• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trajectory Tracking of Vertical Take-off and Landing Unmanned Aerial Vehicles Based on Disturbance Rejection Control

    2015-08-11 11:54:44LuWangandJianboSu
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Lu Wang and Jianbo Su

    Trajectory Tracking of Vertical Take-off and Landing Unmanned Aerial Vehicles Based on Disturbance Rejection Control

    Lu Wang and Jianbo Su

    —We investigate the trajectory tracking problem of vertical take-off and landing(VTOL)unmanned aerial vehicles (UAV),and propose a practical disturbance rejection control strategy.Firstly,the nonlinear error model is established completely by the modified Rodrigues parameters,while considering dynamics of the servo actuators.Then,a hierarchical control scheme is applied to design the translational and rotational controllers based on the time-scale property of each subsystem, respectively.And the linear extended state observer and auxiliary observer are used to deal with the uncertainties and saturation. Atlast,globalstability ofthe closed-loop system is analyzed based on the singular perturbation theory.Simulation results show the effectiveness of the proposed control strategy.

    Index Terms—Unmanned aerial vehicles(UAV),trajectory tracking control,extended state observer,singular perturbation theory.

    I.INTRODUCTION

    R ECENTLY,vertical take-off and landing(VTOL)unmanned aerial vehicles(UAV)have attracted increasing interest in researches and applications in both military and civilsociety,such as rescue in disasters,unmanned inspection, and road traffic supervision.The motivation also comes from academic research institutes,since it can be used as low cost testbeds forrobotics studies.However,the VTOL UAV model, which has been widely investigated in mostworks,is known as a class of underactuated system with nonholonomic constraints of second order.According to the necessity of Brockett,there is no gloss or time invariant controller that can stabilize the underactuated system to the equilibrium point[1].Hence,new methodology should be investigated for this kind of systems.

    Trajectory tracking control of VTOL UAV is a challenging work due to its coupling property,external disturbances, system uncertainties,etc.Several inspired approaches have been investigated,such as backstepping control[2?4],sliding mode control[2,5?7],feedback linearization[5],model predictive control[8],neural networks[9],fuzzy control[10],observer based control[11?12],etc.However,there are stillsome prominent problems to be considered and resolved.

    1)The attitude representation and desired attitude extraction.In most previous works[2-10,13],Euler angles are usedto representthe attitude of rigid body.However,the simplified kinematics is often used as

    whereφ,θ,ψdenote the roll,pitch,and yaw angles.ωx,ωy,ωzare the angular velocity of the rigid body,respectively.It is pointed out that the original kinematics of Euler angles is described as[14]

    The existence of transcendental functions in(2)makes it difficult to design a control strategy.Noticing that(1)is a simplified form of(2)with the assumption that the rigid body rotates only in one direction at a time,and the roll/pitch angle changes when the pitch/roll angle equals to 0°.However,the assumption above is an ideal instance,which is infeasible. Meanwhile,the simplification will decrease the control accuracy.Furthermore,we find that the system model based on Euler angles is not available when pitch angleθ= ±π/2. Especially,considering the error of sensors and calculation, both attitude estimation and control algorithm based on Euler angles cannot work near the state ofθ=±π/2.Moreover, mostworks provided the desired attitude,angularvelocity,and angular acceleration directly by the position controller.Only [12,15]present the analytical solution of the desired attitude information based on quaternion.

    2)Stability of hierarchical control structure.Concerning with the hierarchial control strategy,the position and attitude controllers can be designed separately for translationaland rotationalsubsystems,respectively.Although the above strategy can be introduced for controller design,the stability should be analyzed based on the overall closed-loop system,since the attitude’s tracking is an asymptotical procedure,which makes the attitude error between the actual and desired one a necessary concern in the analysis.However,in[2?5,7?10,13], stability is only analyzed for each subsystem.

    3)Dynamics of actuators and its influence on the closedloop stability.In[12,15?16]and[11,17],cascade theory and singular perturbation theory are used to acquire the stability of the closed-loop system.In[18],the relationship is given between actuators and controlinputofa VTOL UAV.However, dynamics of actuators is never considered.

    4)Controller design with internaluncertainties and external disturbances.Several researches related to controller design againstuncertainties have been studied based on sliding mode control[2,5?7],neutralnetworks[9],fuzzy systems[10],adaptivebackstepping control[19],disturbance observer[16],etc.However,the chartering of SMC,convergence rate of weights in neutralnetworks and fuzzy systems willlimitthe applications of these methods in practical.The adaptive algorithm can only deal with the external disturbances[19].The disturbance observer is adopted to dealwith the uncertainties[20],however, the saturation of the actuators is not considered.

    Based on the above review,trajectory tracking control of a VTOL UAV is explored is this paper,taking both uncertainties and actuators'dynamics into account.The error model of VTOL UAV based on trajectory tracking task is established based on modified Rodrigues parameters(MRPs),based on which analytical expression of desired attitude information is given.Then,considering the dynamics of actuators,the overall system is divided into three subsystems according to their time-scale properties,based on which a hierarchical control structure is presented.Thereafter,anti-windup controllers against system uncertainties are proposed based on translational and rotational subsystems,respectively.Stability of the overallclosed-loop system is analyzed based on singular perturbation theory.In summary,the main contributions of the proposed control strategy are presented as follows:

    1)A hierarchical control structure is proposed due to the cascade property between translational and rotational subsystems.Meanwhile,the analytical solution of desired attitude information based on MRPs is given.

    2)A modified disturbance rejection controller is proposed for disturbance rejection performance as well as the input saturation of actuators.

    3)The singular perturbation theory is employed with consideration of the actuators'dynamics,based on which the strictly Lyapunov stability conclusion is achieved.

