• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Tracking Control of Uncertain MIMO Nonlinear Systems with Application to UAVs

    2015-08-11 11:55:23YanlongZhouMouChenandChangshengJiang
    IEEE/CAA Journal of Automatica Sinica 2015年1期

    Yanlong Zhou,Mou Chen,and Changsheng Jiang

    Robust Tracking Control of Uncertain MIMO Nonlinear Systems with Application to UAVs

    Yanlong Zhou,Mou Chen,and Changsheng Jiang

    —In this paper,we consider the robust adaptive tracking control of uncertain multi-input and multi-output (MIMO)nonlinear systems with input saturation and unknown externaldisturbance.The nonlinear disturbance observer(NDO) is employed to tackle the system uncertainty as well as the externaldisturbance.To handle the input saturation,an auxiliary system is constructed as a saturation compensator.By using the backstepping technique and the dynamic surface method, a robust adaptive tracking control scheme is developed.The closed-loop system is proved to be uniformly ultimately bounded thorough Lyapunov stability analysis.Simulation results with application to an unmanned aerial vehicle(UAV)demonstrate the effectiveness of the proposed robust control scheme.

    Index Terms—Nonlinear system,unmanned aerial vehicle(UAV),input saturation,disturbance observer,backstepping control,dynamic surface control(DSC).

    I.INTRODUCTION

    N OWADAYS,unmanned aerialvehicles(UAVs)have been widely used in both military and civilian areas due to their low cost,high maneuverability,no casualty,etc[1?4].In a sense,UAVs show a valuable prospect for some applications where human interventions are restricted.To achieve a successfulmission,the robustadaptive tracking controldesign for UAVs needs to be excellent because of the absence of a human pilot.Thus,it has attracted an increasing interest around the world in recentyears.In[5],a high-levelcontroller for a fixed-wing UAV was developed based on the nonlinear model predictive control method through an error dynamics. In[6],the output-feedback control scheme was proposed for an underactuated quadrotor UAV using neural networks.In [7],an optimal controller was designed for helicopter UAVs, and the optimal trajectory tracking was accomplished by a single neural network.To increase the robustness,a sliding mode controller and an adaptive controller were presented in [8]and[9],respectively.However,as a kind of multi-input and multi-output(MIMO)nonlinear systems,the design of robust flight control is complex for UAVs with parameter uncertainty,strong nonlinearity,high coupling and unknown external disturbance.Fortunately,the nonlinear disturbance observer(NDO)is proven to be an effective method to handlesystem uncertainty and unknown external disturbance[10?14]. The robustcontroldesign based on the NDO has been successfully applied to air vehicles.In[10?13],under the condition thatthe derivative of the compounded disturbance was closely equal to zero,a disturbance observer technique was proposed. Actually,the compounded disturbance is changeable with time for UAVs.To relax this assumption of the above mentioned NDO,we need to further develop and apply it to the robust control design of UAVs.

    For some specialclasses of nonlinear systems,backstepping is an important control approach[15?19],which is a Lyapunovbased recursive design procedure.In[16?18],an adaptive tracking control framework for a class of uncertain nonlinear systems was studied based on radial basis function neural networks.The adaptive control scheme was developed for MIMO nonlinear systems considering time-varying delays and unknown backlash-like hysteresis in[19].However,there exists the problem of calculation explosion in the conventional backstepping technique.The dynamic surface control (DSC)[20?24]was proposed to solve this problem by introducing a first-order filter at each step.As a result,the derivative of the virtual control law was avoided to be calculated,which simplified the design process.In[20],the dynamic surface technique was described in detail by Swaroop et al.,and furtherdeveloped in[21?24].In this paper,the robustadaptive tracking control for UAVs is designed based on the DSC.

    On the other hand,the rudder deflections of UAVs are limited.If we ignore inputsaturation in the controldesign,the system control performance can be degraded and the system instability can be caused,even a serious accidentwillhappen. During the past decades,various schemes for the control design of nonlinear systems with input saturation have been studied extensively.In[25?27],a robustadaptive controlwas proposed based on the backstepping technique,using the specialproperty of a hyperbolic tangentfunction and a Nussbaum function to handle the input saturation.In[28?30],an auxiliary system was constructed as a compensator to eliminate the effect of the input saturation,which was successfully applied to the controldesign ofocean surface vessels.By regarding the input saturation as a kind of constraints for the optimization function,the predictive controlwas studied[31?32].In[33?34], an adaptive dynamic programming approach was proposed by employing a generalized non-quadratic function to deal with control constraints.However,there are few existing works about tracking control for UAVs with input saturation and unknown external disturbance.

    Motivated by the above discussion and analysis,a robust adaptive tracking control scheme is proposed for a class of uncertain MIMO nonlinear systems in the presence of system uncertainty,unknown external disturbance,and input saturation.To efficiently handle the compounded disturbance,the NDO is employed.The auxiliary system is designed to eliminate the effect of input saturation.The advantage of the dynamic surface technique is taken to deal with the explosion of complexity in backstepping control.The stability of the closed-loop system based on the developed robust adaptive tracking control scheme is rigorously analyzed through Lyapunov method.Finally,the developed robust adaptive tracking control scheme is used for the flight control design of UAVs. The organization of the paper is as follows.In Section II,the problem is described.Section III presents the design of the NDO.The robust adaptive tracking controlis investigated for uncertain MIMO nonlinearsystems by considering system uncertainty,unknown external disturbance,and input saturation in Section IV.In Section V,simulation results of a UAV are given to illustrate its effectiveness,followed by concluding remarks in Section VI.

    II.PROBLEM STATEMENT

    Consider a class of uncertain MIMO nonlinear systems in the presence of input saturation,given as follows:

    where uiMis the bound of ui(vi),i=1,2,···,m,sgn(·) stands for the sign function.

    In this paper,the controlobjective is designing the adaptive control law vvv to make the closed-loop system stable and to rend yyy following the given desired trajectory yyyrin the presence of system uncertainty,unknown externaldisturbanceof the disturbance observer,??jis the estimated value ofˉ?j, γj>0 and pi>0 are designed parameters,i=1,2,···,k. To develop the robust adaptive tracking control scheme for the uncertain MIMO nonlinear system(1),the following assumptions and lemmas are required.

    Assumption 1.For the uncertain MIMO nonlinear system (1),all states of the system are measurable.

