• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design

    2015-08-11 11:55:09JingmeiZhangChangyinSunRuiminZhangandChengshanQian
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Jingmei Zhang,Changyin Sun,Ruimin Zhang,and Chengshan Qian

    Adaptive Sliding Mode Control for Re-entry Attitude of Near Space Hypersonic Vehicle Based on Backstepping Design

    Jingmei Zhang,Changyin Sun,Ruimin Zhang,and Chengshan Qian

    —Combining sliding mode controlmethod with radial basis function neural network(RBFNN),this paper proposes a robust adaptive control scheme based on backstepping design for re-entry attitude tracking controlofnear space hypersonic vehicle (NSHV)in the presence of parameter variations and external disturbances.In the attitude angle loop,a robust adaptive virtual controllaw is designed by using the adaptive method to estimate the unknown upper bound of the compound uncertainties.In the angular velocity loop,an adaptive sliding mode control law is designed to suppress the effect of parameter variations and external disturbances.The main benefit of the sliding mode controlis robustness to parameter variations and externaldisturbances.To further improve the control performance,RBFNNs are introduced to approximate the compound uncertainties in the attitude angle loop and angular velocity loop,respectively.Based on Lyapunov stability theory,the tracking errors are shown to be asymptotically stable.Simulation results show that the proposed control system attains a satisfied control performance and is robust against parameter variations and external disturbances.

    Index Terms—Hypersonic vehicle,attitude control,backstepping design,sliding mode control radial basis function neural network(RBFNN).

    I.INTRODUCTION

    D URING the hypersonic re-entry ofnearspace hypersonic vehicle(NSHV),the vehicle suffers complex flight environment,the wide range of speed,the high flight altitude, and the tremendous changes of gas thermal properties and aerodynamic characteristics.Therefore,the NSHV is a complex nonlinear system with many uncertainties,and the control system design is very challenging[1?4].Different nonlinear control methods have been proposed to design flight control system for the NSHV under severe uncertainties,such as sliding mode control[5?8],fuzzy control[8?9],and predictive control[10?11].

    Backstepping control[12]is an effective design method for nonlinear uncertain systems,whether the system uncertainties satisfy the matched condition or not.It shows unique advantages in dealing with nonlinear system problems.By selecting a suitable Lyapunov function,one can construct virtual control laws step by step,such that a stable control system is obtained.Moreover,the global stability of closedloop system can be guaranteed.However,a disadvantage of the traditionaladaptive backstepping design method is thatthe system should be parameterized[13?15].

    Sliding mode control[16?17]is another effective method for nonlinearcontrolsystem.The sliding mode controlis designed to drive and confine the system states to stay in the prescribed sliding surface which exhibits the desired dynamics.In the sliding mode,the closed-loop system becomes insensitive to the plant parameter variations and external disturbances.

    Zhou etal.[17]proposed a robustbackstepping sliding mode controlmethod for nonlinear systems to suppress the influence of uncertainties.However,the sliding mode controller was designed based on the upper bounds of the uncertainties.It required thatthe upper bounds were known in advance.In[18], by combining the backstepping control,adaptive control,and sliding mode control,a new adaptive backstepping controller was proposed.Note that in[18],the derivation of virtual control was treated as an uncertainty,which brought conservatism to design the controller.Plestan et al.[19]proposed a new adaptive sliding mode controlmethod,where the adaptive gains were adjusted in a new manner,which ensured thatthere was no over-estimation of the gains with respectto the real a prioriunknown value of uncertainties.Moreover,the proposed method guaranteed the system dynamics arrived at the sliding mode surface within a finite time.

    Radial basis function neural network(RBFNN)has been proved to own the superior ability to approximate nonlinear continuous function with arbitrary precision[20].Moreover,it has less computational burden,simpler network structure,and faster convergence than a multilayer perceptron since only the connective weights between the hidden layer and the output layer of the network are adjusted during training.Therefore, the RBFNN is very useful for applications in the control of nonlinear systems[21?22].For example,based on RBFNN,a robustcontrol design method was proposed for strict-feedback block nonlinear systems with mismatched uncertainties[23].

    Motivated by the discussion mentioned above,this paper proposes a robustcontrolmethod forthe attitude controlofthe NSHV.The proposed controlmethod combines the advantages of the adaptive sliding mode control method,RBFNN and backstepping.Firstly,the attitude controlmodelof the NSHVand an assumption are introduced.Then an adaptive backstepping control approach is proposed.In the attitude angle loop,an adaptive control term is designed to suppress the effect of the compound uncertainties.In the angular rate loop,an adaptive sliding mode control is integrated into the backstepping design.The adaptive gains of sliding mode control are dynamically tuned based on the constructed gain dynamics,which can ensure that there is no over-estimation of the controlgains.The stability of the proposed approach is analyzed using the Lyapunov method.To improve the control performance and increase the robustness of the backstepping control system,the RBFNNs are introduced to estimate the uncertainties in the attitude angle and angular rate loops, respectively.Thus the robust adaptive control approach not only owns a strong robustness againstparametervariations and external disturbances,but also can efficiently save the control efforts.And the stability of the closed-loop system is proved based on the Lyapunov stability theory.Finally,the simulation results show that the proposed approach attains a satisfactory performance in the presence of parameter variations and external disturbances.