    The rest of this paper is organized as follows.In Section II,the trajectory tracking error model is established based on MRPs,and the analytical solution of desired attitude information is given.In Section III,the overall system is divided into three subsystems,based on which a hierarchical strategy is introduced.In Section IV,anti-windup controllers are proposed based on translational and rotational subsystems, respectively.In Section V,singular perturbation theory is introduced to analyzed the stability of the overallclosed-loop system.Simulations are presented in Section V to verify the effectiveness of the proposed controlstrategy,followed by the conclusions in Section VI.

    II.SYSTEM MODEL AND PROBLEM FORMULATION

    A.System Model

    There are totally three coordinates used in this paper,earth frame Fe,body-fixed frame Fb,and orientated frame Fd.We choose MRPs to represent the attitude.MRPs are described as a three-dimension vector without restrictions,which is defined asσ=rrr tan(α/4),where rrr andαrepresent the unit vector of rotational axis and rotation angle of the rigid body, respectively.Due to the definition of MRPs,its kinematics is given as:

    whereω∈R3denotes the angular velocity of the VTOL UAV. The matrix G(σ)is given as

    where[σ×]is the skew-symmetric matrix ofσ,and I3represents the identity matrix with the dimension of three by three.Concerning with the MPRs problem,please see[21]for further details.

    We consider the VTOL UAV as a rigid body without deformation,and the system model is described as

    whereξ,vvv∈R3are the position and velocity in the earth frame,eee3=[0 0 1]Tis the unit vector of z axis,T is the controlled thrust andτ=[τ1τ2τ3]T∈R3is the controlled torque.m and J∈ R3×3denote the mass and inertia matrix of the rigid body.ddd1and ddd2are bounded externaldisturbances.The orthogonalattitude transition matrix is denoted by R∈S O(3).And R in terms ofthe MRPs vector is shown as

    Remark 1.T andτare the resulted aerodynamic force and moment described in the body-fixed coordinate,which lead to motion of the VTOL UAV.Different UAVs have differenttypes of actuators,whose aerodynamic characteristics are also different.Without loss of generality,we consider the aerodynamic force and moment as the input of the flight control system.In the next subsection,the dynamics of the thrust and torque caused by the actuators are also taken into account.

    B.Problem Formulation

    The trajectory tracking problem of a VTOL UAV is investigated,and the objective in this work is to design a control thrust Tdand controltorqueτd,which enable the VTOL UAV to track a desired trajectory quickly and accurately.Define the system errors as:position error?ξ=ξ?ξd,and velocity error ?vvv=vvv?˙ξd.?σ,?ωin(7)are errors of MRPs and angularvelocity given as:

    where‖·‖denotes the Euclidean norm of a vector.

    The analytical solution ofσd,ωd,˙ωdis shown in Section III.And Lemma 1 holds for MRPs error.

    Lemma 1[22].If the attitude variable pairs(σ,ω)and (σd,ωd)both satisfy MRPs kinematics in(3),their relative attitude variable pair also satisfies(3).

    Denoting the nominal values of mass and rotational inertia as m0and J0,then their errors are given as‰

    The thrust and torque inputs of VTOL UAV are obtained by the servo systems,such as motors,flapping angles,controlsurfaces,etc.,which may affect the stability of the overall closed-loop system.Assuming the controller of the actuators make the error dynamics of thrust and torque satisfy:

    where?T=Td?T,?τ=τd?τ.KTand Kτare the control gains,and tTand tτare the time constants.

    Based on descriptions above,the system error model is represented as

    The compound disturbances on the system dynamics are given as

    where J?denotes the vector form of the diagonalelements of J and,forω=[ω1ω2ω3]T,we have:

    III.TIME-SCALE SEPARATION AND HIERARCHICAL STRATEGY

    A traditional method to design guidance and control strategies in aeronautics is assuming that the controller will enable the rotationaldynamics to converge fasterthan the translational dynamics by using an attitude controller with higher gains.

    From the VTOL UAV model shown above,we know that the attitude error will converge asymptotically after the convergence of actuators.The position error will converge asymptotically after the convergence of both attitude error and actuators.According to the convergent speed of the differentparts ofthe overallsystem,we regard the translational subsystem as slow subsystem,rotational subsystem as fast subsystem,and actuators'dynamics as ultra-fast subsystem. The time-scale property of each subsystem is shown in Fig.1.

    Fig.1.Time-scale property of each system.

    The singular perturbation theory can be used in the controller design and stability analysis based on the multi-timescale properties of VTOL UAV system.Two time-scale factors ε1andε2are introduced to formalize the time-scale separation. Introducing the following notations:

    we finally get the error model of VTOL UAV as

    where the coupling terms are defined as fff1=(Rdeee3?T)+ (I3? ?R)(Rdeee3Td)?(I3? ?R)(Rdeee3?T),fff2=??τ.

    The purpose of these two time-scale factors is to adjustthe gain of the controller for each subsystem,whose convergence speed will be changed correspondingly.From the system model in(5),we find that the transition matrix R and control thrust T will affect the translational motion of VTOL UAV. Notice from(6)that the transition matrix R in terms of MRPs can also be regarded as the output of the rotational subsystem.This can be considered as the cascade property of VTOL UAV.A practical hierarchical strategy is introduced to implement the control system.Consequently,translational and rotational controllers can be designed separately.The translationalcontrolleris firstly designed to extractthe desired thrust Tdand attitude matrix Rd.The desired attitude information can enable a VTOL UAV to track the desired trajectory. Thereafter,the desired torque vectorτdis determined by the rotational controller with the desired attitude matrix.At last, Tdandτdcan be treated as the input for the actuators to implementthe whole controlsystem.The following Condition is assumed in the controller design.In the procedure of controllerdesign,the subsystems/subsystem whose convergent speeds/speed are/is higher than the corresponding subsystem to be controlled are/is already converged.However,the stability should also be analyzed based on the original error model, and this assumption is only used in the procedure of controller design.The diagram of hierarchicalcontrol strategy is shown in Fig.2.

