,,
(1.重慶交通大學機電與汽車工程學院,重慶400074;2.哈爾濱工業(yè)大學電氣工程系,黑龍江哈爾濱150001)
三相電機驅(qū)動系統(tǒng)逆變器故障補救與容錯策略
姜保軍1,安群濤2,路梅1
(1.重慶交通大學機電與汽車工程學院,重慶400074;2.哈爾濱工業(yè)大學電氣工程系,黑龍江哈爾濱150001)
電機驅(qū)動系統(tǒng)的安全運行得到了研究者的廣泛重視。逆變器是電機驅(qū)動系統(tǒng)中故障頻發(fā)的薄弱環(huán)節(jié),對目前逆變器的故障隔離、補救和容錯方案進行了歸納,介紹了各方案所采用的拓撲和控制策略,并以永磁同步電機驅(qū)動系統(tǒng)為例對各容錯逆變器的性能進行了對比,其結(jié)果可以為提高電機驅(qū)動系統(tǒng)安全性設(shè)計提供指導(dǎo)。
電機驅(qū)動;逆變器;安全性;故障補救;容錯
電壓源逆變器供電的三相電機驅(qū)動系統(tǒng)以其優(yōu)越的性能和較高的效率在工業(yè)、電動汽車、軍事、航天航空等領(lǐng)域得到了廣泛應(yīng)用。然而,由于電力電子器件及其驅(qū)動電路的脆弱性,使得逆變器成為系統(tǒng)中故障頻發(fā)的薄弱環(huán)節(jié)[1]。因此,實施逆變器的故障診斷、故障隔離、故障補救與容錯策略是提高電機驅(qū)動系統(tǒng)安全性的有效途徑。
電機容錯驅(qū)動是指通過對系統(tǒng)故障進行實時診斷和分析,在發(fā)生故障后主動重構(gòu)系統(tǒng)的軟硬件結(jié)構(gòu),從而確保整個系統(tǒng)在不損失性能指標或部分性能指標有所降低的情況下安全運行[2]。容錯和補救的前提是要對系統(tǒng)中的故障進行診斷、定位和隔離,對于逆變器故障,人們已提出了很多診斷和定位方法,文獻[3-7]對其進行了綜述。
本文從保障電機驅(qū)動系統(tǒng)安全運行的策略出發(fā),對現(xiàn)有的逆變器故障隔離、補救與容錯方案進行歸納,介紹各方案所用的拓撲和控制策略,并以永磁同步電機驅(qū)動系統(tǒng)為例對各容錯逆變器的性能進行對比。
本文僅討論與逆變器有關(guān)的故障,常見故障包括:
1)單個開關(guān)管開路故障;
2)單個開關(guān)管短路故障;
3)單相開路故障;
4)橋臂直通短路故障。
無論容錯還是故障補救,都需要對故障進行隔離,隔離方法如圖1所示[8-11]。圖1a屬于被動隔離技術(shù),電路簡單、成本低,適用于橋臂短路故障的隔離。圖1b屬于主動隔離技術(shù),根據(jù)診斷和定位出的故障開關(guān)的位置,燒斷相應(yīng)的快速熔絲來實現(xiàn)。正常情況下晶閘管均處于關(guān)斷狀態(tài),當Tx發(fā)生故障時,控制器觸發(fā)TRx+1導(dǎo)通,直流電源Vdc通過熔絲Fx和晶閘管TRx+1給電容C2充電,產(chǎn)生很大的沖擊電流短時間內(nèi)將Fx熔斷,從而隔離掉Tx支路。通過合理選取電容、晶閘管和快速熔絲的參數(shù),能夠保證在需要時間內(nèi)將相應(yīng)熔絲可靠熔斷。
圖1 故障隔離技術(shù)Fig.1Fault isolation techniques
3.1評價標準
三相交流電機驅(qū)動系統(tǒng)中,逆變器通常采用標準的三相半橋拓撲,如圖2所示,它不具有故障容錯能力,為此人們提出了許多故障補救和容錯方案來提高電機驅(qū)動系統(tǒng)的安全性[6,12]。為了評估各容錯逆變器在故障后運行時的輸出能力,考查逆變器輸出的電壓空間矢量:
式中:ua,ub,uc分別為電機繞組相電壓。
圖2 三相半橋逆變器拓撲Fig.2Three?phase half?bridge inverter topology