    II.PROBLEM DESCRIPTION

    The considered attitude control model of the NSHV comes from the hypersonic vehicle of winged-cone configuration[24?25].The equations with 6 degrees of freedom and 12 states can be simplified into the affine nonlinear equations as

    where x1=[α,β,μ]Tis the attitude angle vector,x2= [p,q,r]Tis the attitude angular rate vector,u=gfδδ+Mris the control input,fs,ff∈R3are nonlinear vector functions, Gs1,Gf∈R3×3are the invertible matrices.The concrete expressions of matrices above are specified in[21].Φ1,Φ2are compound uncertainties,which contain parameter variations and external disturbances.

    Assumption 1.The uncertainties of the NSHV satisfy‖Φi‖≤?i,where?iis an unknown constant,i=1,2.

    The main purpose of this paper is to design a robust adaptive virtual control law x2dand a control law u based on backstepping method,such that the re-entry attitude of the NSHV x1can track the given target x1dasymptotically.

    III.THE ROBUST ADAPTIVE SLIDING MODE CONTROL DESIGN

    Step 1.Design the virtual control law to suppress the influence of uncertainty in attitude angle loop(1).

    Define the error state vector as

    From(1)and(3),one can obtain

    Then a virtual control law is designed as

    whereε1>0,a1>0.??1is the estimated value of?1and the adaptive law is shown as

    Consider the following Lyapunov function:

    Differentiating V1with respect to time and using(6),one can obtain

    If the tracking error z2converges to zero,z1is asymptotically stable under the effect of virtual control(6).

    Step 2.Design the actual control variable u to make the tracking error of angular velocity loop z2converge to zero.

    In order to well dispel parameter variations and external disturbances,sliding mode control is employed to design the actualcontrollaw,such thatthe system dynamics arrives atthe sliding mode surface within a finite time.At the same time, in order to avoid the gain of the sliding mode becomes too large,this paper introduces an adaptive control law to adjust the gain of the sliding control.

    According to(2)and(4),the error equation is given as

    The sliding mode surface is shown as follows:

    whereλ > 0 decides the bandwidth of the error state s=[s1,s2,s3]T.

    The control law u can be designed as follows:

    The gain of controlρ(t)∈R is selected as follows:

    whereρ2=ρ(t?),τ˙η+η=sgn(s),τ>0.t?is the arrival time,such that s=0 at t=t?.

    For the firstcase sTsgn(s)/=0 in(13),a Lyapunov function candidate is chosen as

    whereρ?>0 is the upper bound ofρ,andγ2>0.The time derivative of(14)is shown as follows:

    Substituting the control law(11)into the above equation yields

    From Assumption 1 and(15),one can obtain

    From Lemma 1 in[19],there existsρ?> 0 such that ρ(t)≤ ρ?for all t> 0,and thus(16)can be represented as

    Formulation(17)shows that there exists a finite time such that s=0 for all t≥ tF.Thus,the proposed controllaw(11)and the adaptive gain given by(13) satisfy the sliding condition.

    Next,let us consider the case of sTsgn(s)=0.According to Theorem 1 in[19],the control law(11)with the updated law(13)can ensure that the states of system(9)stay on the sliding surface s=0.

    Based on the above analysis,we can obtain the following theorem.

    Theorem 1.Considerthe closed-loop nonlinear systems(1) and(2),where the virtual control law x2dis given by(6),and the control input u is defined by(11)with the control gain of (13)and the parameter adaptive law of(7).The trajectories of the system are globally exponentially convergent,and the sliding surface s=0 is reachable.Meanwhile,the re-entry attitude state x1=[α,β,μ]Tof the NSHV asymptotically tracks the given target x1d=[αc,βc,μc]T.

    Remark 1.Because the sign function sgn(·)may bring the chattering problem,the saturation function[26]sat(si/σi)is adopted in this paperto replace the sign function sgn(·),which is

    whereσi>0 is a boundary layer thickness.

    IV.ADAPTIVE BACKSTEPPING SLIDING MODE CONTROL DESIGN BASED ON RBFNN

    Compared to the traditional sliding mode controller,the sliding mode controller with the designed adaptive gain do not need the prior knowledge of the upper bounds of the compound uncertainties in the preceding section.So it can provide robustness in the presence of parameter variations and external disturbances.However,when the uncertainties are increased,the gains are required to increase for achieving robustness,and control chattering is aggravated.In fact,the controlgain cannotbe arbitrarily large value because ofcontrol input limitation of the NSHV.To deal with this problem,the sliding mode controller with adaptive gain is combined with neural networks to compensate for the effects of uncertainties.

    RBFNN has been widely used for approximating nonlinear functions due to its structuralsimplicity.Itcomprises an input layer,a hidden layer and an output layer,which is shown in Fig.1.

    Fig.1.The structure of RBFNN.

    Given an input x∈Rn,the output of the RBFNN can be represented as

    where W=[wij]N×mis weight matrix which connects the hidden layer to the output layer,N and m are the numbers of neurons in the hidden layer and network output dimension, respectively.φ=[φ1,···,φN]T.The Gaussian basis function φiis chosen as

    whereξ=[ξT1,···,ξTN]Tis the center vector of the Gaussian basis function,andηis the width of the Gaussian basis function.

    Itshould be noted thatthe weights and center values of the RBFNN have significant effects on approximation precision, while the influence of the width is little.In order to reduce computational burden,we choose the width value as constant in this paper.It has been proved that the RBFNN can approximate a bounded continuous function f(x)with arbitrary precision on the compact setin[21].So

    whereδf(x)denotes the approximation error,W?,ξ?denote the optimal weights and center values,respectively.

    Similar to the analysis of the preceding section,the design of control system is given based on backstepping method.

    Step 1.Design the virtual control law to suppress the influence of the uncertainty in the attitude angle loop(1).