    Since the desired attitude informationσd,ωd,˙ωdis determined by the virtual controller Rd,we present the analytical solution of these information.

    Theorem 1.By introducing the notation δ = [δ1δ2δ3]T? Rdeee3Td,it is always possible to extract the desired attitude as:

    Fig.2. Control structure of the system.

    We assume the virtual controller Rdeee3Tdis differentiable, the desired angular velocity is given as

    whereγ=Td+δ3.

    Then,the desired angular acceleration is described as

    whereΓ'is a matrix with the size of 3×3.

    Proof.We notateσd=[σd1σd2σd3]T.The vectorδ is described from the defi nition of MRPs as

    Notice that there is a constraint‖δ‖=1,hence,only two degrees-of-freedom of rotation can be determined by this vector.We assumeσd3=0 to calculateσd1andσd2.Since‖σd‖≤1,we have:

    Consequently,we can easily prove that(17)holds.From(4) and the following equations

    we can obtain(18)~(21). □

    IV.CONTROLLER DESIGN

    Based on the above error model,a hierarchical control scheme is presentto exploitthe cascade property.The control design steps can be summarized as follows:

    Step 1.The translational controller is designed based on subsystemΣ1under the assumption that fff1=0.A linear extended state observer(ESO)[23]is introduced to estimate and compensate the compound disturbances.The desired attitude information is extracted by Theorem 1 as the input of subsystemΣ2.

    Step 2.The rotational controller is designed based on subsystemΣ2under the assumption that fff2=0.A linear ESO is also used to suppress the attitude error caused by the compound disturbances.

    Step 3.Stability of the overall system is analyzed based on Lyapunov analysis,taking the dynamics of actuators into account.

    A.Translational Controller Design

    We notate the derivative of ddd'1as hhh1(t).Then,the secondorder linear ESO for translational subsystemΣ1is

    where g1and g2are positive constants to be selected.

    Transforming(26)to the frequency-domain using the Laplace transform,and substitute(14)into(26),we get:

    where s is the Laplace operator.

    From(27),we finally get

    g1and g2should satisfy that the polynomial s2+g1s+g2is Hurwitz.Here,we simply choose g1=2ω0,g2= ω20. The ESO views both internaluncertainties and externaldisturbances as the extended state to be estimated and compensated in the controller.Hence,the ESO can reject the influence caused by both internaluncertainties and externaldisturbances.

    The backstepping technique and an auxiliary observer are introduced to design the trajectory tracking controller.We firstly introduce the following variables:

    where kα1,kα2are strictly positive matrices,and an auxiliary observer similar to[12]is given as

    where k1,k2are positive matrices to be selected.

    It is easy to verify that the thrust input is bounded as

    and for a candidate Lyapunov function V1=12(eeeT1eee1+eeeT2eee2), its derivative is given as

    where?ddd1?ddd'1??zzz2.

    The derivative of the control input Rdeee3Tdis described as follows:

    B.Rotational Controller Design

    By introducing the notation B=G?1(?σ),we have?ω= B˙?σ.Then we get

    In order to extract the bounded controller,we rewrite the compound disturbances as

    Then,the system dynamics can be rewritten as

    where hhh2(t)denotes the derivative of the compound disturbances ddd'2.

    Then,the second-order linear ESO for rotational subsystem Σ2is proposed as

    where g3and g4are positive constants to be selected.

    Transforming(39)to the frequency-domain using the Laplace transform,and substitute(15)into(39),we have:

    where s is the Laplace operator.

    From(40),we finally get

    g3and g4should satisfy that the polynomial s2+g3s+g4is Hurwitz.Here,we simply choose g3=2ω1,g4=ω21.

    To design the attitude tracking controller,we introduce the following variables:

    Then,the control inputτ'dis given as:

    where kβ1,kβ2are strictly positive matrices,and the observer is described as

    where k3,k4are positive matrices to be selected.

    The controltorque of the attitude tracking problem is finally described as

    For a candidate Lyapunov function V2=12(eeeT3eee3+eeeT4eee4), its derivative is as follows:

    Remark 2.From (32),the translational controller is bounded.That is,the output of thrust is saturated.From(45) and the definition of tanh function,it is clear that the output of torque is saturated.

    V.STABILITY ANALYSIS

    Theorem 2.Given the error model of a VTOL UAV for trajectory tracking problem in(11),with the compound disturbances shown in(12).Letthe thrustinput Tdand desired attitude information given by(30)and Theorem 1,respectively, with a linear ESO and an auxiliary observer proposed in(26) and(31).Then,let the torque inputτdin(45),with a linear ESO and an auxiliary observer designed in(39)and(4).There exist the time-scale factors such that the proposed control strategy can stabilize the system asymptotically.

    Proof Consider the candidate Lyapunov functions V1and V2defined in Section IV,we define a new Lyapunov function

    As shown later,‖β‖can converge to zero asymptotically. Then,the derivative of V is shown as

    where

    Since a1is a positive constant,the firsttwo minors of matrix Γis positive.Then,we should find the scopes ofε1,ε2such that the third to sixth minors are positive.For simplicity,let Γibe the matrix's minor of i.Then,the third to sixth minors are given as

    From det(A3)>0 and det(A4)>0,we have:

    Since det(A5)>0,it follows that:

    If det(A6)>0,the following should be satisfied:

    If the time-scale factorsε1andε2are selected based on the above requirements,matrixΓis positive.The unforced system is exponentially stable,that is,the system is input-tostate stable with the input

    From(28)and(41),we know thatcan converge to ddd'1and ddd'2asymptotically,that is,can converge to zero asymptotically.Then,from Lemma 4.7 of[24],we know thatthe cascade overallsystem is asymptotically stable.Hence, limt→∞eee1=limt→∞eee2=limt→∞eee3=limt→∞eee4= limt→∞?T=limt→∞?τ=0.

