• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of process parameters on physical dimensions of AA6063 aluminium alloy coating on mild steel in friction surfacing B. VIJAYA KUMARa,*, G. MADHUSUDHAN REDDYb, T. MOHANDASc

    2015-07-02 06:14:15DeprtmentofMehnilEngineeringGuruNnkInstituteofTehnologyIrhimptnmRngReddyDistritTelngn501506IndiDefeneMetllurgilReserhLortoryKnhnghHyderdTelngn500058IndiDeprtmentofMehnilEngineeringNllMllReddyEngineeringCollegeGhtkesrRngRe
    Defence Technology 2015年3期

    Deprtment of Mehnil Engineering, Guru Nnk Institute of Tehnology, Irhimptnm, Rng Reddy Distrit, Telngn, 501506, IndiDefene Metllurgil Reserh Lortory, Knhngh, Hyderd, Telngn, 500058, IndiDeprtment of Mehnil Engineering, Nll Mll Reddy Engineering College, Ghtkesr, Rng Reddy Distrit, Telngn, 501301, IndiReeived 13 Ferury 2015; revised 8 April 2015; epted 10 April 2015 Aville online 22 My 2015

    Influence of process parameters on physical dimensions of AA6063 aluminium alloy coating on mild steel in friction surfacing B. VIJAYA KUMARa,*, G. MADHUSUDHAN REDDYb, T. MOHANDASc

    aDepartment of Mechanical Engineering, Guru Nanak Institute of Technology, Ibrahimpatnam, Ranga Reddy District, Telangana, 501506, IndiabDefence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Telangana, 500058, IndiacDepartment of Mechanical Engineering, Nalla Malla Reddy Engineering College, Ghatkesar, Ranga Reddy District, Telangana, 501301, India
    Received 13 February 2015; revised 8 April 2015; accepted 10 April 2015 Available online 22 May 2015

    Abstract

    An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force (F)—table traverse speed (Vx) and spindle speed (N)—table traverse speed (Vx) produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Friction surfacing; Mechtrode; Substrate; Process parameters; Physical dimensions

    E-mail addresses: vkbongarala@gmail.com (B. VIJAYA KUMAR), gmreddydmrl@yahoo.co.in (G. MADHUSUDHAN REDDY), thondapim@ rediffmail.com (T. MOHANDAS).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.04.001

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Friction surfacing is a solid phase cladding technique that uses a combination of heat and deformation to clean surfaces and metallurgically bonded metals. In its simplest arrangement, a rotating consumable bar is brought into contact, under low load, with stationary substrate in the initial dwell time stage, as shown in Fig. 1, when the rotating bar is preferentially heated by the frictional heat development due to relative motion between the rotating consumable rod and stationary substrate, facilitating to the consumable to plastic state. After the dwell time, the substrate that is mounted on a table is given linear translational motion to facilitate the deposition of the plasticized consumable onto the substrate by shearing, as shown in Fig. 2. Bonding occurs by the combination of selfcleaning between the two materials and the application of heat and pressure to promote diffusion across the interface, thereby forming a solid-phase metallurgical bond. The process relies on producing precisely the right temperature and shear conditions at the interface between the rotating bar and substrate via the plasticized layer. Friction surfacing has gained increasing interest in the area of reclamation of worn components during the recent past as it has been proved to be successful in building-up of worn-out shafts. The process can be performed in open air [1], in inert atmosphere [2] and underwater without sealing [3]. It is suitable for consumableswhich exhibit low thermal conductivity as well as high thermal conductivity alloys like aluminium alloys. Minimal dilution, narrow heat-affected zone, ability to deposit metallurgically incompatible materials and freedom from cracking are amongst the most important advantages of friction surfacing in comparison with conventional fusion welding based surfacing methods. Friction surfacing was first patented as a metalcoating process in 1941 by Klopstock et al. [4], but only recently it has been developed as a practical industrial process because of its repair and reclamation capabilities.

    Friction surfacing of different substrates with different coating combinations, consisting of hard coatings on soft substrates as well as soft coatings on hard substrates [5,6] and coating of metal matrix composite on aluminium—silicon alloy to improve wear resistance [7], is some of the recent studies. Intelligent support systems have also been reported to have been employed for optimizing friction surfacing parameters [8]. Steels are coated with zinc or aluminium to protect them against atmospheric corrosion [9]. Aluminium is used as anode for the protection of ships by sacrificial anodic protection of steel parts of marine vessels, especially of war ships, exposed to sea water [10]. Aluminium deposition on mild steel by fusion welding is not feasible as it chemically reacts to form iron aluminide, and Fe and Al are immiscible. Hence, a solid state deposition is a possible option. The present study deals with deposition of AA 6063 aluminium alloy on IS2062 mild steel substrate. Detailed characterization of these solid state deposits of aluminium on mild steel has not been well documented, thus, the present study assumes special significance. In the present study, the factorial design of experiments [11] has been selected to investigate the influence of friction surfacing process parameters on the physical dimensions of the coating, namely coating width and thickness with adequate strength and ductility.

    Fig. 1. Schematic of friction surfacing.

    Fig. 2. Typical friction surfaced AA6063 Aluminium alloy.

    Table 1Chemical composition of Mechtrode and substrate (wt. %).

