• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Friction welding of AA6061 to AISI 4340 using silver interlayer SURESH D. MESHRAM*, G. MADHUSUDHAN REDDY

    2015-07-02 06:14:18DefenceMetallurgicalResearchLaboratoryKanchanbaghHyderabad500058IndiaReceived27March2015revised17May2015accepted19May2015Availableonline26June2015
    Defence Technology 2015年3期

    Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058, India Received 27 March 2015; revised 17 May 2015; accepted 19 May 2015 Available online 26 June 2015

    Friction welding of AA6061 to AISI 4340 using silver interlayer SURESH D. MESHRAM*, G. MADHUSUDHAN REDDY

    Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058, India Received 27 March 2015; revised 17 May 2015; accepted 19 May 2015 Available online 26 June 2015

    Abstract

    The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe—Al based intermetallic compounds with Ag—Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag—Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe—Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Dissimilar metal weld; Interlayer; Friction welding; Intermetallics; Microstructure; Tensile strength

    E-mail addresses: suresh_uor@yahoo.co.in (S.D. MESHRAM), gmreddy_ dmrl@yahoo.co.in (G. MADHUSUDHAN REDDY).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.05.007

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Several situations arise in industrial practices which call for joining of dissimilar metals. The joining of dissimilar metals is commonly done to satisfy different requirements for effective and economic utilization of the special properties of each material for enhanced performance. Dissimilar metal joints can be made successfully if there is a mutual solubility between the two metals. Otherwise, using interlayer/layers that is/are compatible with each other is required to produce joint. For dissimilar metals having widely different coefficients of thermal expansion, the joint may fail due to thermal fatigue either during solidification or soon thereafter. This is because the internalstressesaresetupintheintermetalliczone,whichtendsto be extremely brittle. In the case of two metals having different melting temperatures or thermal conductivities, the process of welding is complicated because one metal is molten before the other. There is a continuing demand for reliable methods of joining dissimilar metals and alloys. For example, welding is irreplaceable in the manufacture of vacuum system made of dissimilar metals for cryogenic engineering. Recently, the range of combinations of the dissimilar metals, used in welded structures, has greatly increased and is continuous to increase. Joiningofaluminiumwithsteelfindsitsapplicationinthefields of cryogenic engine, space craft and automobile. However, the fusion welding of aluminium to steel is difficult due to the formation of brittle intermetallic compounds at the interface [1—4]. The solid state joining of steel directly to aluminium also gives an unsatisfactory product because of incompatibility of physico-chemical properties of the two metals to be bonded [5]. The interdifussion of Al and Fe often yields a series of brittle intermetallic compounds at the interface. Such brittle layers cannot sustain the strain of subsequent metal workingoperation which results in the internal rupture of the bond. The intermetallic formation rate at the interface is diffusion-driven and is a function of time, temperature and alloying element [6]. Satisfactory mechanical properties can be achieved by reducing the thickness ofintermetalliccompoundlayer [7].The thickness of intermetallic compound layer can be reduced by controlling the process parameters and composition of weld metal[2],controllingtheheatflowintoweld[8]andbyusingan interlayer which exhibits improved diffusion resistance to both Al and Fe [9,10].

    The techniques available for joining the dissimilar incompatiblemetalcombinationsaregenerallylimitedtotheprocesses which do not result in the melting and solidification of metals to be joined [11—16]. Among the various solid-state welding processes currently available, the friction welding is probably the most proven and established welding technique. The material combination (high strength low alloy steel and aluminium) is reportedtobeweldedbysolid-stateprocesses[9,15,17]and,toa limited extent, by friction welding without interlayer [18].

    The present work is aimed at studying the effect of silver in the form of electroplating as interlayer to produce the joint between low alloy steel and aluminium alloy and to understand the role of silver in preventing the formation of brittle intermetallics. The joints were characterized through optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), scanning electron probe microanalysis (SEPMA), and the mechanical properties were evaluated in terms of microhardness and tensile strength.

    2. Experimental procedure

    Aluminium alloy AA6061 in T6 condition and low alloy steel AISI 4340 in quenched and tempered condition in the form of 16 mm diameter rods were used for friction welding. Friction welding was carried out on a continuous drive friction welding machine with friction force of 3 kN, upsetting force of 6 kN, rotational speed of 2400 RPM, and burn-off length of 2 mm. Friction welding parameters were selected based on the optimization studies carried out earlier on joining of dissimilar metal combinations [19]. It was recommended that the incompatible materials should be welded at low burn-off length (length loss during friction stage of welding). Low burn-off length results in lower heat input and consequently less time availability for formation of intermetallics. Silver was electroplated on the faying surface of AISI 4340 using standard commercial technique by subcontracted plating firm. The detailed electroplating procedures are not given because they are confidential to the various electroplating firms. A 20 μm-thick silver was electroplated on AISI 4340 since it does not undergo deformation as compared to AA6061. Fig. 1 shows the friction welded joints obtained with AA6061 and AISI 4340 without interlayer and with silver interlayer.