    Assumption 2[23].For the uncertain MIMO nonlinear system(1),the desired trajectory yyyrand ˙yyyr(t),¨yyyr(t)are bounded,that is,there exists a constant B0> 0,such that Π0:={(yyyr,˙yyyr,¨yyyr):||yyyr||2+||˙yyyr||2+||¨yyyr||2≤ B0},‖·‖ represents the Frobenius norm for a matrix or the Euclidean norm for a vector.

    Assumption 3[14].For the uncertain MIMO nonlinear system(1),the derivative of the compounded disturbance is bounded,that is,‖˙DDDi‖≤ βdi,whereβdi> 0 is unknown, i=1,2,···,k.

    Assumption 4[35].For the uncertain MIMO nonlinear system(1),the inverse matrix of Gi∈ Rn×nexists,i= 1,2,···,k?1,and the generalized inverse matrix of Gk∈Rn×mexists.On the otherhand,there exists positive constant

    Lemma 1[36].For anyρ>0 andˉzzz=[ˉz1,ˉz2,···,ˉzn]T∈Rn,the following inequality always holds:

    where tanh(ˉzzz/ρ)=[tanh(ˉz1/ρ),tanh(ˉz2/ρ),···,tanh(ˉzn/ ρ)]T,ˉκ=nζ0,n is the dimension of vectorˉz,ζ0is a constant satisfyingζ0=e?(ζ0+1),that is,ζ0=0.2785.

    Lemma 2[37].For bounded initial conditions,if there exists a C1continuous and positive-definite Lyapunov function V(xxx)satisfyingπ1(‖xxx‖)≤ V(xxx)≤ π2(‖xxx‖),such that ˙V(xxx)≤ ?κV(xxx)+c,whereπ1,π2:Rn→ R are class K functions andκ,c are positive constants,then the solution xxx(t)is uniformly bounded.

    Remark 1.Fora practicalsystem,the derivative ofthe compounded disturbance should be bounded.Otherwise,the compounded disturbance willbe infinite and is quickly changeable with time.This compounded disturbance does not exist in UAV.Thus,Assumption 3 is reasonable.

    III.DESIGN OF NDO

    Since the compounded disturbance of the uncertain MIMO nonlinear system(1)is unknown,it cannot be directly used to design the robust adaptive tracking controller.To efficiently deal with this,the NDO is employed.For the convenience of robust adaptive tracking control development,the NDO is described as follows[14].

    In a general way,each subsystem of(1)can be written as the following uncertain MIMO nonlinear system given by

    where xxx∈Rnis the state vector,uuu∈Rmis the control input vector,FFF(xxx)∈Rnand G(xxx)∈Rn×mare known smooth functions of xxx,DDD(xxx,t)=ΔFFF(xxx)+ddde(t)is the unknown compounded disturbance,ΔFFF(xxx)stands for the system uncertainty,and ddde(t)represents the external disturbance.DDD(xxx,t) satisfies the assumption of the compounded disturbance,that is,‖˙DDD‖≤βd,whereβd>0 is unknown.

    To approximate the compounded disturbance of system(4), we design the following NDO:

    whereη∈Rnis the internalstate of the disturbance observer, PPP(xxx)=[P1(xxx),P2(xxx),···,Pn(xxx)]T∈Rnis the designed function vector which should make the constant matrix L=

    The error of the disturbance observer is defined as

    The following lemma aboutthe disturbance observer design is given,which includes the convergence of the disturbance approximation error.

    Lemma 3.Consider the uncertain MIMO nonlinear system (4)satisfying the assumption of the compounded disturbance. If the NDO is designed as(5)and(6),then the disturbance approximation error?DDD is bounded.

    Proof.Choose the Lyapunov function as

    Differentiating(7)and considering(4)~(6),we have

    Considering(9),the time derivative of V0is given by

    whereκ0=2λmin(L)?1>0,and M0=0.5β2d>0. Integration of(10)yields

    According to(11)and Lemma 2,we can obtain that the disturbance approximation error is bounded and satisfies the following inequality:

    This concludes the proof.

    IV.ROBUST ADAPTIVE TRACKING CONTROL DESIGN BASED ON NDO

    In this section,the robustadaptive tracking scheme will be proposed for the uncertain MIMO nonlinear system(1)by combining the dynamic surface approach with backstepping technique based on the NDO,and an auxiliary system is constructed to solve the problem of input saturation.The detailed design procedure is described as follows.

    Step 1.Employ the NDO to approximate the compounded disturbance DDD1which can be described as

    whereη1∈ Rnis the internal state of the disturbance observer,PPP1∈ Rnis the designed function vector,and L1=The approximation error of the first disturbance observer is defined as

    We know that?DDD1is bounded according to Lemma 3,and assume that‖?DDD1‖≤ˉ?1.

    Define

    The virtual control law is designed as

    where C1= CT1> 0 andρ1> 0 are designed parameters,??1is the estimated value ofˉ?1,tanh(zzz1/ρ1)= [tanh(z1,1/ρ1),tanh(z1,2/ρ1),···,tanh(z1,n/ρ1)]T, and zzz1=[z1,1,z1,2,···,z1,n]T.

    To solve the explosion ofcomplexity in the traditionalbackstepping control,the dynamic surface method is employed. Namely,we make the virtual control lawˉα1pass through a first-order filter,i.e.,

    whereΓ1=diag{τ1,1,τ1,2,···,τ1,n},τ1,j>0 is the time constant of the first-order filter,j=1,2,···,n.

    Define

    Considering(1),(15),(17),(19)and(20),the time derivative of zzz1can be expressed as

    Differentiating(20),we have

    where BBB1(·)is a continuous function with respectto variables (zzz1,zzz2,ε1,η1,yyyr,˙yyyr,¨yyyr).Since setsΠ0∈ R3mandΠ1∈R2n+1are compact,Π0×Π1is also compact.The maximum valueˉBBB1of function BBB1(·)exists onΠ0×Π1because of the continuous function property[23].Therefore,we have

    whereγ1> 0 is a designed parameter,??1= ˉ?1???1,and ˙??1= ?˙??1.

    Differentiating(24)and considering(21)and(23),we obtain

    The parameter adaptive law is chosen as

    where k1>0 is a designed parameter.