    For the error dynamics(5)of the angular loop,we design the virtual control law as

    where uns1=unn1+us1,unn1is the estimation ofuncertainty Φ1,which is

    and W1,ξ1are computed by the following adaptive laws, respectively:

    whereζ11,ζ12are learning rates.

    Moreover,to confront the approximation errorδ1=Φ1?unn1,an adaptive robust term is adopted,i.e.,

    where?δ1is the estimated value ofδ1and the adaptive law is shown as

    For convenience,we will rewriteΦ1as

    The Taylor series expansion ofφ(z1,ξ?1)in(19)atξ1can be represented as

    According to the property of RBFNN,‖o(z1,?ξ1)‖is bounded.Then the RBFNN approximation errorΦ1is as follows:

    Consider the following Lyapunov function:

    where?W1=W?1?W1,?ξ1=ξ?1?ξ1,?δ1= ?δ1?δ1,and ˙?W1= ? ˙W1,˙?ξ1= ?˙ξ1,˙?δ1= ?˙δ1.The time derivative of (30)is shown as follows:

    It is known that zT1?WT1φ(x,ξ1)=tr(?WT1φ(x,ξ1)zT1)and

    So it can be referred that

    Therefore,if the tracking error z2of angular velocity loop converges to zero,z1is asymptotically stable under the effect ofvirtualcontrol(21).In otherwords,state x1tracks the target signal x1dasymptotically.

    Step 2.Design the actual control variable u to make the tracking error of angular velocity loop z2converge to zero. From(2)and(21),one can obtain the error dynamic equation

    The sliding mode surface is chosen the same as(10).Then, the control law u can be designed as follows:

    where sgn(s)is given by(12),andρ(t)∈R is calculated by (13).unn2is adopted to estimate the uncertaintyΦ2,and has the following expression:

    where W2,ξ2are computed by the following adaptive laws:

    whereζ21>0,ζ22>0 are learning rates.Φ2can be rewritten as

    And E2=δ2>0.

    Theorem 2.Consider the closed-loop nonlinear system equations(1)and(2),where the virtual control law x2dis given by(21)and the control input u is defined by(33)with the control gain of(13)and the parameter adaptive laws of (23),(25)and(35).The trajectories of the system are globally exponentially convergent,and the sliding surface s=0 is reachable.Meanwhile,the re-entry attitude state x1of the NSHV asymptotically tracks the given target x1d.

    Proof.The proof consists of two cases;the first case is sTsgn(s)/=0 and the second is sTsgn(s)=0.

    First,let us consider the first case(sTsgn(s)/=0).The following Lyapunov function candidate is considered:

    Inequality(39)shows that there exists a finite time tF≤such that s=0 for all t>tF.Thus,the proposed control law(33)and the adaptive gain given by(13)satisfy the sliding condition.

    Next,let us consider the case of sTsgn(s)=0.According to Theorem 1 in[19],the control law(33)with the adaptive laws(13)and(35)can guarantee the states of system(9)stay on the sliding surface s=0.

    In summary,itcan be concluded thatthe trajectories of the system are globally exponentially convergent,and the sliding surface s=0 is reachable.Meanwhile,the re-entry attitude state x1of the NSHV can welltrack the given command x1d.□

    Remark 2.Itis hard to calculate˙x2d=[˙x2d1,˙x2d2,˙x2d3]T. So the robust differentiator[27]is introduced to handle this problem,which is

    whereλ1i> 0,λ0i> 0.Levant[27]proved that the robust differentiatorcan estimate the first-orderderivative ofthe input signal exactly if there is no noise in the input.That is to say, z0i=αi,z1i= ˙αiare obtained within a finite time.When there is some noise in the input,the estimate error can be offset by the robustness terms.

    V.SIMULATIONS

    The initial conditions of simulation are V0=3.1 km/s, H0=34 km,α0=1°,β0=0.2°,μ0=?1°,p0=q0= r0=0°/s.The command signals areαc=?1°,βc=0°, μc=1°given by the command filter 2/(s+2).Suppose there exist uncertainties in the aerodynamic parameter.Besides, the disturbance torque in angular velocity loop is defined as 105×[sin(t),cos(2t),sin(3t)]TN·m.

    The parameters of the control system are given by k1= diag{0.8,0.8,0.8},λ=diag{1.2,1.2,1.2},a1=2,ε1=0.5, ρ1=2,ρ2=0.5,ρ3=0.2,τ=0.1,σi=0.02,ζ11=2, ζ12=1,ζ21=1,ζ22=0.5.The number of hidden layer neurons in the RBFNN is 4.

    For comparative simulation,the traditional backstepping method is also employed to design the attitude control system for the NSHV as follows:

    The parameters of the control system(41)~(42)are k1= diag{5,5,5},k2=diag{10,10,10}.The simulation results are shown in Figs.2 and 3,where subscript c means command signal,subscripts 1,2 express the simulation result of the traditional backstepping control method and the method proposed in this paper,respectively.Fig.2 shows the changing curve of attitude angle and angular rate.It is observed thatthe performance of the proposed control method is much better than thatof the traditionalbackstepping controlmethod.Fig.3 shows that large rudder surface deflections occur when using the traditional backstepping control method,it is because a high controlgain is necessary to suppress parameter variations and external disturbances.In contrast,the proposed method avoids this problem.

    Fig.2.Comparison of attitude control performance.