    The weld specimens were sectioned and metallographically polished. The specimens were etched with Keller's reagent for AA6061 side and with Nital solution for AISI 4340. Tensile testing was performed employing standard specimen configuration confirming to ASTM standard E8-04, having gauge length of 25 mm with weld interface located at the centre of the specimen. Tensile test specimen used for testing is shown along with its dimensions in Fig. 2. Tensile tests were performed on an Instron 1185 universal testing machine. The cross head speed during the tensile test was maintained at 1 mm/min. Three tensile test specimens were tested and the average of the tensile test results are reported. The failed tensile specimens were subjected to fractographic examination using LEO scanning electron microscope.

    Quantitative analysis and X-ray mapping was carried out to know the elemental distribution across the weld interface by scanning electron probe microanalysis (SEPMA). Quantitative analysis was carried out at an interval of 2 μm. The welds were subjected to X-ray diffraction by employing Philips PHL 3020 X-ray diffracto-meter using copper Kαradiation for the identification of various phases. Micro Vickers hardness was measured across the interface of the weld using 100 gm load to determine nature of interface.

    Fig. 1. Macrograph of friction welded AA6061-AISI 4340 (a) without silver interlayer and(b) with silver interlayer.

    Fig. 2. Tensile test specimen with dimensions (all dimensions in mm).

    3. Results

    3.1. Optical microscopy

    Optical macrograph of a longitudinal section of welds made without interlayer is shown in Fig. 3. From the macrograph it may be observed that aluminium alloy (AA6061) is deformed extensively while no deformation could be noticed on the low alloy steel side during welding. The microstructure near the interface does not show any refinement of grains in steel. However, the aluminium resulted in fine grain structure near interface. The microstructures of the welds without and with interlayer are presented in Fig. 4. The weld interface is straight, a wide dark region is noted on the aluminium alloy beside the weld interface. The joints with silver as interlayer show the replacement of dark region with a bright region.

    3.2. Scanning electron probe microanalysis (SEPMA)

    The elemental X-ray mappings and quantitative analysis across the weld interface in the central region of weld withoutinterlayer are presented in Fig. 5 and Fig. 6, respectively. Uniform distribution of Mg at weld interface towards Al base metal side of the joint could be observed (Fig. 5). Diffusion of Si from Al to steel could be noticed for direct dissimilar metal weld (without interlayer). Mg is intermittently replaced by Si when silverinterlayerisused(Fig.7).Fig.8showsanaccumulationof Siatthejointinterfacetowardaluminium basemetal withsilver interlayer, indicating impediment of Si migration towards steel.

    Fig. 3. Optical macrograph and micrograph of friction welded AA6061-AISI 4340 joint.

    Fig. 4. Micrograph of the cross-section of (a) joint without interlayer and(b) joint with silver interlayer.

    Fig. 5. Elemental X-ray mapping at the weld interface for a joint without interlayer.

    Fig. 6. Quantitative analysis across the weld interface for joint without interlayer.

    3.3. Microhardness

    Microhardness distribution across the interface of welds made without and with silver interlayer is shown in Fig. 9. It is to be noted that the highest hardness is observed at the weld interface for direct and interlayer weldments. It is observed that the direct weld gives the maximum hardness compared to silver interlayer weld.

    3.4. Tensile properties

    The tensile properties of parent metal and joints made with and without silver interlayer are detailed in Table 1. Improvement in tensile strength was observed for silver interlayer weld compared to the weld made without interlayer. Failure during tensile testing occurred through the weld interface.

    3.5. X-ray diffraction analysis

    X-ray diffraction analysis of fractured surface of tensile specimen for welds with and without interlayer is shown in Fig. 10. Examination of the joint made without interlayer revealed an interfacial layer of Fe—Al intermetallics (Fe2Al5and FeAl3). However, introducing silver as an interlayer results in the formation of Ag3Fe2, Ag2Al and Ag3Al in addition to Fe2Al5and FeAl3. Fig. 7. Elemental X-ray mapping at the weld interface for a joint with silver interlayer.

    Fig. 8. Quantitative analysis across the weld interface for joint with silver interlayer.

    3.6. Fractography

    Thefractographfeaturesoftensilesamplesofweldswithand without interlayer are shown in Fig. 11. The fracture is predominantly by cleavage. However, in the case of joints without silver interlayer, a weak bonding can be observed as indicated by arrows where the steel surface is exposed, indicating either nobondinghasoccurredorthebondissoweakthatithasleftno mark of aluminium on steel surface. In the case of joint with silver as an interlayer, no such unbounded/weak zone is observed. This gives an indication of good joint integrity.

    Fig. 9. Microhardness distribution across the weld interface (a) without interlayer and (b) with silver interlayer.

    Table 1Tensile strength of parent metal and welds.