    Substituting(26)into(25)yields

    By Lemma 1,the following inequality holds:

    Substituting(28)into(27),we have

    S tep iii(222≤iii≤kkk ?111).Employ the NDO to approximate the compounded disturbance DDDiwhich can be described as

    whereηi∈ Rnis the internal state of the disturbance observer,PPPi∈ Rnis the designed function vector,andThe approximation error of the i-th disturbance observer is defined as

    We know that?DDDiis bounded according to Lemma 3,and assume that‖?DDDi‖≤ˉ?i.

    Define

    The virtual control law is designed as

    where Ci= CTi> 0 andρi> 0 are designed parameters,??iis the estimated value ofˉ?i,tanh(zzzi/ρi)= [tanh(zi,1/ρi),tanh(zi,2/ρi),···,tanh(zi,n/ρi)]T,and zzzi= [zi,1,zi,2,···,zi,n]T.

    We make the virtualcontrollawˉαipass through a first-order filter,i.e.,

    whereΓi=diag{τi,1,τi,2,···,τi,n},τi,j> 0 is the time constant of the first-order filter,j=1,2,···,n.

    Define

    Considering(1),(32),(34),(36)and(37),the time derivative of zzzican be expressed as

    Differentiating(37),we have

    Consider the Lyapunov function as

    whereγi>0 is a designed parameter,=

    Differentiating(40)and considering(38)and(39),we obtain

    The parameter adaptive law is chosen as

    where ki>0 is a designed parameter.

    Substituting(42)into(41)and invoking Lemma 1,we obtain

    Step kkk.Employ the NDO to approximate the compounded disturbance DDDkwhich can be described as

    whereηk∈ Rnis the internal state of the disturbance observer,PPPk∈ Rnis the designed function vector,and.The approximation error of the k-th disturbance observer is defined as

    We know that?DDDkis bounded according to Lemma 3,and assume that‖?DDDk‖≤ˉ?k.

    Define

    Considering(1),the time derivative of zzzkcan be expressed as

    Consider the Lyapunov function as

    whereγk>0 is a designed parameter,??k=?k???k,??kis the estimated value ofˉ?k,and˙??k=?˙??k.

    Differentiating(49)and considering(48),we obtain

    The parameter adaptive law is chosen as

    whereρk>0 and kk>0 are the designed parameters,tanh (zzzk/ρk) = [tanh(zk,1/ρk),tanh(zk,2/ρk),···,tanh(zk,n/ ρk)]T,and zzzk=[zk,1,zk,2,···,zk,n]T.

    Substituting(51)into(50),we obtain

    To eliminate the effect of the input saturation,we have the following auxiliary design system[28?30]:

    where C0=CT0>0 andε0>0 are designed parameters,and ξ=uuu(vvv)?vvv is the input-output difference of the actuator.

    Considering the input saturation,we design the following control law:

    where Ck=CTk>0 is a designed matrix.

    According to above analysis,the following theorem is proposed.

    Theorem 1.Considerthe uncertain MIMO nonlinear system (1)satisfying Assumptions 1~4.The nonlineardisturbance is given as(13),(14),(30),(31),(44)and(45),and parameter adaptive laws are chosen as(26),(42)and(51),and the auxiliary system is designed as(53).Under the control laws (17),(34)and(54),all signals of the closed-loop system are uniformly ultimately bounded.

    Proof.If‖χ‖≥ε0,choose the Lyapunov function as

    Considering(29),(43),(52),(53)and invoking Lemma 1, we obtain the time derivative of V as follows:

    According to(57)and Lemma 2,we can obtain that all signals of the closed-loop system are uniformly ultimately bounded.

    On the other hand,there does not exist input saturation in the control system if‖χ‖<ε0,that is,uuu(vvv)=vvv.Under this circumstance,Theorem 1 can be easily proved with similar processes.

    This concludes the proof. □

    Remark 2.For the auxiliary system(53),we calculate the firstequation when the saturation phenomenon appears in the simulation.If‖χ‖< ε0andξ/=0,the initial value ofχis reset to eliminate the effect of input saturation.

    V.SIMULATION STUDY FOR UAV

    In this section,we apply the proposed robustcontrolscheme to the attitude tracking control of a UAV to illustrate the effectiveness.The considered attitude dynamic model of the UAV can be written as the following two MIMO nonlinear systems in accordance with singularly perturbed theory and time-scale separation principle[38]:

    where?=[α,β,μ]Tis the vector of attitude angles,including angle of attack,sideslip angle and roll angle,ω=[p,q,r]Tis the vector of attitude angular rates,including angular rate,pitch angular rate and yaw angular rate.In the slowloop equation,fffsis the state functional vector,gsis the system matrix,DDDs=Δfffs+dddsis the unknown compounded disturbance,Δfffsrepresents the system uncertainty,dddsstands for the external disturbance.In the fast-loop equation,ffffis the state functional vector,gf=gf1gfδ,where gf1is the system matrix,gfδis the allocation matrix of rudders, DDDf=Δffff+dddfis the unknown compounded disturbance, Δffffrepresents the system uncertainty,dddfstands for the external disturbance,vvv=[v1,v2,v3,v4,v5]Tis the control inputvector,δ(vvv)=[δa,δe,δr,δy,δz]Tdenotes the plantinput vectorsubjectto saturation nonlinearity,involving ailerons,elevator,rudder,lateral deflection and longitudinal deflection of the thrust vectoring control surface.The detailed expressions of corresponding terms in(58)and(59)can be found in[38].

    The initial conditions for the UAV are chosen asα0=2°, β0=1°,μ0=0°,p0=q0=r0=0 rad/s,δaM=δeM= δrM=30°,andδyM=δzM=15°.The desired attitudes are chosen as

    Suppose that there are+30%and?30%uncertainties on aerodynamic coefficients and aerodynamic moment coefficients,respectively.On the other hand,the unknown timevarying disturbance moments in the fast-loop system of the UAV are given by

    The designed parameters of the proposed robust adaptive tracking control scheme are chosen as PPP1=[2α+0.5,2β+ 0.5,2μ+0.5]T,C1=diag{4,4,4},ρ1=0.4,γ1=0.5, k1=0.2,Γ1=diag{0.02,0.02,0.02},PPP2=[2p+0.5,2q+ 0.5,2r+0.5]T,C2=diag{2.5,2.5,2.5},ρ2=2.5,γ2=1.0, k2=0.5,C0=diag{5,5,5},andε0=0.02.