    VI.CONCLUSION

    In this paper,a strongly robustadaptive sliding mode control system is proposed based on backstepping design,the adaptive control technique and the RBFNN for the attitude tracking problem of the NSHV in the presence of parameter variations and external disturbances.Firstly,to relax the requirement for the upper bound of the compound uncertainty in control design,an adaptive control technique is employed.Based on backstepping design,in attitude angular loop,the unknown upper bound is estimated by using an adaptive term,and then a virtual control law is derived.In angular rate loop,sliding mode control with the adaptive gain is considered to design the real control law.Moreover,the constructed gain dynamics can ensure that there is no over-estimation of the control gain.Secondly,to furtherimprove the controlperformance,the RBFNN is employed to estimate the compound uncertainties directly.Moreover,an adaptive control term designed in the firststep are used to dealwith the approximated errors.Thus, based on the similar design in the firststep,the virtualcontrol law in the attitude angular loop and the real control law in the angular rate loop are obtained,respectively.Furthermore, the closed-loop stability is proved using Lyapunov theorem.Finally,simulation results show good performance of the proposed control approach for the NSHV attitude control. Moreover,the robustness to parameter variations and external disturbances are successfully accomplished.

    Fig.3 Comparison of control surface deflections

    REFERENCES

    [1]He Jie,Zheng De-Zhai.Characteristics and key technology research for hypersonic vehicle.In:Proceedings of the 2012 Aerospace Science and Technology Innovation and the Yangtze River Delta Economic Transformation Development BBS.Lianyungang,China:2012.227?231(in Chinese)

    [2]Chen Zong-Ji,Zhang Ru-Lin,Zhang Ping,Zhou Rui.Flight control, challenges and opportunities.Acta Automatica Sinica,2013,39(6): 703?710(in Chinese)

    [3]Bao Wei-Min.Presentsituation and development tendency of aerospace control techniques.Acta Automatica Sinica,2013,39(6):697?702(in Chinese)

    [4]Sun Chang-Yin,Mu Chao-Xu,Yu Yao.Some control problems for near space hypersonic vehicles.Acta Automatica Sinica,2013,39(11): 1901?1913(in Chinese)

    [5]Xu H J,Mirmirani M D,Ioannou P A.Adaptive sliding mode control design for a hypersonic flightvehicle.Journalof Guidance,Control,and Dynamics,2004,27(5):829?838

    [6]Zhang R M,Sun C Y,Zhang J M,Zhou Y J.Second order terminal sliding mode controlforhypersonic vehicle in cruising flightwith sliding mode disturbance observer.Journal of Control Theoryand Applications, 2013,11(2):299?305

    [7]Zhang R M,Wang L,Zhou Y L.On-line RNN compensated second order nonsingular terminal sliding mode control for hypersonic vehicle. International Journal of Intelligent Computing and Cybernetics,2012, 5(2):186?205

    [8]Li Jing-Jing,Ren Zhang,Song Jian-Shuang.Fuzzy sliding mode control forhypersonic re-entry vehicle.JournalofShanghaiJiaotongUniversity, 2011,45(2):295?300(in Chinese)

    [9]Da Costa R R,Chu Q P,Mulder J A.Reentry flight controller design using nonlinear dynamic inversion.Journal of Spacecraft and Rockets, 2003,40(1):64?71

    [10]Du Y L,Wu Q X,Jiang C S,Xue Y L.Adaptive recurrent-functionallink-network control for hypersonic vehicles with atmospheric disturbances.ScienceChina,2011,54(3):482?497

    [11]Wang P,Tang G J,Liu L H,Wu J.Nonlinear hierarchy-structured predictive controldesign for a generic hypersonic vehicle.ScienceChina Technological Sciences,2013,56(8):2015?2036

    [12]Kanellakopoulos I,Kokotovic P V,Morse A S.Systematic design of adaptive controllers for feedback linearizable systems.IEEE Transactionson AutomaticControl,1991,36(11):1241?1253

    [13]Koshkouei A J,Zinober A S I.Adaptive backstepping control of nonlinear systems with unmatched uncertainty.In:Proceedings of the 39th IEEE Conference on Decision and Control.Sydney,Australia: IEEE,2000.4765?4770

    [14]Swaroop D,Hedrick J K,Yip P P,Gerdes J C.Dynamic surface controlfora class ofnonlinear systems.IEEETransactionsonAutomatic Control,2000,45(10):1893?1899

    [15]Gao D X,Sun Z Q,Du T R.Dynamic surface control for hypersonic aircraft using fuzzy logic system.In:Proceedings of the 1st IEEE International Conference on Automation and Logistics.Jinan,China: IEEE,2007.2314?2319

    [16]Utkin V.Variable structure systems with sliding modes.IEEE Transactionson AutomaticControl,1977,22(2):212?222

    [17]Zhou Y X,Wu Y X,Hu Y M.Robust backstepping sliding mode controlof a class ofuncertain MIMO nonlinear systems.In:Proceedings of the 6th IEEE International Conference on Control and Automation. Guangzhou,China:IEEE,2007.1916?1921

    [18]Zhu Kai,Qi Nai-Ming,Qin Chang-Mao.Adaptive sliding mode controller design for BTT missile based on backstepping control.Journal of Astronautics,2011,31(3):769?773(in Chinese)

    [19]Plestan F,Shtessel Y,Bregeault V,Poznyak A.New methodologies for adaptive sliding mode control.International Journal of Control,2010, 83(9):1907?1919

    [20]Park J,Sandberg I W.Universal approximation using radial basis function networks.Neural Computation,1991,3(2):246?257

    [21]Cybenko G.Approximation by superpositions of a sigmoidal function. Mathematicsof Control,Signals,and Systems,1989,2(4):303?314

    [22]Hornik K,Stinchcombe M,White H.Multilayer feedforward networks are universal approximators.Neural Networks,1989,2(5):359?366

    [23]Hu Y N,Jin Y Q,Cui P Y.RBF NN-based backstepping control for strict feedback block nonlinear system and its application.Advances in Neural Networks ISNN 2004 Lecture Notes in Computer Science,2004, 3174:129?137

    [24]Shaughnessy J D,Pinckney S Z,McMinn J D,Cruz C I,Kelley M L.Hypersonic Vehicle Simulation Model:Winged-cone Configuration, Technical Report TM-102610,NASA,USA,1990.