    From the descriptions above and the results in[25],the auxiliary observers in(31)and(44)are asymptotically stable.Consequently,limt→∞α=limt→∞˙α=limt→∞β=limt→∞˙β=0.Noticing that eee1to eee4are linear diffeomorphism of?ξ,?vvv,?σ,?ω,α,˙α,β and ˙β,hence,we have the following conclusion:

    VI.SIMULATION RESULTS

    Simulations are shown to illustrate the effectiveness of the proposed control strategy.We consider a VTOL UAV model with the parameters being set as:m = 4 kg, Jx= Jy= 0.08 kg·m2,and Jz= 0.14 kg·m2. The initial condition is given as:ξ(t0)=[2 3 5]Tm, vvv(t0)=[0 0 0]Tm/s,σ(t0)=[0 0 0]T,ω(t0)= [0 0 0]Trad/s.The parameters of the controller are given as follows:k2=3.5,k3=2,k4=0.2,kα1=kα2=1.5, kβ1=kβ2=2.5,ε1=0.1,ε2=0.05.

    Tracking of a spiral rising trajectory with the existence of perturbation of parameters and unknown disturbance is accomplished in Matlab/Simulink.The desired trajectory is as follows:

    The external disturbances acting on the translational and rotational dynamics are given as:

    Simulation results are illustrated in Figs.3~7.The trajectory tracking effect of the VTOL UAV is illustrated in Fig.3. The tracking errors of position,velocity,MRPs and angular velocity are shown in Figs.4 and 5,while Fig.6 shows the estimation effects of linear ESO for both translational and rotational subsystems.The changing tendency of roll,pitch and yaw angles during the trajectory tracking are indicated in Fig.7.

    Fig.3.Trajectory tracking effect.

    Fig.4. Tracking error of position and velocity.

    In the simulation,we fi nd that with the existence of both external disturbances and internal uncertainties,the proposed controller can enable the VTOL UAV to track a time-varying trajectory quickly and accurately.The linear ESO can estimate the disturbances and compensate for them in the control scheme to improve the control performance,whereas the proposed controller can enable the VTOL UAV to track a desired trajectory effectively.We also carry out the adaptive backstepping method in[19]for comparison.In Table I,the root-mean-square(RMS)errorofthe proposed controlstrategy is compared with that of adaptive backstepping method.It is shown that with time-varying disturbances and internal uncertainties,the control performance of the adaptive backstepping is not as well as our proposed control strategy.It is shown in Fig.6 thatthe linear ESO estimates the disturbance accurately, and the estimation error converges quickly.Figs.4 and 5 also show that the proposed control strategy have good tracking performance.

    VII.CONCLUSION

    In this paper,the trajectory tracking control of a VTOL UAV is investigated.The MRPs based system error model is established and the hierarchical control strategy is introduced based on the time-scale property.Then,a practicaldisturbancerejection controller is proposed with linear ESO for both translationaland rotational subsystems,respectively.The auxiliary observer is implemented to guarantee the boundedness of the control output.At last,stability conclusion of the overall system is given based on singular perturbation theory. Simulation results verify that the proposed control strategy can successfully enable the VTOL UAV to track a desired trajectory.The designed linear ESO can also estimate the compound disturbances caused by both external and internal uncertainties for higher accuracy of tracking.

    Fig.5.Tracking error of MRPs and angular velocity.

    TABLE I COMPARISON OF CONTROL PERFORMANCE (RMS ERROR)

    Fig.6. Disturbance estimation performance.

    Fig.7. Equivalent control effect of Euler angles.

    REFERENCES

    [1]Brockett R W.Asymptotic stability and feedback stabilization.Differential Geometric Control Theory.Boston:Birkh¨auser,1983.181?191

    [2]Bouabdallah S,Siegwart R.Backstepping and sliding-mode techniques applied to an indoor micro quadrotor.In:Proceedings of the 2005 IEEE International Conference on Robotics and Automation.Barcelona, Spain:IEEE,2005.2247?2252

    [3]Mian A A,Wang D B.Modeling and backstepping-based nonlinear control strategy for a 6 DOF quadrotor helicopter.Chinese Journal ofAeronautics,2008,21(3):261?268

    [4]Zuo Z.Trajectory tracking control design with command-filtered compensation for a quadrotor.IET Control Theory and Applications,2010, 4(11):2343?2355

    [5]Lee D,Kim H J,Sastry S.Feedback linearization vs.adaptive sliding mode controlfor a quadrotor helicopter.InternationalJournalof Control, Automationand Systems,2009,7(3):419?428

    [6]Xu R,¨Ozg¨uner¨U.Sliding mode control of a class of underactuated systems.Automatica,2008,44(1):233?241

    [7]Efe M ¨O.Battery power loss compensated fractionalorder sliding mode control of a quadrotor UAV.Asian Journal of Control,2012,14(2): 413?425

    [8]Raffo G V,Ortega M G,Rubio F R.An integral predictive/nonlinear control structure for a quadrotor helicopter.Automatica,2010,46(1): 29?39

    [9]Efe M O.Neural network assisted computationally simple PlλDμcontrolofa quadrotor UAV.IEEETransactionsonIndustrialInformatics, 2011,7(2):354?361

    [10]Zemalache K M,Maaref H.Controlling a drone:comparison between a based model method and a fuzzy inference system.Applied Soft Computing,2009,9(2):553?562

    [11]Bertrand S,Gu′enard N,Hamel T,Piet-Lahanier H,Eck L.A hierarchical controller for miniature VTOL UAVs:design and stability analysis using singular perturbation theory.ControlEngineeringPractice,2011,19(10): 1099?1008

    [12]Abdessameud A,Tayebi A.Globaltrajectory tracking controlof VTOLUAVs without linear velocity measurements.Automatica,2010,46(6): 1053?1059

    [13]Nicol C,Macnab C J B,Ramirez-Serrano A.Robust adaptive control of a quadrotor helicopter.Mechatronics,2011,21(6):927?938

    [14]Ginsberg J.Engineering Dynamics.Cambridge:Cambridge University Press,2008.