    The simulation results are shown in Figs.1~8,where dot lines(with subscript“c”)represent the desired attitudes,and dash dot lines(with subscript“1”)stand for the responses without NDO or saturation compensation,and dash lines(with subscript“2”)represent the responses with NDO,and solid lines(with subscript“3”)stand for the responses with NDO and saturation compensation.

    Under the proposed robustadaptive tracking controlscheme based on the backstepping approach,DSC and NDO,we can see that the system outputs follow the desired values in a satisfactory way in the presence of system uncertainty,unknown externaldisturbance,and inputsaturation from Figs.1~3.The compounded disturbance can be well tackled with NDO,and the oscillation phenomena is reduced.On the other hand,the controlinputs are presented in Figs.4~8.Itshould be noticed that the designed auxiliary system can make actuators drop outthe saturation nonlinearity gradually,eliminating the effect of input saturation.Based on above simulation results and stated analysis,the proposed robust adaptive tracking control strategy is valid for uncertain MIMO nonlinear systems with system uncertainty,unknown external disturbance,and input saturation.

    Fig.1. Angle of attack.

    Fig.2. Sideslip angle.

    Fig.3. Roll angle.

    Fig.4. Ailerons.

    Fig.5. Elevator.

    Fig.6.Rudder.

    Fig.7. Lateral defection of the thrust vectoring control surface.

    Fig.8. Longitudinal deflection of the thrust vectoring control surface.

    VI.CONCLUSION

    An effective robustadaptive tracking controlscheme is proposed for uncertain MIMO nonlinear systems in the presence ofsystem uncertainty,unknown externaldisturbance,and input saturation based on the backstepping technique and the NDO. To eliminate the

    effectof inputsaturation,an auxiliary system is constructed. The dynamic surface method is employed to deal with the explosion of complexity in backstepping control.It is proved that all signals of the closed-loop system based on the proposed robust adaptive tracking control scheme are uniformly ultimately bounded through Lyapunov stability analysis.Finally,the developed control strategy is applied to the attitude tracking control of a UAV,and simulation results show that the proposed robust control scheme is effective.

    REFERENCES

    [1]Chen M,Jiang B,Wu Q X,Jiang C S.Robust control of near-space vehicles with input backslash-like hysteresis.Proceedings of the Institutior of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2013,227(8):635?644

    [2]Ji Chen-Xin.Key technology and application of military unmanned aerial vehicles.Modern Defence Technology,2009,37(6):26?30(in Chinese)

    [3]Wang Qin,Ye Yun-Qing.Application of unmanned aerial vehicle in navy.CommandInformationSystemandTechnology,2012,3(4):36?40 (in Chinese)

    [4]Wang F,Cui J Q,Chen B M,Lee T H.A comprehensive UAV indoor navigation system based on vision optical flow and laser fastslam.Acta Automatic Sinica,2013,39(11):1889?1990

    [5]Kang Y,Hedrick J K.Linear tracking for a fixed-wing UAV using nonlinear model predictive control.IEEE Transactions on Control Systems Technology,2009,17(5):1202?1210

    [6]Dierks T,Jagannathan S.Output feedback control of a quadrotor UAV using neural networks.IEEE Transactions on Neural Networks,2010, 21(1):50?66

    [7]Nodland D,Zargarzadeh H,Jagannathan S.Neural network-based optimal adaptive output feedback control of a helicopter UAV.IEEE Transactions on Neural Networks and Learning Systems,2013,24(7): 1061?1073

    [8]Chen M,Mei R,Jiang B.Sliding mode control for a class of uncertain MIMO nonlinear systems with application to near-space vehicles.Mathematical Problems in Engineering,2013,DOI:10.1155/2013/180589

    [9]Dydek Z T,Annaswamy A M,Lavretsky E.Adaptive control of quadrotor UAVs:a design trade study with flight evaluations.IEEE Transactionson Control Systems Technology,2013,21(4):1400?1406

    [10]Chen W H,Ballance D J,Gawthrop P J,O'Reilly J.A nonlinear disturbance observer for robotic manipulators.IEEE Transactions on Industrial Electronics,2000,47(4):932?938

    [11]Chen WH.Nonlinear disturbance observer-enhanced dynamic inversion control of missiles.Journal of Guidance,Control,and Dynamics,2003, 26(1):161?166

    [12]Chen M,Chen W H.Sliding mode control for a class of uncertain nonlinear systems based on disturbance observer.International Journal of Adaptive Control and Signal Processing,2010,24(1):51?64

    [13]Qian C S,Sun C Y,Huang Y Q,Mu C X,Zhang J M,Zhang R M. Design of flight control system for a hypersonic gliding vehicle based on nonlinear disturbance observer.In:Proceedings of the 10th IEEE International Conference on Controland Automation.Hangzhou,China: IEEE,2013.1573?1577

    [14]Pu Ming,Wu Qing-Xian,Jiang Chang-Sheng,Cheng Lu.Application of adaptive second-order dynamic terminalsliding mode controlto near space vehicle.Journal of AerospacePower,2010,25(5):1169?1176(in Chinese)

    [15]Guo Tao,Wang Ding-Lei,Wang Ai-Min.Adaptive backstepping control for constrained systems using nonlinear mapping.Acta Automatic Sinica,2013,39(9):1558?1563(in Chinese)

    [16]CuiR X,Ren B B,Ge S S.Synchronised tracking controlofmulti-agent system with high-order dynamics.IETControl TheoryandApplications, 2012,6(5):603?614

    [17]Wang H Q,Chen B,Lin C.Adaptive neuraltracking controlfora class of perturbed pure-feedback nonlinear systems.Nonlinear Dynamics,2013, 72(1?2):207?220

    [18]Li T S,Li R H,Wang D.Adaptive neural control of nonlinear MIMO systems with unknown time delays.Neurocomputing,2012,78(1): 83?88

    [19]Li Y M,Tong S C,Li T S.Adaptive fuzzy output feedback control of MIMO nonlinear uncertain systems with time-varying delays and unknown backlash-like hysteresis.Neurocomputing,2012,93:56?66

    [20]Swaroop D,Hedrick J K,Yip P P,Gerdes J C.Dynamic surface controlfora class ofnonlinear systems.IEEETransactionsonAutomatic Control,2000,45(10):1893?1899