此時,合成最大幅值為Ilim的電流矢量:
表1 三相半橋逆變器的電壓矢量Tab.1Voltage vectors of three?phase half?bridge inverter
圖3 三相半橋逆變器的電壓矢量Fig.3Voltage vectors of three?phase half?bridge inverter
下面以三相半橋逆變器為參考,考察各容錯逆變器故障后的電壓和電流輸出能力。
3.2容錯拓撲和控制策略
3.2.1 雙繞組冗余拓撲[13-21]
雙繞組冗余型采用兩套同樣的逆變器和電機繞組并聯(lián),為電氣雙余度結(jié)構(gòu),兩逆變器采用獨立的直流電源供電或母線并聯(lián)于一個直流電源,如圖4所示。電機定子側(cè)嵌放兩套獨立的Y型繞組,其相位相差γ(一般取0,30°或60°)電角度,共用一個轉(zhuǎn)子。該系統(tǒng)具有冷備份和熱備份兩種運行方式,當某一余度出現(xiàn)故障時,系統(tǒng)可切除故障余度,啟用單余度方式降級工作[13-15]。也有文獻介紹將兩套電機系統(tǒng)同軸聯(lián)接,構(gòu)成模塊型雙余度系統(tǒng)[16-17]。
圖4 雙繞組冗余拓撲Fig.4Dual?winding redundant topology
雙繞組冗余型拓撲易于開發(fā),具有雙余度冗余,是目前電動舵機等航空系統(tǒng)中常采用的結(jié)構(gòu)[13,18-21]。但是由于兩套逆變器和電機繞組,加上實現(xiàn)余度管理的控制電路,系統(tǒng)較復(fù)雜、體積龐大、成本高,對體積有嚴格要求和低成本的場合不太適用。
3.2.2 橋臂冗余拓撲[11,22]
單橋臂冗余拓撲如圖5所示,故障隔離采用如圖1所示的電路,這里沒有畫出,為簡化表示以下容錯拓撲中也將省略。當某一橋臂發(fā)生故障時,快速熔絲熔斷將故障橋臂隔離,控制器觸發(fā)相應(yīng)的雙向晶閘管導(dǎo)通,將繞組從故障橋臂切換到輔助橋臂。也可將三相分別配備冗余橋臂,構(gòu)成三相橋臂冗余,如圖6所示。重構(gòu)后的拓撲與正常逆變器相同,控制策略也無需調(diào)整。
圖5 單橋臂冗余拓撲Fig.5Single?leg redundant topology
圖6 三相橋臂冗余拓撲Fig.6Three?leg redundant topology
3.2.34 開關(guān)三相容錯逆變器[23-27]
將單橋臂冗余拓撲中的輔助橋臂用串聯(lián)的兩電容代替,構(gòu)成4開關(guān)三相容錯拓撲,如圖7所示。正常時3個雙向晶閘管處于關(guān)斷狀態(tài),當某一橋臂出現(xiàn)故障后,與該橋臂相連的雙向晶閘管被觸發(fā)導(dǎo)通,故障橋臂被串聯(lián)電容取代,電機由4開關(guān)逆變器驅(qū)動。與傳統(tǒng)6開關(guān)逆變器相比,4開關(guān)逆變器具有4個基本電壓矢量,以a相故障為例,基本電壓矢量及其空間分布分別如表2和圖8所示。4開關(guān)逆變器采用SVPWM或標量PWM調(diào)制策略,輸出線性最大電壓矢量為Vdc是6開關(guān)逆變器的一半,采用過調(diào)制算法可進一步提高輸出能力[23-24]。矢量控制、直接轉(zhuǎn)矩控制、直接電流控制等策略已被應(yīng)用于4開關(guān)逆變器電機驅(qū)動系統(tǒng)中[25-27]。
圖7 4開關(guān)三相容錯拓撲Fig.7Four?switch three?phase fault?tolerant topology
表2 4開關(guān)三相逆變器的電壓矢量Tab.2Voltage vectors of four?switch three?phase inverter