    [25]Keshmiri S,Mirmirani M D.Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies.Modeling and Simulation Technologies Conference and Exhibit,2004,1?12

    [26]Slotine J E,Li W P.Applied Nonlinear Control.Englewood Cliff,NJ: Prentice Hall,1991.290?292

    [27]Levant A.Higher-order sliding modes,differentiation and outputfeedback control.InternationalJournalofControl,2003,76(9):924?941

    Jingmei Zhang Ph.D.candidate at the School of Automation,Southeast University.Her research interests include nonlinear control and flight control.

    Changyin Sun Professor at the School of Automation,Southeast University.He received the Ph.D. degree in electrical engineering from the Southeast University in 2003.He has received National Outstanding Youth Science Foundation,the First Prize of Nature Science of Ministry of Education, China(2007),the Second Prize of Nature Science of Ministry of Education,China(2010)and Jiangsu Youth Science and Technology Award(2010).His research interests include intelligent control theory and its application,nonlinear system analysis and optimization,and pattern recognition.Corresponding author of this paper.

    Ruimin Zhang Ph.D.candidate at the School of Automation,Southeast University.His research interests include nonlinear control and flight control.

    Chengshan Qian Professor in the College of Information and Control,Nanjing University of Information Science and Technology.He received the Ph.D.degree in controltheory and controlengineering from the College of Automation Engineering, Nanjing University of Aeronautics and Astronautics in 2008.His research interests include nonlinear control and automatic detection technique.

    t

    October 28,2014;accepted March 24,2014.This work was supported by National Outstanding Youth Science Foundation (61125306),National Natural Science Foundation of Major Research Plan (91016004,61034002),Specialized Research Fund for the Doctoral Program of Higher Education of China(20110092110020),and Open Fund of Key Laboratory of Measurementand Controlof Complex Systems of Engineering (Southeast University),Ministry of Education(MCCSE2013B01).Recommended by Associate Editor Bin Xian

    :Jingmei Zhang,Changyin Sun,Ruimin Zhang,Chengshan Qian. Adaptive sliding mode control for re-entry attitude of near space hypersonic vehicle based on backstepping design.IEEE/CAA Journal of Automatica Sinica,2015,2(1):94?101

    Jingmei Zhang,Changyin Sun,and Ruimin Zhang are with the Flight Control Research Center,Key Laboratory of Measurement and Control of Complex Systems of Engineering,Ministry of Education,School of Automation,Southeast University,Nanjing 210096,China(e-mail:meizijingjing@163.com;cysun@seu.edu.cn;zhangrim@163.com).

    Chengshan Qian is with the College of Information and Control,Nanjing University of Information Science&Technology,Nanjing 210044,China(email:qianchengshan@nuist.edu.cn).