    [21]Li Tie-Shan,Zou Zao-Jian,Luo Wei-Lin.DSC-backstepping based robust adaptive NN control for nonlinear systems.Acta Automatica Sinica,2008,34(11):1424?1430(in Chinese)

    [22]Xu Y Y,Tong S C,Li Y M.Adaptive fuzzy fault-tolerant decentralized control for uncertain nonlinear large-scale systems based on dynamic surface controltechnique.Journalofthe FranklinInstitute,2014,351(1): 456?472

    [23]Li T S,Zhang H Y,Yang X Y.DSC approach to robustadaptive fuzzy tracking control for strict-feedback nonlinear systems.In:Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery.Jinan,China:IEEE,2008.70?74

    [24]Jia Tao,Liu Jun,Qian Fu-Cai.Adaptive fuzzy dynamic surface control for a class of nonlinear systems with unknown time-delays.Acta Automatica Sinica,2011,37(1):83?91(in Chinese)

    [25]Wen C Y,Zhou J,Liu Z T,Su H Y.Robust adaptive of uncertain nonlinear systems in the presence of input saturation and external disturbance.IEEE Transactions on Automatic Control,2011,56(7): 1672?1678

    [26]Li Y M,Tong S C,Li T S.Directadaptive fuzzy backstepping controlof uncertain nonlinear systems in the presence of input saturation.Neural Computingand Applications,2013,23(5):1207?1216

    [27]Zhou Yan-Long,Chen Mou.Robust control of nonlinear systems with input constraint based on disturbance observer.Journal of Nanjing Universityof Scienceand Technology,2014,38(1):40?47(in Chinese)

    [28]Chen M,Ge S S,Ren B B.Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints.Automatica,2011, 47(3):452?465

    [29]Chen M,Ge S S,How B V E.Robustadaptive neuralnetwork controlfor a class of uncertain MIMO nonlinear systems with inputnonlinearities. IEEE Transactions on Neural Networks,2010,21(5):796?812

    [30]Chen M,Ge S S,Choo Y S.Neural network tracking control of ocean surface vessels with inputsaturation.In:Proceedings of the 2009 IEEE International Conference on Automation and Logistics.Shenyang, China:IEEE,2009.85?89

    [31]Kurtz M J,Henson M A.Input-outputlinearizing controlof constrained nonlinear processes.Journal of Process Control,1997,7(1):3?17

    [32]Kong Xiao-Bin,Liu Xiang-Jie.Continuous-time nonlinear model predictive control with input/output linearization.Control Theory and Applications,2012,29(2):217?224(in Chinese)

    [33]Liu D R,Wang D,Yang X.An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs.InformationSciences,2013,220:331?342

    [34]Wang D,Liu D R,Zhao D B,Huang Y Z,Zhang D H.A neuralnetwork-based iterative GDHP approach forsolving a class of nonlinear optimal control problems with control constraints.Neural Computing and Applications,2013,22(2):219?227

    [35]Chen M,Jiang B.Robust attitude control of near space vehicles with time-varying disturbances.International Journal of Control,Automation, and Systems,2013,11(1):182?187

    [36]Polycarpou M M.Stable adaptive neural control scheme for nonlinear systems.IEEE Transactions on Automatic Control,1996,41(3): 447?451

    [37]Tee K P,Ge S S.Control of fully actuated ocean surface vessels using a class of feedforward approximators.IEEE Transactions on Control Systems Technology,2006,14(4):750?756

    [38]Pang J,Mei R,Chen M.Modeling and control for near space vehicles with oblique wing.In:Proceedings of the 10th World Congress on Intelligent Controland Automation.Beijing,China:IEEE,2012.1773?1778

    Yanlong Zhou Master studentin the College of Automation Engineering,Nanjing University of Aeronautics and Astronautics.His research interests include flight control and nonlinear system control.

    Mou Chen Professor in the College of Automation Engineering,Nanjing University of Aeronautics and Astronautics.His research interests include nonlinear system control,intelligent control,and flight control.Corresponding author of this paper.

    Changsheng Jiang Professor in the College of Automation Engineering,Nanjing University of Aeronautics and Astronautics.His research interests include nonlinear system control,flight control.

    t

    September 26,2013;accepted March 24,2014.This work was supported by National Natural Science Foundation of China (61174102),Jiangsu Natural Science Foundation of China(SBK20130033), Aeronautical Science Foundation of China 20145152029)and Specialized Research Fund for the Doctoral Program of Higher Education (20133218110013).Recommended by Associate Editor Jie Chen

    :Yanlong Zhou,Mou Chen,Changsheng Jiang.Robust tracking control of uncertain MIMO nonlinear systems with application to UAVs. IEEE/CAA Journal of AutomaticaSinica,2015,2(1):25?32

    Yanlong Zhou,Mou Chen,and Changsheng Jiang are with the College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China(e-mail:zhouyanlong100@163.com; chenmou@nuaa.edu.cn;jiangcs@nuaa.edu.cn).