    [15]Abdessameud A,Tayebi A.Formation control of VTOL Unmanned Aerial Vehicles with communication delays.Automatica,2011,47(11): 2383?2394

    [16]Wang L,Jia H M.The trajectory tracking problem of quadrotor UAV: globalstability analysis and controldesign based on the cascade theory. AsianJournal of Control,2014,16(2):574?588

    [17]Esteban S,Gordillo F,Aracil J.Three-time scale singular perturbation controland stability analysis foran autonomous helicopteron a platform. International Journal of Robust and Nonlinear Control,2013,23(12): 1360?1392

    [18]Michael N,Mellinger D,Lindsey Q,Kumar V.The GRASP multiple micro-UAV testbed.IEEE Robotics and Automation Magazine,2010, 17(3):56?65

    [19]Cabecinhas D,Cunha R,Silvestre C.A nonlinear quadrotor trajectory tracking controller with disturbance rejection.Control EngineeringPractice,2014,16:1?10

    [20]Wang L,Su J B.Global trajectory tracking of VTOL UAV based on disturbance rejection control.In:Proceedings of the 32nd Chinese Control Conference.Xi'an,China:IEEE,2013.4270?4275

    [21]Tsiotras P.Further passivity results for the attitude control problem. IEEE Transactionson AutomaticControl,1998,43(11):1597?1600

    [22]Cong B L,Liu X D,Chen Z.Distributed attitude synchronization of formation flying via consensus-based virtual structure.Acta Astronautica, 2011,68(11?12):1973?1986

    [23]Zheng Q,Dong L L,Lee D H,Gao Z Q.Active disturbance rejection control for MEMS Gyroscopes.IEEE Transactions on Control Systems Technology,2009,17(6):1432?1438

    [24]Khalil H K.Nonlinear Systems(Third edition).Upper Saddle River, New Jersey:Prentice Hall,2002.

    [25]Olfati-Saber R.Globalconfiguration stabilization for the VTOL aircraft with strong input coupling.IEEE Transactions on Automatic Control, 2002,47(11):1949?1952

    Lu Wang Ph.D.candidate in the Departmentof Automation,Shanghai Jiao Tong University,China.His research interests include disturbance rejection control,disturbance observer,nonlinear system control, unmanned aerial system and VTOL UAV control. Corresponding author of this paper.

    received the B.S.degree in automatic control from Shanghai Jiao Tong University,China in 1989,the M.S.degree in pattern recognition and intelligent system from the Institute of Automation, Chinese Academy of Science,China in 1992,and the Ph.D.degree in control science and engineering from Southeast University,China in 1995.

    Manuscript received October 10,2013;accepted July 23,2014.This work was supported by National Natural Science Foundation of China(61221003). Recommended by Associate Editor Changyin Sun

    :Lu Wang,Jianbo Su.Trajectory tracking of vertical take off and landing unmanned aerial vehicles based on disturbance rejection control. IEEE/CAA Journal of AutomaticaSinica,2015,2(1):65?73

    Lu Wang and Jiaobo Su are with the Department of Automation,Key Laboratory of System Control and Information Processing,Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China(e-mail: wanglu1987xy@sjtu.edu.cn;jbsu@sjtu.edu.cn).

    He joined the faculty of the Department of Automation,Shanghai Jiao Tong University in 1997, where he has been a full professor since 2000.His research interests include robotics,pattern recognition,and human-machine interaction.In these areas, he has published three books,more than 190 technical papers,and is the holder of 15 patents.

    Dr.Su is a memberofthe TechnicalCommittee of Networked Robots,IEEE Robotics and Automation Society,a member of the Technical Committee on Human-Machine Interactions,IEEE System,Man,and Cybernetics Society, and a standing committee member of the Chinese Association of Automation. He has served as an associate editor for IEEE Transactions on Cybernetics since 2005.