    4. Discussion

    The friction welding process can be used to produce a metallurgical bond through the interaction of frictional heating and simultaneous deformation along the interface separating the material to be joined. Heat generated along the interface flows either axially away from the interface or radially along the interface as material is upset from the joint forming the characteristic flash. The different thermal and physical properties of the materials welded in dissimilar metal welding, including heat capacity, thermal conductivity, relation between hardness and temperature, generally results in asymmetrical deformation. The formation of flash on aluminium side and no flash on low alloy steel (Fig. 3) can be attributed to lower thermal conductivity and higher hardness of low alloy steel at elevated temperatures compared to aluminium alloys. The same phenomenon has been reported during friction welding of dissimilar welds namely Al to Cu [20], Al to stainless steel [21] and titanium to steel [22]. From the metallographic study it is observed that direct welding of AISI 4340 to AA6061 is not feasible due to the presence of continuous intermetallic layer across the weld width (Fig. 4).

    A correlation of strength data of welds with microstructure at the interface suggests that the direct welding of AISI 4340 to AA6061 aluminium alloy results in the formation of continuous intermetallic zone, and therefore exhibits very poor strength and almost nil ductility (Table 1).

    X-ray diffraction data of fractured tensile samples of direct weld contains highly brittle intermetallics such as Fe2Al5and FeAl3(Fig. 10). Incorporation of silver interlayer in the form of electroplating has been observed to be a solution to realize the welding of low alloy steel to aluminium alloy. Silver interlayer isfoundtobemostusefulasitimplantsgoodductilityaswellas strength. Silver as an interlayer results in the formation of Ag3Fe2, Ag2Al and Ag3Al in addition to Fe2Al5and FeAl3(Fig. 10). Silver, presenting in the form of interlayer, acts as a barrier for the direct interaction between aluminium and steel, resulting in partial replacement of Fe—Al based intermetallic compound with Al—Ag based intermetallic compound.

    Mg and Si are the major alloying elements in AA6061. Mg is reported to be favourable for increasing the width of Fe—Al based intermetallic compound layer [23], particularly Fe2Al5.Uniform distribution of Mg at weld interface towards Al base metal side of the joint can be observed in the joint without silver interlayer (Fig. 5), which is a favourable condition for the formation of Fe—Al based intermetallics. However the joints with silver interlayer show that Mg is intermittently replaced by Si at the weld interface (Fig. 7). The absence of Mg near interface for joint with silver interlayer results in less favourable condition for the formation of Fe2Al5, and the situation is more favorable for the silver/aluminium intermetallic formation at the interface. This intermetallic compound is reported to be significantly softer than that formed between iron and aluminium and hence much greater thickness can be tolerated in the attainment of good quality welds between aluminium and its alloy to low alloy steel [24].

    Fig. 10. X-ray diffraction analysis of fractured tensile samples (a) without interlayer and (b) with silver interlayer.

    Fig. 11. Fractograph of tensile samples at weld interface (a) (b) without interlayer and (c) (d) with silver interlayer.

    Heating of aluminium alloy at high temperature results in diffusing Si out of the lattice [25]. Since Si—Ag is an eutectic system which is practically immiscible in solid state, the diffusion of Si across the silver interlayer is restricted, resulting in higher concentration of Si at interface of aluminium base metal and silver (Fig. 7). This observation is supported by quantitative analysis of Si across the weld interface for joints withsilverinterlayer(Fig.8).Higherconcentrationof Siretards the formation of Fe2Al5at weld interface by acting as a barrier to Fe diffusion [6,18,26,27]. Silicon segregation at the weld interface is not observed in a joint without silver interlayer, which allows more Fe to diffuse towards Al, resulting in Fe2Al5formation and poor tensile property.

    Higher value of microhardness in a joint without silver interlayercanbeattributedtotheformationof Fe2Al5and FeAl3[28]. Slight reduction in hardness with silver interlayer can be observed due to the presence of silver/aluminium intermetallic compounds which are soft in nature. Low tensile strength and elongation of joints withoutsilver interlayer can be attributed to the formation of Fe2Al5and FeAl3intermetallics which arebrittle in nature. Introduction of silver interlayer results in improvement in tensile strength and elongation since, and Fe—Al based intermetallic compound are partially replaced by Al—Ag based compounds which are ductile in nature.

    5. Conclusions

    A friction welding technique has been developed for joining aluminium (AA6061) to low alloy steel (AISI 4340) using an interlayer of silver. Silver as an interlayer partially reduces the formation of Fe—Al based intermetallic and replaces it with Al—Ag based intermetallic, such as Ag3Fe2, Ag2Al and Ag3Al, resulting in better tensile strength and ductility of welds. Presence of silver as an interlayer reduces Mg concentration at the weld interface by intermittently replacing it with Si on AA6061 side, which restricts the interaction of Fe with aluminium. The higher strength and ductility of aluminium to low alloy steel dissimilar metal welds with silver as an interlayer was attributed to the formation of ductile phases like Ag3Fe2, Ag2Al and Ag3Al.

    Acknowledgement

    The authors express their gratitude to Defence Research and Development Organization for the financial support to carry out this program and are thankful to Dr. Amol A. Gokhale, Distinguished scientist, Director, Defence Metallurgical Research Laboratory, India for his continued encouragement and support.

    References

    [1] Agudo L, Eyidi D, Schmaranzer CH, Arenholz E, Jank N, Bruckner J, et al. Intermetallic FexAly-phases in a steel/Al-alloy fusion weld. J Mater Sci 2007;42(24):4205—14.