    丝袜美足系列| 欧美丝袜亚洲另类| 免费人妻精品一区二区三区视频| 亚洲国产色片| 草草在线视频免费看| 97精品久久久久久久久久精品| 久久久久久久久久人人人人人人| 亚洲,一卡二卡三卡| 国产黄频视频在线观看| 大香蕉久久网| 成年av动漫网址| 能在线免费看毛片的网站| 中国国产av一级| 亚洲av成人精品一二三区| 纵有疾风起免费观看全集完整版| 中文字幕人妻熟人妻熟丝袜美| 黄色毛片三级朝国网站| 各种免费的搞黄视频| 天堂中文最新版在线下载| 欧美人与善性xxx| 在线观看免费日韩欧美大片 | 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 欧美+日韩+精品| 一级毛片aaaaaa免费看小| 插阴视频在线观看视频| 青春草亚洲视频在线观看| 3wmmmm亚洲av在线观看| 久久精品国产亚洲av涩爱| 日日啪夜夜爽| 欧美精品亚洲一区二区| 久久人人爽av亚洲精品天堂| 大片电影免费在线观看免费| 亚洲av国产av综合av卡| 亚洲成色77777| 日日摸夜夜添夜夜添av毛片| 久久久久久久大尺度免费视频| 亚洲综合精品二区| 精品一区在线观看国产| 国产成人91sexporn| av在线观看视频网站免费| 岛国毛片在线播放| 国产日韩欧美在线精品| 下体分泌物呈黄色| 丰满少妇做爰视频| 高清不卡的av网站| 日本午夜av视频| 免费观看av网站的网址| 国产又色又爽无遮挡免| 精品一区二区三卡| 午夜免费观看性视频| 成人综合一区亚洲| 免费黄网站久久成人精品| 我要看黄色一级片免费的| 亚洲精品国产色婷婷电影| 精品少妇久久久久久888优播| 99久久中文字幕三级久久日本| 国产永久视频网站| 国产在线免费精品| 少妇被粗大的猛进出69影院 | 日本猛色少妇xxxxx猛交久久| 亚洲精品自拍成人| 欧美+日韩+精品| 高清在线视频一区二区三区| 人妻少妇偷人精品九色| 国产精品人妻久久久影院| 日韩中字成人| 欧美精品人与动牲交sv欧美| 看十八女毛片水多多多| 欧美激情国产日韩精品一区| 夜夜爽夜夜爽视频| 欧美97在线视频| 亚洲精品乱码久久久v下载方式| 欧美3d第一页| 丝袜美足系列| 国产成人免费无遮挡视频| 一级片'在线观看视频| 国产一区二区在线观看av| 亚洲av男天堂| 观看av在线不卡| 亚洲精品日韩av片在线观看| 女人久久www免费人成看片| 波野结衣二区三区在线| www.av在线官网国产| 老司机影院毛片| 亚洲在久久综合| 午夜影院在线不卡| 一个人免费看片子| 中文字幕人妻熟人妻熟丝袜美| 如何舔出高潮| a级毛色黄片| 久久久久国产精品人妻一区二区| 简卡轻食公司| 国产精品国产三级国产专区5o| 国产成人aa在线观看| 久久久久精品性色| 日韩免费高清中文字幕av| 国产免费一区二区三区四区乱码| 精品一区在线观看国产| 丰满迷人的少妇在线观看| 免费av中文字幕在线| 久久ye,这里只有精品| 大码成人一级视频| 国内精品宾馆在线| 免费久久久久久久精品成人欧美视频 | 亚洲一级一片aⅴ在线观看| 亚洲熟女精品中文字幕| 九九久久精品国产亚洲av麻豆| 久久免费观看电影| 成年美女黄网站色视频大全免费 | 大片免费播放器 马上看| 亚洲欧美日韩卡通动漫| 亚洲情色 制服丝袜| 天堂8中文在线网| 在线观看美女被高潮喷水网站| 大片电影免费在线观看免费| 日韩不卡一区二区三区视频在线| 18在线观看网站| 五月伊人婷婷丁香| 亚洲熟女精品中文字幕| 边亲边吃奶的免费视频| 女性生殖器流出的白浆| 免费观看在线日韩| 看十八女毛片水多多多| 精品酒店卫生间| 亚洲av二区三区四区| 亚洲av二区三区四区| 日本-黄色视频高清免费观看| 永久免费av网站大全| 亚洲精品aⅴ在线观看| 制服丝袜香蕉在线| 在线观看免费日韩欧美大片 | 亚洲欧美一区二区三区国产| 在线 av 中文字幕| 下体分泌物呈黄色| 蜜桃国产av成人99| 99热全是精品| 丝袜在线中文字幕| 新久久久久国产一级毛片| 久久久久久久久久久丰满| 日韩电影二区| 精品人妻在线不人妻| 中文字幕久久专区| 色5月婷婷丁香| 免费黄频网站在线观看国产| 日韩视频在线欧美| 高清视频免费观看一区二区| 最近中文字幕2019免费版| 边亲边吃奶的免费视频| 久久免费观看电影| 久久久久精品久久久久真实原创| 国产精品偷伦视频观看了| 国产精品秋霞免费鲁丝片| 精品一区二区免费观看| 97超视频在线观看视频| 99久久中文字幕三级久久日本| 国产国拍精品亚洲av在线观看| 久久人人爽人人爽人人片va| xxx大片免费视频| 黑人猛操日本美女一级片| 成人18禁高潮啪啪吃奶动态图 | 美女国产高潮福利片在线看| 国产无遮挡羞羞视频在线观看| 97在线人人人人妻| 午夜福利视频在线观看免费| 精品人妻在线不人妻| 久久精品人人爽人人爽视色| 在线天堂最新版资源| 欧美日韩一区二区视频在线观看视频在线| 欧美老熟妇乱子伦牲交| 国产日韩欧美在线精品| 国产精品99久久久久久久久| 久久av网站| 夫妻性生交免费视频一级片| 美女大奶头黄色视频| 蜜臀久久99精品久久宅男| 国产极品粉嫩免费观看在线 | 天堂8中文在线网| 啦啦啦视频在线资源免费观看| 久久午夜福利片| 婷婷色综合www| 国产在视频线精品| 亚洲四区av| 男人爽女人下面视频在线观看| 狂野欧美激情性bbbbbb| 狠狠精品人妻久久久久久综合| 三上悠亚av全集在线观看| 伊人久久国产一区二区| 成人综合一区亚洲| 午夜免费男女啪啪视频观看| 考比视频在线观看| 国产不卡av网站在线观看| 亚洲国产日韩一区二区| 最近中文字幕2019免费版| 18在线观看网站| 最近最新中文字幕免费大全7| 日本猛色少妇xxxxx猛交久久| 成人国产麻豆网| 亚洲美女视频黄频| 成人国语在线视频| 9色porny在线观看| 一二三四中文在线观看免费高清| 亚洲国产精品一区三区| 亚洲欧美一区二区三区国产| 狠狠精品人妻久久久久久综合| 日韩欧美一区视频在线观看| 久久毛片免费看一区二区三区| 十八禁网站网址无遮挡| 午夜福利网站1000一区二区三区| 久久久久久久久久人人人人人人| 人妻夜夜爽99麻豆av| 