    高清在线国产一区| www.av在线官网国产| 一边摸一边抽搐一进一出视频| 美女福利国产在线| 久久综合国产亚洲精品| 欧美精品av麻豆av| 国产片内射在线| 国产极品粉嫩免费观看在线| 成人黄色视频免费在线看| 超色免费av| 桃红色精品国产亚洲av| 视频在线观看一区二区三区| 最新的欧美精品一区二区| 汤姆久久久久久久影院中文字幕| 中文欧美无线码| 免费观看a级毛片全部| 中文欧美无线码| av福利片在线| 一进一出抽搐动态| 最新在线观看一区二区三区| 老司机福利观看| 亚洲第一欧美日韩一区二区三区 | 纯流量卡能插随身wifi吗| 建设人人有责人人尽责人人享有的| 久久久精品区二区三区| 亚洲国产成人一精品久久久| 国产深夜福利视频在线观看| 丝袜喷水一区| 考比视频在线观看| 国产精品九九99| 亚洲人成77777在线视频| 亚洲男人天堂网一区| 久久亚洲精品不卡| 国产精品影院久久| 极品少妇高潮喷水抽搐| av线在线观看网站| 国产又爽黄色视频| 亚洲精品久久成人aⅴ小说| 久久毛片免费看一区二区三区| 久久久水蜜桃国产精品网| 黑丝袜美女国产一区| 国产精品久久久久久人妻精品电影 | 精品高清国产在线一区| 99国产精品一区二区三区| 婷婷色av中文字幕| 欧美精品高潮呻吟av久久| 色播在线永久视频| netflix在线观看网站| 精品少妇一区二区三区视频日本电影| 黑人巨大精品欧美一区二区蜜桃| 日韩电影二区| 日韩视频一区二区在线观看| 1024视频免费在线观看| 成年人黄色毛片网站| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区在线不卡| 亚洲va日本ⅴa欧美va伊人久久 | 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品古装| 欧美日韩黄片免| 亚洲少妇的诱惑av| 免费在线观看完整版高清| 狠狠婷婷综合久久久久久88av| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 女警被强在线播放| 成人三级做爰电影| 日日爽夜夜爽网站| 99热国产这里只有精品6| 中文字幕人妻丝袜一区二区| 国产一区二区激情短视频 | 又黄又粗又硬又大视频| 精品久久久精品久久久| www.av在线官网国产| 午夜福利一区二区在线看| 精品亚洲成a人片在线观看| 亚洲第一av免费看| 久久久精品免费免费高清| 老汉色av国产亚洲站长工具| 黑丝袜美女国产一区| 18在线观看网站| 午夜老司机福利片| av网站在线播放免费| 一级毛片电影观看| 在线观看免费高清a一片| www日本在线高清视频| 欧美激情久久久久久爽电影 | 国产激情久久老熟女| www.精华液| 欧美大码av| 男男h啪啪无遮挡| 亚洲av片天天在线观看| 一本大道久久a久久精品| 亚洲中文字幕日韩| 亚洲欧美色中文字幕在线| 亚洲男人天堂网一区| 免费女性裸体啪啪无遮挡网站| a级毛片在线看网站| 久久精品久久久久久噜噜老黄| 2018国产大陆天天弄谢| 亚洲精品国产色婷婷电影| 91精品伊人久久大香线蕉| 热re99久久国产66热| 91九色精品人成在线观看| 一区二区三区激情视频| 亚洲精品国产av蜜桃| 久久精品aⅴ一区二区三区四区| 美女脱内裤让男人舔精品视频| 在线看a的网站| 欧美成狂野欧美在线观看| 国产男人的电影天堂91| 法律面前人人平等表现在哪些方面 | 亚洲成人免费电影在线观看| 每晚都被弄得嗷嗷叫到高潮| 午夜免费成人在线视频| 国产野战对白在线观看| 久久久久精品人妻al黑| 国产三级黄色录像| 狠狠狠狠99中文字幕| 欧美日韩一级在线毛片| 搡老乐熟女国产| 欧美 亚洲 国产 日韩一| 超碰97精品在线观看| 国产亚洲av片在线观看秒播厂| 亚洲精品一二三| 黄色视频不卡| 满18在线观看网站| 国产福利在线免费观看视频| 成人黄色视频免费在线看| 国产高清videossex| 午夜福利影视在线免费观看| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 宅男免费午夜| videosex国产| 这个男人来自地球电影免费观看| 久久性视频一级片| 日韩中文字幕视频在线看片| 人人妻人人添人人爽欧美一区卜| 丰满少妇做爰视频| 欧美亚洲日本最大视频资源| 日本91视频免费播放| 日韩三级视频一区二区三区| 纵有疾风起免费观看全集完整版| 国产av又大| 国产精品 欧美亚洲| 欧美日韩国产mv在线观看视频| 热re99久久精品国产66热6| 男女无遮挡免费网站观看| 国产在线免费精品| 美女大奶头黄色视频| 日本撒尿小便嘘嘘汇集6| 中国国产av一级| 一区二区三区乱码不卡18| 亚洲成人免费电影在线观看| 巨乳人妻的诱惑在线观看| 国产欧美亚洲国产| 久久久久国内视频| 国产男人的电影天堂91| 亚洲欧美一区二区三区久久| 国产精品99久久99久久久不卡| 乱人伦中国视频| 欧美老熟妇乱子伦牲交| 在线看a的网站| 久久久久久亚洲精品国产蜜桃av| 男女高潮啪啪啪动态图| 欧美一级毛片孕妇| 亚洲精品国产色婷婷电影| 国产成人啪精品午夜网站| 黄色毛片三级朝国网站| 999久久久精品免费观看国产| 999久久久国产精品视频| 日韩欧美一区视频在线观看| 久久av网站| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 一区福利在线观看| www.999成人在线观看| 久久天躁狠狠躁夜夜2o2o| 又大又爽又粗| 免费观看a级毛片全部| 亚洲国产欧美在线一区| 日日夜夜操网爽| 国产精品久久久久久精品古装| 国产淫语在线视频| 国产一区二区三区在线臀色熟女 | 免费不卡黄色视频| 欧美久久黑人一区二区| 欧美人与性动交α欧美软件| 成年av动漫网址| 欧美激情 高清一区二区三区| 男女下面插进去视频免费观看| 波多野结衣一区麻豆| 91大片在线观看| 在线十欧美十亚洲十日本专区| 国产深夜福利视频在线观看| 美女高潮喷水抽搐中文字幕| 一级,二级,三级黄色视频| 少妇的丰满在线观看| 黄色a级毛片大全视频| 老司机在亚洲福利影院| 新久久久久国产一级毛片| 岛国毛片在线播放| 亚洲精华国产精华精| 成人三级做爰电影| 一区二区三区乱码不卡18| 99国产极品粉嫩在线观看| www.av在线官网国产| 国产黄频视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品一区二区三区四区五区乱码| 久久狼人影院| 