    [2] Zhang H, Liu J. Microstructure characteristics and mechanical property of aluminum alloy/stainless steel lap joints fabricated by MIG weldingbrazing process. Mater Sci Eng A 2011;528(19—20):6179—85.

    [3] Zhang HT, Feng JC, He P, Hackl H. Interfacial microstructure and mechanical properties of aluminium-zinc-coated steel joints made by a modified metal inert gas welding brazing process. Mater Charact 2007;58(7):588—92.

    [4] Donga H, Yanga L, Dong C, Kou S. Improving arc joining of Al to steel and Al to stainless steel. Mater Sci Eng A 2012;534(1 Feb):424—35.

    [5] Dieter GE. ASM handbook, materials selection and design. 1st ed. Materials Park, OH: ASM International; 1997.

    [6] Kobayashi S, Yakou T. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater Sci Eng A 2002;338(1—2):44—53.

    [7] Cao R, Yu G, Chen JH, Wang PC. Cold metal transfer joining aluminum alloys-togalvanizedmildsteel. JMaterProcessTechnol 2013;213(10):1753—63.

    [8] Borrisutthekul R, Yachi T, Miyashita Y, Mutoh Y. Suppression of intermetallicreactionlayerformationbycontrollingheatflowindissimilarjoiningof steel and aluminum alloy. Mater Sci Eng A 2007;467(1—2):108—13.

    [9] Madhusudhan Reddy G, Sambasiva Rao A, Mohandas T. Role of electroplated interlayer in continuous drive friction welding of AA6061 to AISI 304 dissimilar metals. Sci Technol Weld Join 2008;13(7):619—28.

    [10] Sun X, Stephens EV, Khaleel MA, Shao H, Kimchi M. Resistance spot welding of aluminum alloy to steel with transition material-from process to performance-part I: experimental study. Weld J 2004;83(7):188—95.

    [11] Date H, Kobayakawa S, Naka M. Microstructure and bonding strength of impact-welded aluminum-stainless steel joints. J Mater Process Technol 1999;85(1—3):166—70.

    [12] Shubhavardhan RN, Surendran S. Friction welding to join stainless steel and aluminium materials. Int J Metall Mater Sci Eng (IJMMSE) 2012;2(3):53—73.

    [13] Tsujino J, Hidai K, Hasegawa A, Kanai R, Matsuura H, Matsushima K, et al. Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens. Ultrasonics 2002;40(1—8):371—4.

    [14] He P, Yue X, Zhang JH. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater Sci Eng A 2008;486(1—2):171—6.

    [15] Acarer M, Demir B. An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel. Mater Lett 2008;62(25):4158—60.

    [16] Dehghani M, Amadeh A, Akbari Mousavi SAA. Investigations on the effects of friction stir welding parameters on intermetallic and defect formation in joining aluminum alloy to mild steel. Mater Des 2013;49(1):433—41.

    [17] Patel VK, Bhole SD, Chen DL. Ultrasonic spot welding of aluminum to high-strength low-alloy steel: microstructure, tensile and fatigue properties. Metall Mater Trans A 2014;45A(1):2055—66.

    [18] Fuji A. Friction welding of Al—Mg—Si alloy to Ni—Cr—Mo low alloy steel. Sci Technol Weld Join 2004;9(1):83—9.

    [19] Meshram SD, Mohandas T, Madhusudhan Reddy G. Friction welding of dissimilar pure metals. J Mater Process Technol 2007;184(1—3):330—7.

    [20] Yilbas BS, Sahin AZ, Kahraman N, Al-Garni AZ. Friction welding of St—Al andAl—Cumaterials. JMaterProcessTechnol 1995;49(3—4):431—43.

    [21] Kimura M, Ishii H, Kusaka M, Kaizu K, Fuji A. Joining phenomena and joint strength of friction welded joint between aluminium magnesium alloy (AA5052) and low carbon steel. Sci Technol Weld Join 2009;14(7):655—61.

    [22] Dey HC, Ashfaq M, Bhaduri AK, Rao KP. Joining of titanium to 304L stainless steel by friction welding. J Mater Process Technol 2009;209(18—19):5862—70.

    [23] Hwang IH, Watanabe T, Doi Y. Dissimilar metal welding of steel to Al-MgAlloybyspot resistancewelding. AdvMater Res 2007;15(17):381—6.

    [24] Rosalie JM, Bourgeois L, Muddle BC. Precipitate assemblies formed on dislocationloopsinaluminium-silveralloys. PhilosMag 2009;89(15):1267—78.

    [25] Fujikawa SI, Hirano KI, Yoshiaki Fukushima Y. Diffusion of silicon in aluminum. Metall Mater Trans A 1978;9(12):1811—5.

    [26] Yin FC, Zhao MX, Liu YX, Han W, Li Z. Effect of Si on growth kinetics of intermetallic compounds during reaction between solid iron andmoltenaluminum. TransNonferrMet SocChina 2013;23(2):556—61.