    又粗又硬又长又爽又黄的视频| 成人国产av品久久久| 热re99久久国产66热| av女优亚洲男人天堂| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 一区二区av电影网| 啦啦啦中文免费视频观看日本| 男人爽女人下面视频在线观看| 亚洲精品乱码久久久v下载方式| 欧美激情国产日韩精品一区| 国产黄频视频在线观看| 视频中文字幕在线观看| 亚洲国产成人一精品久久久| 免费av不卡在线播放| 亚洲av国产av综合av卡| √禁漫天堂资源中文www| 国产老妇伦熟女老妇高清| 高清毛片免费看| 久久久久国产网址| 一区二区三区精品91| 国产亚洲欧美精品永久| 简卡轻食公司| 蜜桃在线观看..| 22中文网久久字幕| 日韩强制内射视频| 高清不卡的av网站| 国产深夜福利视频在线观看| 日韩熟女老妇一区二区性免费视频| 欧美日韩在线观看h| 免费高清在线观看视频在线观看| 激情五月婷婷亚洲| 建设人人有责人人尽责人人享有的| 亚洲第一av免费看| 22中文网久久字幕| 伦理电影免费视频| 国产69精品久久久久777片| 午夜免费男女啪啪视频观看| 国产免费一级a男人的天堂| 极品人妻少妇av视频| 久久国产亚洲av麻豆专区| 国产69精品久久久久777片| 日韩在线高清观看一区二区三区| 亚洲天堂av无毛| 亚洲情色 制服丝袜| 麻豆乱淫一区二区| 国产探花极品一区二区| 国产黄频视频在线观看| 天堂8中文在线网| 久久99热6这里只有精品| 97超碰精品成人国产| 亚洲精品乱码久久久久久按摩| av又黄又爽大尺度在线免费看| 成人无遮挡网站| 国产在线一区二区三区精| videosex国产| 成人国产av品久久久| 免费高清在线观看日韩| 菩萨蛮人人尽说江南好唐韦庄| 日日摸夜夜添夜夜爱| 特大巨黑吊av在线直播| 亚洲人成77777在线视频| 亚洲欧美成人综合另类久久久| 亚洲精品av麻豆狂野| 丝袜在线中文字幕| 国产免费现黄频在线看| 美女国产视频在线观看| 在线 av 中文字幕| 一区二区日韩欧美中文字幕 | 亚洲精品自拍成人| 视频中文字幕在线观看| 老熟女久久久| 满18在线观看网站| 中国国产av一级| 久久精品国产亚洲网站| 免费看光身美女| 日本色播在线视频| 最后的刺客免费高清国语| 高清在线视频一区二区三区| 美女大奶头黄色视频| 国产男女内射视频| 性色av一级| 欧美人与善性xxx| 免费观看a级毛片全部| av在线播放精品| 99热这里只有精品一区| 日本-黄色视频高清免费观看| 在线观看三级黄色| 亚洲欧美中文字幕日韩二区| 亚洲国产精品999| 国产精品成人在线| 久久 成人 亚洲| 亚洲精品一区蜜桃| 男女免费视频国产| 国产亚洲午夜精品一区二区久久| 三级国产精品片| 人人妻人人爽人人添夜夜欢视频| 制服诱惑二区| 国模一区二区三区四区视频| 亚洲丝袜综合中文字幕| 国产精品偷伦视频观看了| 黑人欧美特级aaaaaa片| 亚洲av不卡在线观看| 伦理电影大哥的女人| www.色视频.com| 丰满少妇做爰视频| 久久久精品免费免费高清| 午夜日本视频在线| 精品少妇内射三级| 久久狼人影院| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 欧美亚洲日本最大视频资源| 免费高清在线观看日韩| 国产片内射在线| 国产亚洲一区二区精品| 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 日韩精品有码人妻一区| 日韩免费高清中文字幕av| 亚洲av成人精品一区久久| 交换朋友夫妻互换小说| 国产av国产精品国产| 高清在线视频一区二区三区| 亚洲精品视频女| 校园人妻丝袜中文字幕| 高清在线视频一区二区三区| 天天躁夜夜躁狠狠久久av| 丰满乱子伦码专区| 热re99久久精品国产66热6| 九草在线视频观看| 成人国语在线视频| 国产日韩欧美视频二区| 国产免费现黄频在线看| 一边亲一边摸免费视频| 成人二区视频| 免费观看av网站的网址| 少妇的逼好多水| 一级黄片播放器| 十八禁网站网址无遮挡| 国产欧美另类精品又又久久亚洲欧美| 一边摸一边做爽爽视频免费| 国产精品一区二区在线观看99| 亚洲av.av天堂| a级毛片黄视频| 亚洲欧美成人精品一区二区| 国产精品秋霞免费鲁丝片| 99久久精品国产国产毛片| av专区在线播放| 国产精品无大码| 午夜福利视频精品| 日韩欧美一区视频在线观看| 国产欧美日韩综合在线一区二区| 国产精品熟女久久久久浪| kizo精华| 一级毛片 在线播放| 国产成人aa在线观看| 亚洲久久久国产精品| 精品国产一区二区久久| 在现免费观看毛片| 国产成人精品福利久久| 各种免费的搞黄视频| 狂野欧美白嫩少妇大欣赏| 国产精品99久久久久久久久| 99久久中文字幕三级久久日本| 精品人妻熟女av久视频| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠久久av| 日本爱情动作片www.在线观看| av在线app专区| 人成视频在线观看免费观看| 黄色毛片三级朝国网站| 秋霞伦理黄片| 一区二区av电影网| 午夜激情福利司机影院| 最近中文字幕2019免费版| 国产男女内射视频| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 久久99热这里只频精品6学生| 十八禁高潮呻吟视频| 国产永久视频网站| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 国产精品一国产av| 精品人妻熟女av久视频| 九九在线视频观看精品| 狂野欧美激情性xxxx在线观看| 久久久久久久大尺度免费视频| 99视频精品全部免费 在线| 夫妻午夜视频| 久久精品国产a三级三级三级| 国产女主播在线喷水免费视频网站| 美女xxoo啪啪120秒动态图| 高清在线视频一区二区三区| 18在线观看网站| 男男h啪啪无遮挡| 秋霞伦理黄片| 亚洲av.av天堂| 人妻系列 视频| videosex国产| 欧美日韩视频高清一区二区三区二| av在线app专区| 2022亚洲国产成人精品| 亚洲精品日本国产第一区| 十八禁网站网址无遮挡| 亚洲精品色激情综合| 韩国高清视频一区二区三区| 两个人的视频大全免费| 久久99热这里只频精品6学生| 亚洲欧美色中文字幕在线| 一区二区三区精品91| 午夜福利影视在线免费观看| 久久久久国产网址| 久久久精品94久久精品| 老熟女久久久| freevideosex欧美| 日本欧美国产在线视频| 亚洲人成77777在线视频| av一本久久久久| 国产在线一区二区三区精| 这个男人来自地球电影免费观看 | 我的老师免费观看完整版| 国产成人av激情在线播放 | 视频区图区小说| 一本大道久久a久久精品| 亚洲图色成人| 久久久久国产网址| 免费少妇av软件| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 亚洲精品一区蜜桃| 日韩一本色道免费dvd| 免费观看性生交大片5| 黑人巨大精品欧美一区二区蜜桃 | 国产精品.