圖8 4開關(guān)逆變器的電壓矢量Fig.8Voltage vectors of the four?switch inverter
3.2.4 三相4橋臂容錯拓撲[11,28-31]
圖9 三相4橋臂容錯拓撲Fig.9Three?phase four?leg fault?tolerant topology
兩相3橋臂逆變器的電壓矢量如表3所示,電壓矢量分布與標準三相半橋逆變器相同,如圖3所示,輸出的最大電壓矢量幅值仍為可采用SVPWM,SPWM和滯環(huán)PWM進行控制[11,30-31]。
表3 兩相3橋臂逆變器的電壓矢量Tab.3Voltage vectors of two?phase three?bridge inverter
3.2.5 4開關(guān)兩相容錯拓撲[25,32-34]
將電機繞組中性點通過一個雙向晶閘管連接到母線串聯(lián)電容的中點,構(gòu)成4開關(guān)兩相容錯拓撲,如圖10所示。故障橋臂隔離后,雙向晶閘管TRn導(dǎo)通,系統(tǒng)運行在4開關(guān)兩相模式,電流矢量極限圓半徑為例如a相橋臂故障后,b,c兩相運行,逆變器輸出電壓矢量如表4所示,4個基本電壓的空間分布與4開關(guān)三相逆變器相同,如圖8所示,輸出的最大電壓矢量Ulim為Vd
圖10 4開關(guān)兩相容錯拓撲Fig.10Four?switch two?phase fault?tolerant topology
表4 4開關(guān)兩相逆變器的電壓矢量Tab.4Voltage vectors of four?switch two?phase inverter
3.2.6 三相H橋拓撲[35-40]
為了減小故障橋臂對其他繞組的影響,三相繞組可采用獨立的驅(qū)動單元,構(gòu)成三相H橋拓撲。將電機各相繞組采用獨立全橋供電,構(gòu)成三相全橋逆變器,即單電源H橋拓撲,如圖11所示;或采用2個逆變器級聯(lián),構(gòu)成三相兩電平級聯(lián)逆變器,即雙電源H橋拓撲,如圖12所示。三相全橋逆變器故障后工作于兩相全橋模式,三相兩電平級聯(lián)逆變器故障后可工作于三相半橋模式,均可用于容錯單管開路和單管短路故障[40]。
圖11 三相全橋拓撲Fig.11Three?phase full?bridge topology
圖12 三相兩電平級聯(lián)拓撲Fig.12Three?phase two?level cascaded topology
對于兩電平級聯(lián)逆變器,使ia+ib+ic=0,由基爾霍夫電壓定律并結(jié)合開關(guān)信號,電機電壓可表示為
式中:Vdc1,Vdc2分別為2個母線電壓值;sa1~sc2分別為各相橋臂功率管的開關(guān)信號,等于“1”表示上管導(dǎo)通下管關(guān)斷,“0”表示上管關(guān)斷下管導(dǎo)通。
當Vdc1=Vdc2=Vdc時,無故障情況下電壓矢量空間分布如圖13a所示,三相全橋逆變器也具有相同的電壓矢量?;倦妷菏噶康姆涤惺菢藴嗜喟霕蚰孀兤鞯?倍。當逆變器工作于兩相全橋時,輸出的電壓矢量如圖13b所示,輸出的最大線性電壓矢量的幅值Ulim為最大線性電壓幅值為,調(diào)制方式有滯環(huán)PWM和SVPWM,可得到負載電流矢量極限圓的半徑為
圖13 電壓矢量Fig.13Voltage vectors
3.2.7 模塊化冗余拓撲[41-43]