国产精品二区激情视频| 另类亚洲欧美激情| 嫁个100分男人电影在线观看| √禁漫天堂资源中文www| 我的亚洲天堂| 久9热在线精品视频| 国产有黄有色有爽视频| 伊人亚洲综合成人网| 人人妻人人澡人人看| 午夜成年电影在线免费观看| 丝袜脚勾引网站| 亚洲国产看品久久| 老司机影院毛片| 视频区图区小说| 一级毛片女人18水好多| 亚洲精品国产区一区二| a级片在线免费高清观看视频| av超薄肉色丝袜交足视频| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲 | 国产视频一区二区在线看| 一区福利在线观看| 亚洲黑人精品在线| 国产成人欧美在线观看 | 精品免费久久久久久久清纯 | 国产野战对白在线观看| av有码第一页| 亚洲熟女精品中文字幕| 久久 成人 亚洲| 久久久久久人人人人人| 欧美激情极品国产一区二区三区| 欧美日韩一级在线毛片| 91精品国产国语对白视频| 不卡一级毛片| 欧美黑人欧美精品刺激| 大香蕉久久成人网| 搡老乐熟女国产| 国产精品国产三级国产专区5o| 久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 久久青草综合色| 亚洲精品一区蜜桃| 亚洲av日韩在线播放| av天堂在线播放| 啦啦啦 在线观看视频| 少妇人妻久久综合中文| 9热在线视频观看99| 91精品三级在线观看| 免费在线观看黄色视频的| 国产精品熟女久久久久浪| 欧美黑人精品巨大| 亚洲色图 男人天堂 中文字幕| 大片免费播放器 马上看| 精品国产一区二区三区四区第35| 欧美精品一区二区大全| 亚洲第一欧美日韩一区二区三区 | 国产日韩欧美在线精品| 亚洲精品中文字幕一二三四区 | 国产一区二区 视频在线| 狂野欧美激情性bbbbbb| av欧美777| 亚洲激情五月婷婷啪啪| 欧美精品av麻豆av| 狠狠精品人妻久久久久久综合| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 一本久久精品| 亚洲国产看品久久| 亚洲国产欧美一区二区综合| 欧美精品av麻豆av| 国产欧美日韩一区二区三区在线| 日本黄色日本黄色录像| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 国产精品1区2区在线观看. | 啦啦啦免费观看视频1| 欧美日韩中文字幕国产精品一区二区三区 | 精品国产乱码久久久久久小说| 亚洲国产精品一区三区| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 后天国语完整版免费观看| 午夜免费鲁丝| 女人被躁到高潮嗷嗷叫费观| 久久精品人人爽人人爽视色| 女人精品久久久久毛片| 一边摸一边抽搐一进一出视频| 国产欧美日韩一区二区三 | 国产免费视频播放在线视频| 新久久久久国产一级毛片| 久久精品国产亚洲av高清一级| 男女高潮啪啪啪动态图| 亚洲国产欧美日韩在线播放| 久久久精品免费免费高清| 中文字幕人妻丝袜制服| 精品熟女少妇八av免费久了| 国产一区二区 视频在线| 黑人巨大精品欧美一区二区蜜桃| 大陆偷拍与自拍| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 午夜福利,免费看| 国产麻豆69| 亚洲一区中文字幕在线| 国产伦理片在线播放av一区| 久久这里只有精品19| 老司机福利观看| 国产亚洲精品一区二区www | 欧美久久黑人一区二区| 国产精品久久久久久精品古装| 午夜福利在线免费观看网站| 日韩大片免费观看网站| 9热在线视频观看99| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| 两性午夜刺激爽爽歪歪视频在线观看 | 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片| 性色av一级| 深夜精品福利| 在线观看免费日韩欧美大片| 人人妻人人添人人爽欧美一区卜| 好男人电影高清在线观看| 俄罗斯特黄特色一大片| 亚洲国产中文字幕在线视频| 亚洲精品国产区一区二| av视频免费观看在线观看| 在线观看免费日韩欧美大片| 欧美日韩国产mv在线观看视频| 国产av一区二区精品久久| 黄色片一级片一级黄色片| 成年人午夜在线观看视频| 亚洲精品粉嫩美女一区| 一区二区av电影网| 精品国产国语对白av| 国产精品久久久av美女十八| 久久精品国产亚洲av高清一级| 黄片播放在线免费| av在线老鸭窝| 一级,二级,三级黄色视频| 黄色毛片三级朝国网站| 国产一区有黄有色的免费视频| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 国产淫语在线视频| 男人操女人黄网站| 国产精品久久久久成人av| 欧美黑人欧美精品刺激| av网站在线播放免费| 国产无遮挡羞羞视频在线观看| 久久女婷五月综合色啪小说| 久久综合国产亚洲精品| 精品一品国产午夜福利视频| 国产色视频综合| 中文字幕精品免费在线观看视频| 亚洲,欧美精品.| 国产成人av教育| 一区二区三区激情视频| 欧美激情极品国产一区二区三区| 日韩制服骚丝袜av| 亚洲欧美精品综合一区二区三区| 成人免费观看视频高清| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 亚洲国产精品一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 99国产极品粉嫩在线观看| 最近最新免费中文字幕在线| 男男h啪啪无遮挡| 日韩 欧美 亚洲 中文字幕| 欧美日韩视频精品一区| 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区av在线| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 一区二区av电影网| 亚洲专区国产一区二区| 午夜福利免费观看在线| 大片电影免费在线观看免费| 超碰97精品在线观看| 中文字幕另类日韩欧美亚洲嫩草| 黄片播放在线免费| 日韩 欧美 亚洲 中文字幕| 18禁黄网站禁片午夜丰满| 久久久久国产精品人妻一区二区| 90打野战视频偷拍视频| 国产成人免费观看mmmm| 王馨瑶露胸无遮挡在线观看| 成年动漫av网址| 亚洲欧美成人综合另类久久久| 亚洲精品一卡2卡三卡4卡5卡 | 91麻豆精品激情在线观看国产 | 午夜两性在线视频| 午夜福利免费观看在线| 