久久久| 如日韩欧美国产精品一区二区三区 | 日韩一本色道免费dvd| 我的女老师完整版在线观看| 老司机亚洲免费影院| 天天影视国产精品| 亚洲精品aⅴ在线观看| 男女边吃奶边做爰视频| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 全区人妻精品视频| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 最黄视频免费看| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 日韩免费高清中文字幕av| 十八禁网站网址无遮挡| 亚洲欧洲精品一区二区精品久久久 | 免费大片黄手机在线观看| 一级a做视频免费观看| 亚洲av在线观看美女高潮| 2022亚洲国产成人精品| 丝袜脚勾引网站| 波野结衣二区三区在线| av国产精品久久久久影院| 亚洲人成网站在线观看播放| 国产成人精品婷婷| 久久久久久久亚洲中文字幕| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 国产成人精品无人区| 久久国产亚洲av麻豆专区| 日韩在线高清观看一区二区三区| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 欧美精品一区二区免费开放| 亚洲欧美日韩另类电影网站| 午夜福利网站1000一区二区三区| 美女cb高潮喷水在线观看| 国产探花极品一区二区| 9色porny在线观看| 91精品一卡2卡3卡4卡| 国产精品人妻久久久影院| 亚洲精品乱码久久久v下载方式| 久久99蜜桃精品久久| 国产精品久久久久久精品电影小说| 久久久久久久久久人人人人人人| 啦啦啦视频在线资源免费观看| av视频免费观看在线观看| 我的女老师完整版在线观看| av黄色大香蕉| 国产一区二区在线观看日韩| 国产一级毛片在线| 欧美日韩在线观看h| 亚洲欧美一区二区三区国产| 人成视频在线观看免费观看| 中文乱码字字幕精品一区二区三区| 免费av不卡在线播放| 黄色怎么调成土黄色| 成人午夜精彩视频在线观看| 高清av免费在线| 新久久久久国产一级毛片| 26uuu在线亚洲综合色| 久久精品久久久久久久性| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 人体艺术视频欧美日本| 18禁在线无遮挡免费观看视频| 精品少妇黑人巨大在线播放| 欧美性感艳星| 欧美老熟妇乱子伦牲交| 中国国产av一级| 日韩欧美一区视频在线观看| 国产精品三级大全| 久热这里只有精品99| 亚洲一级一片aⅴ在线观看| 熟妇人妻不卡中文字幕| 99热国产这里只有精品6| 日本黄色片子视频| 在线观看免费日韩欧美大片 | 26uuu在线亚洲综合色| 国产69精品久久久久777片| 亚洲精品亚洲一区二区| 国产黄色视频一区二区在线观看| 亚洲av欧美aⅴ国产| 一本久久精品| 一级片'在线观看视频| 中文字幕免费在线视频6| 成人黄色视频免费在线看| 国产视频内射| 男的添女的下面高潮视频| 国产在视频线精品| 日本-黄色视频高清免费观看| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 99九九在线精品视频| 国产在线免费精品| 国产成人免费无遮挡视频| 国产成人freesex在线| 免费大片18禁| 伊人久久精品亚洲午夜| 久久久久久久精品精品| 色5月婷婷丁香| 成人影院久久| 亚洲欧美成人精品一区二区| 黑人欧美特级aaaaaa片| 亚洲精品一二三| a级毛片免费高清观看在线播放| 黄色欧美视频在线观看| 国产成人精品婷婷| 日韩欧美一区视频在线观看| 精品一区在线观看国产| 99久久精品一区二区三区| 国产精品人妻久久久影院| 国产色爽女视频免费观看| 少妇人妻久久综合中文| 熟妇人妻不卡中文字幕| 精品一区二区免费观看| 免费黄频网站在线观看国产| 国产精品国产三级国产av玫瑰| 伊人久久国产一区二区| 女人精品久久久久毛片| tube8黄色片| 最近最新中文字幕免费大全7| 97在线人人人人妻| 一本色道久久久久久精品综合| 国产乱人偷精品视频| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 亚洲怡红院男人天堂| 亚洲人成网站在线播| 最黄视频免费看| 国产欧美日韩一区二区三区在线 | 免费黄频网站在线观看国产| 国产男人的电影天堂91| 成年女人在线观看亚洲视频| 激情五月婷婷亚洲| 国产毛片在线视频| 亚洲,一卡二卡三卡| 国产成人freesex在线| 天堂8中文在线网| 亚洲在久久综合| 精品少妇久久久久久888优播| 亚洲,欧美,日韩| 美女xxoo啪啪120秒动态图| 午夜福利,免费看| 黄片播放在线免费| 精品酒店卫生间| 国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 国产在视频线精品| 交换朋友夫妻互换小说| 国产日韩欧美视频二区| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 美女主播在线视频| 乱人伦中国视频| 国产成人免费观看mmmm| 国产免费又黄又爽又色| 一级毛片电影观看| 国产精品99久久久久久久久| 美女福利国产在线| 