    [27] Springer H, Kostka A, Payton EJ, Raabe D, Kaysser-Pyzalla A, Eggeler G. On the formation and growth of intermetallic phases during interdiffusion between low carbon steel and aluminum alloys. Acta Mater 2011;59(4):1586—600.

    [28] Rathod MJ, Kutsuna M. Joining of aluminum alloy 5052 and low-carbon steel by laser roll welding. Weld J 2004;83(1):16s—26s.

    * Corresponding author. Tel.: +91 4024586433; fax: +91 4024342697.

    美女被艹到高潮喷水动态| 免费少妇av软件| 国产在线男女| 身体一侧抽搐| 日韩欧美三级三区| 国产精品久久视频播放| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区免费观看| 国产一区二区在线观看日韩| 国国产精品蜜臀av免费| 国产精品美女特级片免费视频播放器| 成人午夜精彩视频在线观看| 女人久久www免费人成看片| 国产黄频视频在线观看| 国产精品一及| 听说在线观看完整版免费高清| 日日摸夜夜添夜夜爱| 在现免费观看毛片| 少妇熟女欧美另类| 直男gayav资源| av专区在线播放| 久久久久国产网址| 国产永久视频网站| 99久久精品热视频| 一区二区三区乱码不卡18| 亚洲久久久久久中文字幕| 伦精品一区二区三区| 边亲边吃奶的免费视频| 91久久精品电影网| 久久久久久久久久人人人人人人| 黄色一级大片看看| 波野结衣二区三区在线| 国产午夜福利久久久久久| 亚洲欧美精品自产自拍| 午夜日本视频在线| av播播在线观看一区| eeuss影院久久| 色综合亚洲欧美另类图片| 国产成年人精品一区二区| 91久久精品国产一区二区三区| 性插视频无遮挡在线免费观看| 欧美 日韩 精品 国产| 伦精品一区二区三区| 国产三级在线视频| 亚洲熟妇中文字幕五十中出| 深爱激情五月婷婷| 免费看日本二区| 色5月婷婷丁香| 日日啪夜夜撸| 啦啦啦中文免费视频观看日本| 成人鲁丝片一二三区免费| 亚洲欧美成人精品一区二区| 少妇人妻一区二区三区视频| 色播亚洲综合网| 亚洲av不卡在线观看| 91狼人影院| 久久99蜜桃精品久久| 偷拍熟女少妇极品色| 韩国av在线不卡| 国产成人午夜福利电影在线观看| 亚洲欧美日韩无卡精品| 久久99热这里只频精品6学生| 国产单亲对白刺激| 久久久久久久久久成人| 黄片wwwwww| 嫩草影院新地址| 女的被弄到高潮叫床怎么办| 三级男女做爰猛烈吃奶摸视频| 九九久久精品国产亚洲av麻豆| 一个人观看的视频www高清免费观看| 中文字幕制服av| 精品酒店卫生间| 亚洲欧洲国产日韩| 春色校园在线视频观看| 80岁老熟妇乱子伦牲交| av.在线天堂| 午夜福利在线在线| 一级二级三级毛片免费看| 建设人人有责人人尽责人人享有的 | 三级经典国产精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美一区二区三区国产| 久久久久久久久久成人| 免费av毛片视频| 性色avwww在线观看| 在线观看人妻少妇| 国产爱豆传媒在线观看| 超碰av人人做人人爽久久| 男人狂女人下面高潮的视频| 精品不卡国产一区二区三区| 高清av免费在线| 精品人妻熟女av久视频| 99re6热这里在线精品视频| 91av网一区二区| 成人特级av手机在线观看| 亚洲成人一二三区av| 国产成人一区二区在线| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 国产 一区 欧美 日韩| 天堂中文最新版在线下载 | 噜噜噜噜噜久久久久久91| 久久99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 亚洲国产av新网站| 乱系列少妇在线播放| 国产午夜精品一二区理论片| 五月伊人婷婷丁香| 日本一二三区视频观看| 国产激情偷乱视频一区二区| av免费观看日本| 国产成人a∨麻豆精品| 国产大屁股一区二区在线视频| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 欧美丝袜亚洲另类| 亚洲在久久综合| av播播在线观看一区| 久久久久久久午夜电影| 国产精品久久久久久av不卡| 久久国内精品自在自线图片| 亚洲精品乱码久久久v下载方式| 亚洲精品一二三| 欧美xxxx性猛交bbbb| 国产精品蜜桃在线观看| 欧美潮喷喷水| 大香蕉久久网| 亚洲av中文av极速乱| 色哟哟·www| 天堂俺去俺来也www色官网 | 激情五月婷婷亚洲| 国产精品蜜桃在线观看| 最近中文字幕2019免费版| 欧美精品国产亚洲| 婷婷色av中文字幕| 欧美区成人在线视频| 午夜激情久久久久久久| 久久99热6这里只有精品| 免费大片黄手机在线观看| 色综合亚洲欧美另类图片| 在线 av 中文字幕| 日韩在线高清观看一区二区三区| 亚洲国产精品专区欧美| 少妇人妻精品综合一区二区| .