為了提高電機系統(tǒng)可靠性和降低體積,研究者提出了集成模塊電機驅(qū)動(IMMD)的概念:將電機設(shè)計為分段極靴和集成繞組,彼此電磁分離,每極配置獨立的驅(qū)動電路單元,組合為完整的電機系統(tǒng),如圖14和圖15所示[41-42]。冗余結(jié)構(gòu)設(shè)計使得IMMD具有一定的容錯能力,是未來電力牽引系統(tǒng)的發(fā)展方向[42]。但在目前,IMMD仍面臨著體積有限、振動、熱和電磁干擾等諸多方面的挑戰(zhàn)[43]。隨著碳化硅(SiC)、氮化鎵(GaN)等耐高溫半導(dǎo)體功率器件技術(shù)的成熟,以及電機和控制器設(shè)計的不斷完善,IMMD將得到廣泛應(yīng)用。
圖14 集成模塊電機驅(qū)動概念Fig.14Concept of integrated modular motor drive
圖15 IMMD實物圖Fig.15Real product of IMMD
為了定量對比各種逆變器容錯拓撲的性能,下面結(jié)合表面磁鋼永磁同步電機來分析故障前后系統(tǒng)的輸出能力。受逆變器輸出電壓的限制,穩(wěn)態(tài)運行時施加到電機繞組上的電壓矢量幅值為
其中,永磁同步電機的dq軸電壓ud和uq分別為
式中:ω為轉(zhuǎn)子電角速度,ω=pωm,p為極對數(shù),ωm為轉(zhuǎn)子機械角速度;R為繞組電阻;Ld,Lq分別為d軸和q軸繞組電感;Ψf為轉(zhuǎn)子永磁磁鏈。
對于表面磁鋼永磁同步電機,Ld=Lq=L,并且電機運行在基速ωb時,可忽略定子壓降,再將dq軸電壓代入式(5)中,整理得到電機滿足的電壓極限圓:
受逆變器輸出電流和電機額定電流的限制,永磁同步電機在穩(wěn)態(tài)運行時的電流矢量滿足極限圓:電機的電磁轉(zhuǎn)矩為
id=0可獲得最大轉(zhuǎn)矩/電流的恒轉(zhuǎn)矩控制,此時電流矢量只有iq分量。因此,電壓矢量極限圓和電流矢量極限圓的交點位于q軸上,如圖16a中所示的A,B點。圖16b為對應(yīng)的電機機械特性曲線,分為恒轉(zhuǎn)矩和恒功率兩段運行區(qū)域。在最大轉(zhuǎn)矩輸出條件下,隨著轉(zhuǎn)速的上升,逆變器輸出電壓矢量幅值不斷增加,在基速ωb時達到電壓極限圓。假設(shè)三相半橋逆變器對應(yīng)圖16a的電壓極限圓Ⅰ和電流極限圓Ⅰ,電機運行在兩個圓包圍的區(qū)域,最大轉(zhuǎn)矩為Temax,基速為ωb,機械特性為圖16b中的曲線N。當故障后逆變器輸出電壓能力降低為而輸出電流能力維持Ilim不變時,仍對應(yīng)電壓極限圓Ⅰ和電流極限圓Ⅰ,電機最大轉(zhuǎn)矩維持為Temax,但基速降低到ωb/2,逆變器容量下降,電機機械特性曲線為F-Ⅰ。當故障后逆變器輸出電壓能力維持不變,而輸出電流能力降低為時,根據(jù)式(7)和式(8),分別對應(yīng)電壓極限圓Ⅱ和電流極限圓Ⅱ,電機最大轉(zhuǎn)矩降低為,基速提升,但不大于,機械特性曲線為F-Ⅱ。當逆變器輸出電壓和電流能力分別下降為時,根據(jù)式(7)和式(8),對應(yīng)電壓極限圓Ⅱ和電流極限圓Ⅱ,電機最大轉(zhuǎn)矩降低為,基速下降到以下,機械特性曲線為F-Ⅲ。將以上各容錯逆變器拓撲的輸出能力列于表5中進行對比。在設(shè)計電機驅(qū)動系統(tǒng)時,可以按照要求選擇適宜的拓撲或按輸出能力和成本折中選取。
圖16 逆變器輸出能力描述Fig.16Output capabilities of inverters
表5 故障容錯逆變器的比較Tab.5Comparison of fault?tolerant inverters
除了以上介紹的逆變器容錯拓撲外,多相冗余方案如4相雙凸極永磁電機系統(tǒng)[44]、5相電機容錯驅(qū)動系統(tǒng)[45-50]等也被用于電機驅(qū)動系統(tǒng)中,通過增加相數(shù)可以實現(xiàn)容錯和減小故障相帶來的功率損失[51-52]。
