频网站免费| 久久精品久久久久久久性| 深夜a级毛片| 亚洲不卡免费看| 97超视频在线观看视频| 久热这里只有精品99| 夫妻午夜视频| 亚洲性久久影院| 久久97久久精品| 日本免费在线观看一区| 日韩亚洲欧美综合| 国产黄色免费在线视频| 纯流量卡能插随身wifi吗| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区 | 久久精品熟女亚洲av麻豆精品| 9色porny在线观看| 亚洲成色77777| 一本大道久久a久久精品| 91午夜精品亚洲一区二区三区| 麻豆精品久久久久久蜜桃| 亚洲天堂av无毛| 91成人精品电影| 91久久精品国产一区二区三区| 久久av网站| 午夜老司机福利剧场| 国产熟女午夜一区二区三区 | 男人舔奶头视频| 少妇精品久久久久久久| 一级二级三级毛片免费看| 制服丝袜香蕉在线|