国产精品久久| 亚洲18禁久久av| 在线免费观看不下载黄p国产| 国产伦在线观看视频一区| 26uuu在线亚洲综合色| 欧美xxxx黑人xx丫x性爽| 欧美97在线视频| 国产亚洲5aaaaa淫片| 久久6这里有精品| 十八禁国产超污无遮挡网站| 国产精品福利在线免费观看| 午夜福利视频精品| 免费av观看视频| eeuss影院久久| 免费观看的影片在线观看| 80岁老熟妇乱子伦牲交| 亚洲综合色惰| 麻豆av噜噜一区二区三区| 久久久久久久久久久免费av| 久久久精品94久久精品| 中文字幕制服av| 天堂中文最新版在线下载 | 性插视频无遮挡在线免费观看| 国产成人a区在线观看| 日日啪夜夜撸| 亚洲最大成人手机在线| 伦精品一区二区三区| 免费av毛片视频| 日韩 亚洲 欧美在线| 十八禁网站网址无遮挡 | 免费av观看视频| 日韩不卡一区二区三区视频在线| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看| 久久久精品94久久精品| 极品少妇高潮喷水抽搐| 亚洲精品亚洲一区二区| 午夜免费激情av| 免费看不卡的av| 日韩精品有码人妻一区| 午夜爱爱视频在线播放| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 国产黄色小视频在线观看| 国产 一区 欧美 日韩| 午夜福利在线在线| 在现免费观看毛片| 欧美不卡视频在线免费观看| 国产视频首页在线观看| 又黄又爽又刺激的免费视频.| 亚洲av中文av极速乱| 欧美成人a在线观看| 国产色婷婷99| 日韩制服骚丝袜av| 干丝袜人妻中文字幕| 美女脱内裤让男人舔精品视频| or卡值多少钱| 欧美一级a爱片免费观看看| av播播在线观看一区| 最近手机中文字幕大全| 国产毛片a区久久久久| 久久人人爽人人爽人人片va| 亚洲国产精品国产精品| 国产黄频视频在线观看| 国产人妻一区二区三区在| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看| 美女高潮的动态| 在线天堂最新版资源| 欧美性猛交╳xxx乱大交人| 精品亚洲乱码少妇综合久久| 亚洲自拍偷在线| 亚洲精品国产av成人精品| 中国美白少妇内射xxxbb| 99热网站在线观看| 晚上一个人看的免费电影| 永久免费av网站大全| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 日本午夜av视频| 高清欧美精品videossex| 伦精品一区二区三区| 777米奇影视久久| 亚洲国产成人一精品久久久| 国产极品天堂在线| 日本一二三区视频观看| 成人亚洲精品一区在线观看 | 精品人妻偷拍中文字幕| av卡一久久| 中文字幕av在线有码专区| 亚洲国产av新网站| 亚洲av不卡在线观看| 22中文网久久字幕| 日韩中字成人| 少妇人妻精品综合一区二区| 国内精品美女久久久久久| 两个人视频免费观看高清| 秋霞伦理黄片| av免费在线看不卡| 狠狠精品人妻久久久久久综合| 男的添女的下面高潮视频| 午夜福利视频精品| 日韩,欧美,国产一区二区三区| 国产亚洲91精品色在线| 亚洲久久久久久中文字幕| 婷婷色麻豆天堂久久| 一级毛片我不卡| 特级一级黄色大片| 日本猛色少妇xxxxx猛交久久| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 一级毛片我不卡| 不卡视频在线观看欧美| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 蜜臀久久99精品久久宅男| 99久久精品国产国产毛片| 九草在线视频观看| 一夜夜www| 成人午夜精彩视频在线观看| 天堂√8在线中文| 亚洲不卡免费看| 人人妻人人澡欧美一区二区| 久久精品夜色国产| 边亲边吃奶的免费视频| 丰满少妇做爰视频| 成年版毛片免费区| 女人十人毛片免费观看3o分钟| 小蜜桃在线观看免费完整版高清| 国产成人精品婷婷| 国产成人a区在线观看| 久久精品夜夜夜夜夜久久蜜豆| 日韩一区二区三区影片| 亚洲精品视频女| 高清欧美精品videossex| 欧美不卡视频在线免费观看| 偷拍熟女少妇极品色| 一级毛片aaaaaa免费看小| www.