隨著電機驅(qū)動系統(tǒng)在電動汽車、航天航空等領(lǐng)域的廣泛應(yīng)用,其可靠運行得到了研究者的重視,尤其針對系統(tǒng)中較為脆弱的功率變換器,提出了許多故障診斷和容錯方法。
本文在介紹現(xiàn)有的逆變器故障補救和容錯方法的基礎(chǔ)上,從輸出電壓和電流能力的角度進行了對比,為提高電機驅(qū)動系統(tǒng)的安全性設(shè)計提供思路,并得出結(jié)論:
1)容錯驅(qū)動是提高電機系統(tǒng)可靠性的有效途徑,一些冗余和容錯設(shè)計已被成功應(yīng)用于電動舵機和電動車拖動系統(tǒng)中;
2)集成模塊電機驅(qū)動是一個新的概念和研究方向,但目前面臨的問題有待研究;
3)開發(fā)新型容錯逆變器拓撲和容錯控制策略是今后的一個研究方向。
[1]Rothenhagen K,F(xiàn)uchs F W.Performance of Diagnosis Meth?ods for IGBT Open Circuit Faults in Three Phase Voltage source Inverters for AC Variable Speed Drives[C]//Proceed?ings of the 11thEuropean Conference on Power Electronics and Applications,Dresden,Germany,2005:7-16.
[2]Mecrow B C,Jack A G,Haylock J A,et al.Fault?tolerant Permanent Magnet Machine Drives[J].IEE Proceedings?elec?tric Power Applications,1996,143(6):437-442.
[3]Fuchs F W.Some Diagnosis Methods for Voltage Source Invert?ers in Variable Speed Drives with Induction Machines—a Sur?vey[C]//Proceedings of the IEEE Industrial Electronics Society AnnualConference,Roanoke,Virginia,USA,2003:1378-1385.
[4]Lu B,Santosh K S.A Literature Review of IGBT Fault Diagnos?tic and Protection Methods for Power Inverters[J].IEEE Trans?actions on Industry Applications,2009,45(5):1770-1777.
[5]安群濤,孫力,孫立志,等.三相逆變器開關(guān)管診斷方法研究進展[J].電工技術(shù)學報,2010,26(4):135-144.
[6]張?zhí)m紅,胡育文,黃文新.三相變頻驅(qū)動系統(tǒng)中的逆變器的故障診斷與容錯技術(shù)[J].電工技術(shù)學報,2004,19(12):1-9.
[7]安群濤,孫力,趙克,等.基于開關(guān)函數(shù)模型的逆變器開路故障診斷方法[J].中國電機工程學報,2010,30(6):1-6.
[8]Abrahamsen F,Blaabjerg F,Ries K,et al.Fuse Protection of IGBTs Against Rupture[C]//Proceedings of the Nordic Work?shop on Power and Industrial Electronics,Aalborg,Denmark,2000:64-68.