免费观看在线日韩| 最近2019中文字幕mv第一页| 91aial.com中文字幕在线观看| 超碰97精品在线观看| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 五月伊人婷婷丁香| 亚洲少妇的诱惑av| 高清av免费在线| 亚洲人成网站在线观看播放| 午夜免费鲁丝| 夫妻性生交免费视频一级片| 五月天丁香电影| 母亲3免费完整高清在线观看 | 中国国产av一级| 亚洲在久久综合| 91精品国产国语对白视频| videosex国产| 一本一本综合久久| 18在线观看网站| 婷婷成人精品国产| 少妇人妻久久综合中文| 青春草视频在线免费观看| 日本猛色少妇xxxxx猛交久久| 夜夜爽夜夜爽视频| av又黄又爽大尺度在线免费看| 高清毛片免费看| 一区二区三区精品91| 亚洲欧美中文字幕日韩二区| 九九在线视频观看精品| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 欧美xxⅹ黑人| 午夜激情福利司机影院| 精品久久久久久久久亚洲| 九九爱精品视频在线观看| 七月丁香在线播放| 精品人妻在线不人妻| 中文字幕最新亚洲高清| h视频一区二区三区| 99久久中文字幕三级久久日本| 91成人精品电影| 九色成人免费人妻av| 免费看不卡的av| 天美传媒精品一区二区| 久久国产精品大桥未久av| 高清欧美精品videossex| 国产永久视频网站| 久热久热在线精品观看| 日韩大片免费观看网站| 国产午夜精品一二区理论片| 亚洲欧美日韩卡通动漫| 亚洲第一区二区三区不卡| 亚洲人与动物交配视频| 美女主播在线视频| 一个人免费看片子| 欧美国产精品一级二级三级| 久久鲁丝午夜福利片| 国产亚洲欧美精品永久| 久久久久久久国产电影| 最近最新中文字幕免费大全7| 秋霞伦理黄片| 91在线精品国自产拍蜜月| 99精国产麻豆久久婷婷| 亚洲欧美中文字幕日韩二区| 制服诱惑二区| 日本91视频免费播放| 少妇的逼好多水| 午夜福利,免费看| 毛片一级片免费看久久久久| 国产女主播在线喷水免费视频网站| 麻豆乱淫一区二区| 国产精品秋霞免费鲁丝片| 精品久久久噜噜| 久久影院123| 九草在线视频观看| 老司机亚洲免费影院| 欧美日韩成人在线一区二区| av线在线观看网站| 国产国拍精品亚洲av在线观看| 色5月婷婷丁香| 好男人视频免费观看在线| 天天操日日干夜夜撸| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| 丝袜喷水一区| 亚洲欧洲精品一区二区精品久久久 | 视频在线观看一区二区三区| 亚洲人成网站在线播| 在线观看三级黄色| 国产精品99久久久久久久久| 国产在视频线精品| 欧美日韩成人在线一区二区| 亚洲少妇的诱惑av| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 日韩亚洲欧美综合| av播播在线观看一区| 亚洲国产精品国产精品| 欧美另类一区| videosex国产| 国产黄色视频一区二区在线观看| 日韩精品有码人妻一区| h视频一区二区三区| 啦啦啦中文免费视频观看日本| 欧美三级亚洲精品| 欧美丝袜亚洲另类| 亚洲一级一片aⅴ在线观看| 亚洲精华国产精华液的使用体验| 一区二区三区免费毛片| 精品熟女少妇av免费看| 免费观看a级毛片全部| 十八禁高潮呻吟视频| 97在线视频观看| 性高湖久久久久久久久免费观看| 精品一区二区三区视频在线| 精品久久久久久久久亚洲| 久久国产精品男人的天堂亚洲 | 少妇 在线观看| 久久热精品热| 日韩 亚洲 欧美在线| 中文欧美无线码| 久久久国产欧美日韩av| 制服人妻中文乱码| 国产av码专区亚洲av| 国产精品国产三级国产专区5o| 草草在线视频免费看| 日韩电影二区| 91久久精品国产一区二区成人| 国产女主播在线喷水免费视频网站| 91精品国产九色| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲在久久综合| 免费日韩欧美在线观看| 婷婷色综合大香蕉| 久久久国产欧美日韩av| 综合色丁香网| 满18在线观看网站| 三上悠亚av全集在线观看| 国产精品免费大片| 五月开心婷婷网| 水蜜桃什么品种好| 日韩制服骚丝袜av| 97超碰精品成人国产| 丰满少妇做爰视频| 日本与韩国留学比较| 涩涩av久久男人的天堂| 黑人欧美特级aaaaaa片| 欧美xxⅹ黑人| 中文字幕亚洲精品专区| 男女边吃奶边做爰视频| 免费高清在线观看日韩| 国产视频内射| 国产一区亚洲一区在线观看| 99re6热这里在线精品视频| 日韩亚洲欧美综合| 日韩伦理黄色片| 精品一品国产午夜福利视频| 黄色毛片三级朝国网站| 日韩av在线免费看完整版不卡| 亚洲图色成人| 制服人妻中文乱码| 免费观看在线日韩| 国产精品蜜桃在线观看| 国产精品欧美亚洲77777| .国产精品久久| 国产视频内射| xxx大片免费视频| 国产在线免费精品| 午夜激情福利司机影院| 最近最新中文字幕免费大全7| 亚洲久久久国产精品| 中文乱码字字幕精品一区二区三区| 国产欧美日韩综合在线一区二区| 另类亚洲欧美激情| 最近手机中文字幕大全| 欧美亚洲 丝袜 人妻 在线| 国产精品麻豆人妻色哟哟久久| 视频中文字幕在线观看| 国产女主播在线喷水免费视频网站| 99热这里只有精品一区| av天堂久久9| 全区人妻精品视频| 晚上一个人看的免费电影| 欧美少妇被猛烈插入视频| 99国产综合亚洲精品| 欧美丝袜亚洲另类| 九色成人免费人妻av| 夫妻性生交免费视频一级片| 在线观看www视频免费| 777米奇影视久久| 黄色一级大片看看| 在线免费观看不下载黄p国产| 99热网站在线观看| 在线精品无人区一区二区三| 简卡轻食公司| 久久久久久伊人网av| 国产探花极品一区二区| 欧美精品亚洲一区二区| 成人国产av品久久久| 综合色丁香网| 成人毛片a级毛片在线播放| 老熟女久久久| 国产成人av激情在线播放 | 我要看黄色一级片免费的| 3wmmmm亚洲av在线观看| 免费看不卡的av| 在现免费观看毛片| 精品国产一区二区久久| 麻豆成人av视频| 精品人妻熟女av久视频| 成人国语在线视频| 女人久久www免费人成看片|