色视频.com| 国产精品蜜桃在线观看| 国产 一区精品| 国产精品美女特级片免费视频播放器| 两个人的视频大全免费| 亚洲四区av| 老司机影院毛片| 久久精品久久精品一区二区三区| 熟妇人妻久久中文字幕3abv| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添av毛片| 激情五月婷婷亚洲| 少妇的逼水好多| 97超视频在线观看视频| 日韩欧美国产在线观看| 亚洲综合色惰| 午夜久久久久精精品| eeuss影院久久| 久久精品久久久久久久性| 国内少妇人妻偷人精品xxx网站| 能在线免费看毛片的网站| 九草在线视频观看| 亚洲欧美日韩卡通动漫| 成人高潮视频无遮挡免费网站| 青春草亚洲视频在线观看| 国产探花在线观看一区二区| 五月玫瑰六月丁香| 欧美一级a爱片免费观看看| 久久久久久伊人网av| 成年av动漫网址| 国产真实伦视频高清在线观看| 亚洲成人久久爱视频| 日本-黄色视频高清免费观看| 国产成人a∨麻豆精品| 免费看光身美女| 听说在线观看完整版免费高清| 国产激情偷乱视频一区二区| 日韩制服骚丝袜av| 午夜爱爱视频在线播放| av福利片在线观看| 午夜福利在线观看吧| 特级一级黄色大片| 久久99热这里只频精品6学生| 久久亚洲国产成人精品v| 色哟哟·www| 黄色欧美视频在线观看| 欧美精品国产亚洲| 99热这里只有是精品50| av又黄又爽大尺度在线免费看| 极品少妇高潮喷水抽搐| 色吧在线观看| 国产成人精品一,二区| 日日撸夜夜添| 在线观看人妻少妇| 亚洲精品色激情综合| 高清在线视频一区二区三区| 我的女老师完整版在线观看| 在线观看人妻少妇| 国产精品人妻久久久影院| 天堂影院成人在线观看| 亚洲精品乱久久久久久| 黄色欧美视频在线观看| 日本猛色少妇xxxxx猛交久久| 欧美97在线视频| 国产精品一区二区三区四区久久| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久 | 午夜福利高清视频| 在现免费观看毛片| ponron亚洲| 国产人妻一区二区三区在| av在线蜜桃| 在现免费观看毛片| 22中文网久久字幕| 久久精品国产亚洲网站| 久久99精品国语久久久| 免费看日本二区| 亚洲熟女精品中文字幕| 国产精品蜜桃在线观看| 精品国产三级普通话版| 内地一区二区视频在线| www.色视频.com| 中文字幕免费在线视频6| 男的添女的下面高潮视频| 丝袜美腿在线中文| 国产成人午夜福利电影在线观看| 国产精品久久久久久精品电影| 亚洲成人一二三区av| 午夜福利在线观看免费完整高清在| 国产综合精华液| 高清视频免费观看一区二区 | 熟女电影av网| 大香蕉97超碰在线| 国产免费一级a男人的天堂| 在线 av 中文字幕| 亚洲精品亚洲一区二区| 亚洲一区高清亚洲精品| 寂寞人妻少妇视频99o| 大片免费播放器 马上看| 国产伦在线观看视频一区| 国产视频首页在线观看| 欧美人与善性xxx| 亚洲精品久久午夜乱码| 看免费成人av毛片| 欧美成人a在线观看| 三级男女做爰猛烈吃奶摸视频| 能在线免费看毛片的网站| 全区人妻精品视频| 国产精品久久久久久精品电影小说 | 国产色爽女视频免费观看| 日韩三级伦理在线观看| 久久这里有精品视频免费| 久久久久久久午夜电影| 人妻一区二区av| 午夜亚洲福利在线播放| 成人高潮视频无遮挡免费网站| 女人十人毛片免费观看3o分钟| 看十八女毛片水多多多| 国语对白做爰xxxⅹ性视频网站| 欧美日韩一区二区视频在线观看视频在线 | 一级毛片久久久久久久久女| 国产毛片a区久久久久| 欧美成人a在线观看| 大陆偷拍与自拍| 毛片女人毛片| 国内少妇人妻偷人精品xxx网站| 亚洲精品第二区| 蜜臀久久99精品久久宅男| 女人被狂操c到高潮| 亚洲成人中文字幕在线播放| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 亚洲在线观看片| 麻豆国产97在线/欧美| 国产午夜精品一二区理论片| 国产黄色小视频在线观看| 九草在线视频观看| 亚洲va在线va天堂va国产| 人妻制服诱惑在线中文字幕| 成年av动漫网址| 男女下面进入的视频免费午夜| 蜜桃久久精品国产亚洲av| 一级毛片 在线播放| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 91狼人影院| 欧美zozozo另类| 精品国产一区二区三区久久久樱花 | 边亲边吃奶的免费视频| 99热6这里只有精品| 国产三级在线视频| 高清毛片免费看| 日韩欧美三级三区| 赤兔流量卡办理| 超碰av人人做人人爽久久| 精品酒店卫生间| 一区二区三区乱码不卡18| 国内精品美女久久久久久| 51国产日韩欧美| 黄片无遮挡物在线观看| av线在线观看网站| 高清av免费在线| 日韩成人伦理影院| 丝袜美腿在线中文| 国产成人精品久久久久久| 久99久视频精品免费| 免费看a级黄色片| 