[9]Iov F,Blaabjerg F,Ries K.IGBT Fuses in Voltage Source Converters[C]//Proceedings of the PCIM,Chicago,IL,2001:267-276.
[10]Karimi S,Gaillard A,Poure P,et al.FPGA?based Real?time Power Converter Failure Diagnosis for Wind Energy Conver?sion Systems[J].IEEE Transactions on Industrial Electron?ics,2008,55(12):4299-4308.
[11]Bolognani S,Zordan M,Zigliotto M.Experimental Fault?toler?ant Control of a PMSM Drive[J].IEEE Transactions on Indus? trial Electronics,2000,47(5):1134-1141.
[12]Welchko B A,Lipo T A,Jahns T M,et al.Fault Tolerant Three?phase AC Motor Drive Topologies:a Comparison of Fea?tures,Cost,and Limitations[J].IEEE Transactions on Power Electronics,2004,19(4):1108-1116.
[13]周元鈞,劉宇杰.雙通道永磁同步伺服系統(tǒng)的容錯性能[J].電工技術(shù)學報,2005,20(9):98-102.
[14]Takorabet N,Caron J P,Vaseghi B,et al.Study of Different Architectures of Fault Tolerant Actuator Using a Double?star PM Motor[C]//IEEE Industry Applications Society Annual Meeting,Edmonton,Alberta,Canada,2008:1-6.
[15]Shamsi?Nejad M A,Nahid?Mobarakeh B,Pierfederici S,et al.Fault Tolerant and Minimum Loss Control of Double?star Synchronous Machines under Open Phase Conditions[J]. IEEE Transactions on Industrial Electronics,2008,55(5):1956-1965.
[16]Zhu J W,Ertugrul N,Soong W L.Fault Remedial Strategies in a Fault?tolerant Brushless Permanent Magnet AC Motor Drive with Redundancy[C]//IEEE 6thInternational Power Electronics and Motion Control Conference,Wuhan,China,2009:423-427.
[17]Ertugrul N,Soong W,Dostal G,et al.Fault Tolerant Motor Drive System with Redundancy for Critical Applications[C]// IEEE 33thPower Electronics Specialists Conference,Cairns,Queensland,Australia,2002:1457-1462.
[18]Jacobina C B,Miranda R S,Lima A M N.Reconfigurable Fault Tolerant Dual?winding AC Motor Drive System[C]// IEEE 36thPower Electronics Specialists Conference,Recife,Brazil,2005:1574-1579.
[19]周元鈞,董慧芬,王自強.飛行控制用無刷直流電動機容錯運行方式[J].北京航空航天大學學報,2006,32(2):190-194.
[20]郝振洋,胡育文,黃文新.電力作動器中永磁容錯電機及其控制系統(tǒng)的發(fā)展[J].航空學報,2008,29(1):149-158.
[21]胡文祥,程明,朱孝勇,等.驅(qū)動用微特電機及其控制系統(tǒng)的可靠性技術(shù)研究綜述[J].電工技術(shù)學報,2007,22(4):38-46.
[22]Ribeiro R L A,Jacobina C B,Da Silva E R C,et al.Fault?tol?erant Voltage?fed PWM Inverter AC Motor Drive Systems[J]. IEEE Transactions on Industrial Electronics,2004,51(2):439-446.
[23]安群濤,孫醒濤,趙克,等.容錯三相四開關(guān)逆變器控制策略[J].中國電機工程學報,2010,30(3):14-20.
[24]An Q T,Sun L Z,Sun L,et al.Scalar PWM Algorithms for Four?switch Three?phase Inverters[J].Electronics Letters,2010,46(14):1021-1022.
[25]Mendes A M S,Cardoso A J M.Fault?tolerant Operating Strat?egies Applied to Three?phase Induction?motor Drives[J]. IEEE Transactions on Industrial Electronics,2006,53(6):1807-1817.