欧美少妇被猛烈插入视频| 99久久人妻综合| 国产黄色免费在线视频| 国产在视频线精品| 女人高潮潮喷娇喘18禁视频| 欧美在线一区亚洲| 一级毛片女人18水好多| 亚洲第一av免费看| 亚洲美女黄色视频免费看| 曰老女人黄片| 视频区欧美日本亚洲| 亚洲精品国产色婷婷电影| 男女午夜视频在线观看| 又大又爽又粗| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 国产男人的电影天堂91| 欧美日韩黄片免| 满18在线观看网站| 美女福利国产在线| kizo精华| 婷婷丁香在线五月| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o| 国产成人精品久久二区二区免费| 日韩欧美一区二区三区在线观看 | 精品视频人人做人人爽| 高清视频免费观看一区二区| av又黄又爽大尺度在线免费看| 好男人电影高清在线观看| 汤姆久久久久久久影院中文字幕| 中文字幕精品免费在线观看视频| av有码第一页| 两个人看的免费小视频| 男女无遮挡免费网站观看| 精品久久久久久电影网| 亚洲熟女毛片儿| 91av网站免费观看| 日本av手机在线免费观看| 日韩电影二区| 日本vs欧美在线观看视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 99久久99久久久精品蜜桃| 欧美黑人欧美精品刺激| 欧美另类一区| 一个人免费看片子| 久久这里只有精品19| 啦啦啦啦在线视频资源| av网站免费在线观看视频| 人妻人人澡人人爽人人| 性高湖久久久久久久久免费观看| 成人18禁高潮啪啪吃奶动态图| 日韩电影二区| 成人国语在线视频| 久久精品国产a三级三级三级| 欧美人与性动交α欧美精品济南到| 色老头精品视频在线观看| 叶爱在线成人免费视频播放| 久久久久久久精品精品| 在线永久观看黄色视频| 操美女的视频在线观看| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 精品国内亚洲2022精品成人 | 国产麻豆69| 一本综合久久免费| 午夜福利免费观看在线| 国产成人av激情在线播放| 国产主播在线观看一区二区| 精品欧美一区二区三区在线| av线在线观看网站| 日本一区二区免费在线视频| 悠悠久久av| 少妇裸体淫交视频免费看高清 | 这个男人来自地球电影免费观看| 在线 av 中文字幕| 在线精品无人区一区二区三| 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 国产麻豆69| 韩国精品一区二区三区| 成年人黄色毛片网站| 精品少妇一区二区三区视频日本电影| 亚洲黑人精品在线| 老司机影院成人| 91av网站免费观看| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| 国产精品国产av在线观看| 高清在线国产一区| 午夜福利一区二区在线看| 女人精品久久久久毛片| 18禁观看日本| 精品熟女少妇八av免费久了| 每晚都被弄得嗷嗷叫到高潮| 免费在线观看黄色视频的| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 一级黄色大片毛片| a级毛片在线看网站| 国产精品免费视频内射| 啪啪无遮挡十八禁网站| 下体分泌物呈黄色| 天天操日日干夜夜撸| 我要看黄色一级片免费的| 亚洲九九香蕉| 91精品国产国语对白视频| 亚洲精品粉嫩美女一区| av在线播放精品| 国产精品香港三级国产av潘金莲| 国产熟女午夜一区二区三区| 蜜桃国产av成人99| 欧美日韩视频精品一区| 国产一级毛片在线| 久9热在线精品视频| 悠悠久久av| 在线观看免费午夜福利视频| 丝袜在线中文字幕| 99精品久久久久人妻精品| 午夜视频精品福利| 久久精品久久久久久噜噜老黄| 女人被躁到高潮嗷嗷叫费观| 最黄视频免费看| 午夜精品国产一区二区电影| 免费观看a级毛片全部| 丝袜在线中文字幕| 久久九九热精品免费| 一级a爱视频在线免费观看| 亚洲七黄色美女视频| 亚洲午夜精品一区,二区,三区| 免费女性裸体啪啪无遮挡网站| 搡老熟女国产l中国老女人| 国内毛片毛片毛片毛片毛片| 高清欧美精品videossex| 亚洲欧美一区二区三区黑人| 国产成+人综合+亚洲专区| 国产精品av久久久久免费| 午夜福利影视在线免费观看| 啦啦啦 在线观看视频| 亚洲 欧美一区二区三区| www.av在线官网国产| 国产成人免费无遮挡视频| 19禁男女啪啪无遮挡网站| 啦啦啦视频在线资源免费观看| 每晚都被弄得嗷嗷叫到高潮| 黄片大片在线免费观看| 国产亚洲av高清不卡| 欧美精品一区二区免费开放| 每晚都被弄得嗷嗷叫到高潮| 国产极品粉嫩免费观看在线| av线在线观看网站| 十分钟在线观看高清视频www| 日韩精品免费视频一区二区三区| 一级毛片电影观看| 国产免费av片在线观看野外av| 国产成人啪精品午夜网站| 久热这里只有精品99| 精品一区在线观看国产| 一本一本久久a久久精品综合妖精| 国产高清videossex| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 久久av网站| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 丝袜美足系列| 午夜福利在线免费观看网站| 国产成+人综合+亚洲专区| 亚洲av日韩在线播放| 亚洲专区国产一区二区| 亚洲天堂av无毛| 伊人久久大香线蕉亚洲五| 久久久久久亚洲精品国产蜜桃av| 国产又爽黄色视频| 2018国产大陆天天弄谢| 国产免费av片在线观看野外av| 久久午夜综合久久蜜桃| 欧美黑人欧美精品刺激| 一级毛片精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲午夜精品一区,二区,三区| 亚洲精品日韩在线中文字幕| 亚洲成人免费电影在线观看| 日韩有码中文字幕| 亚洲少妇的诱惑av| 777米奇影视久久| 国产日韩欧美在线精品| 日本猛色少妇xxxxx猛交久久| 他把我摸到了高潮在线观看 | 真人做人爱边吃奶动态| 老司机影院毛片| 欧美精品啪啪一区二区三区 | 亚洲精品国产色婷婷电影| 十八禁网站免费在线| 王馨瑶露胸无遮挡在线观看| 满18在线观看网站| 日韩中文字幕欧美一区二区| av福利片在线| 丁香六月天网| 国产精品免费大片| 亚洲av美国av| 成人三级做爰电影| 亚洲男人天堂网一区| 热re99久久国产66热|