女的被弄到高潮叫床怎么办| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 18禁在线播放成人免费| 国产精品一区二区在线观看99 | 亚洲色图av天堂| 高清欧美精品videossex| 午夜福利高清视频| 国产v大片淫在线免费观看| 亚洲av成人精品一区久久| 成人毛片a级毛片在线播放| 好男人在线观看高清免费视频| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 国产精品av视频在线免费观看| 最近最新中文字幕大全电影3| 一边亲一边摸免费视频| 亚洲无线观看免费| 欧美xxxx黑人xx丫x性爽| 肉色欧美久久久久久久蜜桃 | 久久久欧美国产精品| 国产精品三级大全| 97超碰精品成人国产| 欧美激情在线99| 精品熟女少妇av免费看| a级毛色黄片| 成人国产麻豆网| 夜夜爽夜夜爽视频| 欧美日韩视频高清一区二区三区二| 国产白丝娇喘喷水9色精品| 99久国产av精品国产电影| 国产精品国产三级专区第一集| 欧美丝袜亚洲另类| 亚洲伊人久久精品综合| 亚洲天堂国产精品一区在线| 99久久精品热视频| 黄色欧美视频在线观看| 欧美日韩视频高清一区二区三区二| 夫妻性生交免费视频一级片| 亚洲成人久久爱视频| av国产免费在线观看| 久久久a久久爽久久v久久| 淫秽高清视频在线观看| 久久久久久久久久久免费av| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 最近最新中文字幕大全电影3| av一本久久久久| 熟妇人妻久久中文字幕3abv| 啦啦啦中文免费视频观看日本| 国产一区二区三区综合在线观看 | 亚洲av一区综合| 夫妻性生交免费视频一级片| 51国产日韩欧美| 又大又黄又爽视频免费| 成人一区二区视频在线观看| 一区二区三区四区激情视频| h日本视频在线播放| 成人无遮挡网站| 亚洲第一区二区三区不卡| 三级国产精品片| 菩萨蛮人人尽说江南好唐韦庄| 国产伦精品一区二区三区四那| 日日干狠狠操夜夜爽| 亚洲欧美一区二区三区黑人 | 99久久精品热视频| 国产在视频线在精品| 亚洲av福利一区| 国产伦在线观看视频一区| 一本久久精品| 日产精品乱码卡一卡2卡三| 国产在线一区二区三区精| 色综合站精品国产| 亚洲经典国产精华液单| 国产美女午夜福利| 日韩不卡一区二区三区视频在线| 乱码一卡2卡4卡精品| 黑人高潮一二区| 成人欧美大片| 毛片一级片免费看久久久久| 成年版毛片免费区| 一个人免费在线观看电影| 看免费成人av毛片| 成人av在线播放网站| 男人舔女人下体高潮全视频| 久久这里有精品视频免费| 亚洲aⅴ乱码一区二区在线播放| 麻豆久久精品国产亚洲av| 蜜桃亚洲精品一区二区三区| 一级片'在线观看视频| 日韩国内少妇激情av| 精品欧美国产一区二区三| 日本色播在线视频| 精品一区二区三卡| 少妇裸体淫交视频免费看高清| 99久久九九国产精品国产免费| 18禁裸乳无遮挡免费网站照片| 只有这里有精品99| 免费黄频网站在线观看国产| 亚洲av一区综合| 永久网站在线| 久久久久久久大尺度免费视频| 国产亚洲91精品色在线| www.av在线官网国产| 在线免费十八禁| 26uuu在线亚洲综合色| 99久久精品一区二区三区| 美女内射精品一级片tv| 免费高清在线观看视频在线观看| 中文在线观看免费www的网站| 床上黄色一级片| 亚洲三级黄色毛片| 免费观看性生交大片5| 日韩欧美 国产精品| 午夜福利成人在线免费观看| 国产精品日韩av在线免费观看| 免费无遮挡裸体视频| 最近2019中文字幕mv第一页| 九九久久精品国产亚洲av麻豆| 日韩在线高清观看一区二区三区| 亚洲精品国产av成人精品| 深夜a级毛片| 国产淫语在线视频| 嫩草影院入口| 亚洲真实伦在线观看| 亚洲在线自拍视频| 色综合站精品国产| 亚洲最大成人中文| 亚洲欧美中文字幕日韩二区| 久久99热这里只有精品18| 中国美白少妇内射xxxbb| 亚洲av免费高清在线观看| 精品久久久久久久久亚洲| 国产激情偷乱视频一区二区| 日韩欧美精品免费久久| 少妇人妻一区二区三区视频| 成年女人在线观看亚洲视频 | 亚洲天堂国产精品一区在线| 一个人免费在线观看电影| 久久久久久九九精品二区国产| 免费看日本二区| 亚洲精品乱久久久久久| kizo精华| 国产精品嫩草影院av在线观看| 国产一区二区在线观看日韩| 久久久欧美国产精品| 国产亚洲精品久久久com| 亚洲成人中文字幕在线播放| 成人午夜精彩视频在线观看| 久久久久九九精品影院| 欧美日韩精品成人综合77777| 国产午夜精品一二区理论片| 日本一二三区视频观看| 少妇丰满av| 免费看不卡的av| 日本欧美国产在线视频| 日韩精品有码人妻一区| 国产在线男女| 91精品伊人久久大香线蕉| 国产一级毛片七仙女欲春2| 国产69精品久久久久777片| 床上黄色一级片| 国产av码专区亚洲av| 久久久久久久大尺度免费视频|