[26]孫丹,何宗元,Blanco I Y,等.四開關(guān)逆變器供電永磁同步電機直接轉(zhuǎn)矩控制系統(tǒng)轉(zhuǎn)矩脈動抑制[J].中國電機工程學報,2007,27(21):47-52.
[27]符強,林輝,賀博.四開關(guān)三相無刷直流電機的直接電流控制[J].中國電機工程學報,2006,26(4):149-153.
[28]Correa M B R,Jacobina C B,Silva E R C,et al.An Induc?tion Motor Drive System with Improved Fault Tolerance[J]. IEEE Transactions on Industry Applications,2001,37(3):873-879.
[29]Ribeiro R L A,Jacobina C B,Lima A M N,et al.A Strategy for Improving Reliability of Motor Drive Systems Using a Four?leg Three?phase Converter[C]//16thAnnual IEEE Applied Pow?er Electronics Conference and Exposition,Anaheim,Califor?nia,USA,2001:385-391.
[30]Wallmark O,Harnefors L,Carlson O.Control Algorithms for a Fault?tolerant PMSM Drive[J].IEEE Transactions on Indus?trial Electronics,2007,54(4):1973-1980.
[31]Bianchi N,Bolognani S,Zigliotto M,et al.Innovative Remedi?al Strategies for Inverter Faults in IPM Synchronous Motor Drives[J].IEEE Transactions on Energy Conversion,2003,18(2):306-314.
[32]Liu T H,F(xiàn)u J R,Lipo T M.A Strategy for Improving Reliabil?ity of Field?oriented Controlled Induction Motor Dirves[J]. IEEE Transactions on Industry Applications,1993,29(5):910-918.
[33]Mendes A M S,Cardoso A J M.Continuous Operation Perfor?mance of Faulty Induction Motor Drives[C]//IEEE Interna?tional Electric Machines and Drives Conference,Madison,Wisconsin,USA,2003:547-553.
[34]Naidu M,Gopalakrishnan Suresh,Nehl T W.Fault?tolerant Permanent Magnet Motor Drive Topologies for Automotive x?by?wire Systems[J].IEEE Transactions on Industry Applica?tions,2010,46(2):841-848.
[35]Welchko B A,Jahns T M,Lipo T A.Short?circuit Fault Miti?gation Methods for Interior PM Synchronous Machine Drives Using Six?leg Inverters[C]//35thAnnual IEEE Power Electronics SpecialistsConference,Aachen,Germany,2004:2133-2139.
[36]Welchko B A,Wai Jachson,Jahns T M,et al.Magnet?flux?null?ing Control of Interior PM Machine Drives for Improved Steady?state Response to Short?circuit Faults[J].IEEE Transactions on Industry Applications,2006,42(1):113-120.
[37]Welchko B A,Nagashima J M.The Influence of Topology Se?lection on the Design of EV/HEV Propulsion Systems[J]. IEEE Power Electronics Letters,2003,1(2):36-40.
[38]Lillo L,Wheeler P W,Empringham L,et al.A Power Con?verter for Fault Tolerant Machine Development in Aerospace Applications[C]//13thInternational Power Electronics and Mo?tion Control Conference,Poznan,Poland,2008:388-392.
[39]Lillo L,Empringham L,Wheeler P W,et al.Multiphase Pow?er Converter Drive for Fault?tolerant Machine Development in Aerospace Applications[J].IEEE Transactions on Industrial Electronics,2008,57(2):575-583.
[40]Corzine K A,Sudhoff S D,Whitcomb C A.Performance Char?acteristics of a Cascaded Two?level Converter[J].IEEE Trans?actions on Energy Conversion,1999,14(3):433-439.
[41]Choi G,Jahns T M.Development of a High Power Density In?tegrated Traction Drive[C]//Poster Presentations of 2010 WEM?PEC Annual Review Meeting,Madison,Wisconsin,USA,2010:333-339.