亚洲av欧美aⅴ国产| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区免费观看| 亚洲欧美成人综合另类久久久| av福利片在线| 国产成人免费观看mmmm| xxx大片免费视频| 一边亲一边摸免费视频| 久久99热这里只频精品6学生| av国产精品久久久久影院| 国产精品熟女久久久久浪| 精品一区二区三区视频在线| 建设人人有责人人尽责人人享有的| 建设人人有责人人尽责人人享有的| 亚洲国产成人一精品久久久| 18+在线观看网站| 国产在线免费精品| 欧美日韩成人在线一区二区| 美女国产视频在线观看| 国产亚洲最大av| 精品卡一卡二卡四卡免费| 999精品在线视频| 精品亚洲成国产av| 欧美+日韩+精品| 夜夜看夜夜爽夜夜摸| 91国产中文字幕| 十分钟在线观看高清视频www| 国产国拍精品亚洲av在线观看| 亚洲精品国产色婷婷电影| 91在线精品国自产拍蜜月| videossex国产| 麻豆精品久久久久久蜜桃| 香蕉精品网在线| 中文字幕久久专区| 国产高清不卡午夜福利| 国产有黄有色有爽视频| 中文欧美无线码| 国产一区二区在线观看日韩| 高清av免费在线| 美女内射精品一级片tv| 亚洲五月色婷婷综合| 中文字幕人妻熟人妻熟丝袜美| 国产av一区二区精品久久| 波野结衣二区三区在线| 视频在线观看一区二区三区| 少妇人妻久久综合中文| 中文字幕最新亚洲高清| 少妇人妻精品综合一区二区| 在线观看一区二区三区激情| 国产成人午夜福利电影在线观看| 亚洲国产精品999| 国产免费一级a男人的天堂| 制服诱惑二区| 一级毛片电影观看| a级毛片黄视频| 18禁观看日本| 欧美老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 一区在线观看完整版| 亚洲欧洲精品一区二区精品久久久 | 日本黄色日本黄色录像| 22中文网久久字幕| 免费不卡的大黄色大毛片视频在线观看| 久久综合国产亚洲精品| 日韩亚洲欧美综合| 久久久久国产精品人妻一区二区| 国产色爽女视频免费观看| 午夜福利,免费看| 亚洲美女黄色视频免费看| 久久久久人妻精品一区果冻| 曰老女人黄片| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| freevideosex欧美| 亚洲精品色激情综合| 国产亚洲精品久久久com| 欧美精品高潮呻吟av久久| 国产精品久久久久久久电影| 汤姆久久久久久久影院中文字幕| 日韩中字成人| 亚洲国产精品一区三区| 久久99热6这里只有精品| 日韩精品免费视频一区二区三区 | 老熟女久久久| 免费高清在线观看日韩| 成人手机av| 日本爱情动作片www.在线观看| 曰老女人黄片| 久久久精品免费免费高清| 久久免费观看电影| 自拍欧美九色日韩亚洲蝌蚪91| 校园人妻丝袜中文字幕| 国产综合精华液| 婷婷色av中文字幕| 国产成人freesex在线| 欧美精品一区二区大全| 成人国产麻豆网| 校园人妻丝袜中文字幕| 蜜桃国产av成人99| videosex国产| 26uuu在线亚洲综合色| 男女啪啪激烈高潮av片| 色吧在线观看| 校园人妻丝袜中文字幕| 午夜91福利影院| 亚洲国产精品国产精品| 日日摸夜夜添夜夜添av毛片| 亚洲一区二区三区欧美精品| 日本午夜av视频| 亚洲欧美日韩卡通动漫| 中文乱码字字幕精品一区二区三区| 精品99又大又爽又粗少妇毛片| 国产精品不卡视频一区二区| 纵有疾风起免费观看全集完整版| 日韩伦理黄色片| 久久青草综合色| 亚洲美女搞黄在线观看| 欧美激情 高清一区二区三区| 黄色一级大片看看| 免费观看a级毛片全部| 一本—道久久a久久精品蜜桃钙片| 国产成人免费观看mmmm| 嫩草影院入口| 成人无遮挡网站| 久久久久精品久久久久真实原创| 尾随美女入室| 黑人欧美特级aaaaaa片| 久久99精品国语久久久| 伊人久久精品亚洲午夜| av有码第一页| 中文天堂在线官网| 美女国产视频在线观看| 亚洲欧美清纯卡通| av黄色大香蕉| 中文字幕人妻丝袜制服| 欧美最新免费一区二区三区| av有码第一页| 日韩大片免费观看网站| 中文字幕精品免费在线观看视频 | 飞空精品影院首页| 99re6热这里在线精品视频| 亚洲精品aⅴ在线观看| 国产精品三级大全| 中文乱码字字幕精品一区二区三区| 久热这里只有精品99| 久久免费观看电影| 国产精品人妻久久久影院| 国精品久久久久久国模美| 免费看av在线观看网站| 日韩一区二区视频免费看| 满18在线观看网站| 国产一区亚洲一区在线观看| 男男h啪啪无遮挡| 一级爰片在线观看| 久久99一区二区三区| 日韩强制内射视频| 在线 av 中文字幕| 蜜桃在线观看..| 国产精品偷伦视频观看了| 夫妻午夜视频| 日本黄色片子视频| 久久久欧美国产精品| 日产精品乱码卡一卡2卡三| 久久久久精品久久久久真实原创| 久久久久人妻精品一区果冻| 成年av动漫网址| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 久久久久精品性色| 看免费成人av毛片| 亚洲综合色惰| 亚洲国产最新在线播放| 少妇被粗大的猛进出69影院 | 国产成人午夜福利电影在线观看| 2022亚洲国产成人精品| 一二三四中文在线观看免费高清| 黑人巨大精品欧美一区二区蜜桃 | 欧美精品一区二区大全| 久久青草综合色| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久久久久婷婷小说| 亚洲精品久久午夜乱码| av黄色大香蕉| 午夜福利网站1000一区二区三区| 青春草亚洲视频在线观看| 亚洲不卡免费看| 我的老师免费观看完整版| 久久青草综合色| 成人综合一区亚洲| 男女边摸边吃奶| 毛片一级片免费看久久久久| 少妇的逼水好多| 国产精品无大码| 91精品国产国语对白视频| 国产乱人偷精品视频| 亚洲精品亚洲一区二区| 亚洲,一卡二卡三卡| 人妻 亚洲 视频| 五月伊人婷婷丁香| 一本一本综合久久| 岛国毛片在线播放| √禁漫天堂资源中文www| 国产精品蜜桃在线观看| 久久国产精品大桥未久av| 男女国产视频网站| 国产深夜福利视频在线观看| 天天躁夜夜躁狠狠久久av| 