[42]Wang F.High Power Density Integrated Traction Machine Drive[C]//2010 DOE Hydrogen and Vehicle Technologies Programs Annual Merit Review Meeting,Washington,DC,USA,2010:33-38.
[43]Brown N R,Jahns T M,Lorenz R D.Power Converter Design for an Integrated Modular Motor Drive[C]//42ndIEEE Industry Applications Society Annual Meeting,New Orleans,Louisi?ana,USA,2007:1322-1328.
[44]Zhao W,Cheng M,Zhu X,et al.Analysis of Fault?tolerant Performance of a Doubly Salient Permanent?magnet Motor Drive Using Transient Cosimulation Method[J].IEEE Trans?actions on Industrial Electronics,2008,55(4):1739-1748.
[45]Ouyang Wen,Lipo T A.Multiphase Modular Permanent Mag?net Drive System Design and Realization[C]//IEEE Interna?tional Electric Machines and Drives Conference,Antalya,Turkey,2007:787-792.
[46]Abolhassani M T,Toliyat H A.Fault Tolerant Permanent Mag?net Motor Drives for Electric Vehicles[C]//IEEE International Electric Machines and Drives Conference,Miami,F(xiàn)lorida,USA,2009:1146-1152.
[47]Parsa L,Toliyat H A.Fault?tolerant Interior?permanent?mag?net Machines for Hybrid Electric Vehicle Applications[J]. IEEE Transactions on Vehicular Technology,2007,56(4):1546-1552.
[48]Bennett J W,Mecrow B C,Jack A G,et al.A Prototype Elec?trical Actuator for Aircraft Flaps[J].IEEE Transactions on In?dustry Applications,2010,46(3):915-921.
[49]Casadei D,Mengoni M,Serra G,et al.Optimal Fault?tolerant Control Strategy for Multi?phase Motor Drives under an Open Circuit Phase Fault Condition[C]//18thInternational Confer?ence on Electric Machines,Vilamoura,Algarve,Portugal,2008:1-6.
[50]Dwari S,Parsa L,Lipo T A.Optimum Control of a Five?phase Integrated Modular Permanent Magnet Motor under Normal and Open?circuit Fault Conditions[C]//IEEE Power Electron?ics Specialists Conference,Orlando,F(xiàn)lorida,USA,2007:1639-1644.
[51]Wolmarans J J,Gerber M B,Polinder H,et al.A 50 kW Inte?grated Fault Tolerant Permanent Magnet Machine and Motor Drive[C]//IEEE Power Electronics Specialists Conference,Rhodes,Greece,2008:345-351.
[52]Wolmarans J J,Polinder H,F(xiàn)erreira J A,et al.Selecting an Optimum Number of System Phases for an Integrated,F(xiàn)ault Tolerant Permanent Magnet Machine and Drive[C]//13thEuro?pean Conference on Power Electronics and Applications,Bar?celona,Spain,2009:1-10.
Fault Remedial and Tolerant Strategies of Inverters in Three?phase Motor Drives
JIANG Bao?jun1,AN Qun?tao2,LU Mei1
(1.College of Mechatronics and Automation Engineering,Chongqing Jiaotong University,Chongqing400074,China;2.Department of Electrical Engineering,Harbin Institute of Technology,Harbin150001,Heilongjiang,China)
The safe operation of motor drive systems is paid much attention recently.Because of frequent fault occurrence,the inverter is a fragile part in motor drive systems.A survey and review on existing techniques of fault isolation,remedy and tolerance was presented.The topology and related control strategy of each scheme were introduced,and their performances were compared in permanent magnet synchronous motor drive systems.The conclusion provides guidance for designing a safer motor drive system.
motor drive;inverter;security;fault remedy;fault tolerance
TM464
A
2014-07-07
修改稿日期:2014-11-27
姜保軍(1965-),男,副教授,博士,Email:jiang031@163.com