亚洲精品av麻豆狂野| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 成人无遮挡网站| 亚洲三级黄色毛片| 中文欧美无线码| 久久国内精品自在自线图片| 免费人成在线观看视频色| 国产一区二区三区av在线| 精品一区二区三区视频在线| 亚洲性久久影院| 高清午夜精品一区二区三区| 男女国产视频网站| 久久精品国产鲁丝片午夜精品| 天天躁夜夜躁狠狠久久av| 亚洲综合精品二区| 国产伦理片在线播放av一区| 最近最新中文字幕免费大全7| 最近2019中文字幕mv第一页| 国产有黄有色有爽视频| 久久久久人妻精品一区果冻| 亚洲精品一区蜜桃| 天天躁夜夜躁狠狠久久av| 国产不卡av网站在线观看| 一区二区av电影网| 国产亚洲一区二区精品| 国产成人精品无人区| 精品少妇久久久久久888优播| 男女无遮挡免费网站观看| 一本—道久久a久久精品蜜桃钙片| 国产精品一二三区在线看| 欧美日韩综合久久久久久| 国产亚洲最大av| 亚洲第一av免费看| 国产黄频视频在线观看| 一区二区三区乱码不卡18| 欧美激情国产日韩精品一区| 男女免费视频国产| 热re99久久国产66热| 99国产精品免费福利视频| a级毛片免费高清观看在线播放| 欧美成人精品欧美一级黄| 伊人亚洲综合成人网| 久久97久久精品| 亚洲欧美日韩另类电影网站| 中国美白少妇内射xxxbb| 久久久久久伊人网av| 国产精品99久久99久久久不卡 | 欧美最新免费一区二区三区| 欧美另类一区| 国产高清三级在线| 国产精品国产三级专区第一集| 美女cb高潮喷水在线观看| 日韩,欧美,国产一区二区三区| 欧美精品国产亚洲| 国产爽快片一区二区三区| 母亲3免费完整高清在线观看 | 日本91视频免费播放| 一区在线观看完整版| 少妇人妻精品综合一区二区| 大话2 男鬼变身卡| 久久 成人 亚洲| 日本黄色日本黄色录像| 国产精品免费大片| 涩涩av久久男人的天堂| 草草在线视频免费看| 国产精品久久久久久精品古装| 两个人的视频大全免费| 精品国产国语对白av| 女性生殖器流出的白浆| 日本爱情动作片www.在线观看| h视频一区二区三区| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 欧美亚洲 丝袜 人妻 在线| 美女国产高潮福利片在线看| 免费观看在线日韩| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av涩爱| 免费大片18禁| 国产精品国产av在线观看| 国产精品三级大全| 午夜福利视频在线观看免费| 亚洲怡红院男人天堂| 特大巨黑吊av在线直播| 日本午夜av视频| 蜜桃国产av成人99| 欧美日韩在线观看h| 亚洲欧美日韩另类电影网站| 日韩人妻高清精品专区| 午夜福利影视在线免费观看| 看十八女毛片水多多多| 日本av手机在线免费观看| 尾随美女入室| 中文精品一卡2卡3卡4更新| 乱人伦中国视频| 亚洲怡红院男人天堂| 国产在线一区二区三区精| 极品人妻少妇av视频| 97在线人人人人妻| 精品一区二区免费观看| 熟女人妻精品中文字幕| 高清午夜精品一区二区三区| 国模一区二区三区四区视频| 人妻制服诱惑在线中文字幕| 亚洲国产精品一区三区| 亚洲国产精品999| 久久综合国产亚洲精品| 日日摸夜夜添夜夜添av毛片| 国产日韩一区二区三区精品不卡 | 欧美精品一区二区大全| 成年人午夜在线观看视频| 国产免费一级a男人的天堂| 春色校园在线视频观看| 不卡视频在线观看欧美| 久久人人爽av亚洲精品天堂| 亚洲,欧美,日韩| 亚洲av电影在线观看一区二区三区| 丝袜喷水一区| 日韩大片免费观看网站| av在线老鸭窝| 搡女人真爽免费视频火全软件| 亚洲国产欧美日韩在线播放| 哪个播放器可以免费观看大片| 久久人人爽人人片av| 91国产中文字幕| 999精品在线视频| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线 | 99热全是精品| 久久99精品国语久久久| 亚洲成人一二三区av| 一区在线观看完整版| 国产欧美日韩一区二区三区在线 | 建设人人有责人人尽责人人享有的| 久久久久久久久久久久大奶| 51国产日韩欧美| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 久久免费观看电影| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 国产69精品久久久久777片| 国产精品偷伦视频观看了| 国产精品久久久久久久久免| 国产精品一国产av| 婷婷成人精品国产| 观看av在线不卡| 黑人巨大精品欧美一区二区蜜桃 | 亚洲一级一片aⅴ在线观看| 久久久国产欧美日韩av| 大片电影免费在线观看免费| 两个人免费观看高清视频| 欧美性感艳星| 亚洲精华国产精华液的使用体验| 久久久久人妻精品一区果冻| 在线精品无人区一区二区三| 一二三四中文在线观看免费高清| 国产在线免费精品| 9色porny在线观看| 国产欧美亚洲国产| 国模一区二区三区四区视频| 亚洲人成77777在线视频| 一本大道久久a久久精品| 成人毛片60女人毛片免费| 精品人妻熟女av久视频| 久久久亚洲精品成人影院| 国产日韩欧美视频二区| 日本午夜av视频| 人妻系列 视频| 亚洲天堂av无毛| 国产爽快片一区二区三区| 桃花免费在线播放| 国产一区有黄有色的免费视频| 久久久久久久久大av| 亚洲图色成人| 亚洲色图 男人天堂 中文字幕 | 久热这里只有精品99| 99九九线精品视频在线观看视频| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| 日本黄色片子视频| 成人黄色视频免费在线看| 国产欧美日韩一区二区三区在线 | 午夜精品国产一区二区电影| 九九久久精品国产亚洲av麻豆| 97在线人人人人妻| 一边亲一边摸免费视频| 亚洲国产毛片av蜜桃av| 国产精品欧美亚洲77777| 麻豆成人av视频| 美女内射精品一级片tv| 亚洲欧美精品自产自拍| 久久精品夜色国产| av免费观看日本| 精品亚洲成国产av| 一级毛片电影观看|