    Material Tensile strength/MPa Elongation/% Hardness/HV IS2062- MS 410 23 180 AA6063 -Al 241 12 83

    2. Experimental procedure

    AA 6063 aluminium alloy of 15 mm diameter and 280 mm long rod was taken as mechtrode (consumable rod), and IS2062 mild steel of 250 mm×300 mm×10 mm plate was used as substrate. The chemical composition and mechanical properties of mechtrode and substrate are shown in Tables 1 and 2, respectively. Rod end was machined to ensure flatness, and the substrate was milled and its surface was grinded to obtain a flat and even surface free of oxide. Mechtrode and substrate were cleaned with acetone prior to surfacing to minimize the contamination.

    Experiments were carried on CNC Friction Surfacing machine with a capacity of 50 kN axial force (F), spindle speed 2400 rpm (N) and table speed of 5000 mm/min(Vx) in the Defence Metallurgical Research Laboratory, Hyderabad, India with the option to conduct experiments either in force controlled or position controlled mode. In the present study, the experiments were conducted in force controlled mode. AA6063 aluminium alloy coatings were deposited on mild steel for 100 mm in length as per the experimental parameter matrix [12] details given in Table 3.

    3. Characterization of coatings

    AA6063 aluminium alloy coatings on mild steel obtained with eight different parameter combinations are shown in Fig. 3(a). The coatings exhibited ripple formation with spacing between the ripples. Coating width and thickness were observed to depend on the surfacing parameters, coating widths of advanced side and retreating side were machined to observe effective contact area and sectioned for measuring the effective coating width and thickness in contact with substrate [13]. Physical dimensions of the coating, namely coating width and thickness, were measured from their stereo micrographs obtained after conventional metallographic sample preparation of transverse sections of the samples, as shown in Fig. 3(b) and (c).

    Fig. 3. (a) Deposit of aluminium alloy on mild steel by eight parameter combinations. (b) Transverse section of coatings. (c) Interfacial microstructure.

    Table 3Design of experimental parametric matrix.

    A ram tensile test similar to Mil-J-24445A was designed in order to determine the interfacial strengths of the coating and the substrate, as shown in Fig. 4. For this, the coating material was machined from the substrate as a circular area forming an inner circle without the coating while retaining the outer circular area to form an annular space consisting of intact coating and substrate. The outer circle coating was machined to facilitate to support the substrate on a fixture such that part of the inner circular area in the annular space is only subjected to loading under loading on the area. The test was conducted on a 100 kN INSTRON universal testing machine. Ram tensile test samples are shown in Fig. 5.

    Fig. 4. Schematic of ram tensile test method.

    The coatings were subjected to face bend test by three point bend test as per ASTM-E190, AWSB4.0 guided bend test. Samples after testing are shown in Fig. 6. Bending was discontinued at the instant of pealing or cracking of the coating. From the bend sample the radius of bend was obtained to estimate bend ductility. Bend ductility was calculated by measuring the bend angle and bend radius using the following relation:

    Fig. 5. View of ram tensile samples after testing.

    Fig. 6. Samples after face bend test.

    ε=[1/(2R/t + 1)]×100

    where ε is percentage (%) of elongation; R is radius of curvature of the bend; and t is thickness of the specimen (substrate + coating), in mm.

    4. Results and discussion

    4.1. Physical dimensions of the coatings

    The physical dimensions and the corresponding mechanical properties of the coatings for selected parameter combinations based on factorial design of experiments are presented in Table 4.The influences of axial force, spindle speed and table travel speed on coating thickness and width are presented in Figs. 7—9, respectively. It has been observed that, as the axial force (F) increases the coating width increases, however, the coating width at higher levels of constant rotational speed and table travel speed the is less than that at lower levels of constant spindle speed (N) and table traverse speed (Vx). The thickness varied from 1.5 mm at lower axial force to 1 mm at higher axial force in respect of lower levels of spindle speed and table speed while at higher level of these combinations the thickness is around 2 mm under higher axial force.

    At both levels of constant axial force and table traverse speeds the width of the coating decreases while its thickness remains nearly constant with the increase in spindle speed. It is also noted that the width of the coating is narrow at lower levels. At higher levels of constant axial force and spindle speed, the width of the coating decreases while its thickness remains nearly constant with the increase in table speed. However, at lower levels of constant axial force and spindle speed, the coating width and thickness remain nearly constant with the increase in table speed.

    To explain the trends observed from the influence of surfacing parameters on the physical dimensions, corresponding strength and bend ductility of coating, an attempt has been made to explore the role of frictional energy which produces heat between mechtrode and substrate. For each parameter combination from the data generated by friction surfacing machine the interfacial coefficient of kinetic friction, power and heat input were calculated using the formulae μk= Fk/Nk, where Fkis friction force offered by substrate along the table traverse speed, and Nkis normal force offered by substrate along the mechtrode feed, P = 2πNT/60 and Q = P/Vx, where P is input power, and Vxis table traverse speed. From the results data it is observed that the strength and ductility are maximum for parameter combinations 3 and 6 for which the heat input is 67.1 and 40.82 J/mm, respectively. These heat inputs are intermediate to the highest and lowest heat inputs. The coefficient of friction for these parameter combinations is maximum (0.3744). Higher heat input could result in the formation of brittle intermetallics while low heat input can be inadequate to develop metallurgical bonding between the coating and the substrate [14]. Incidentally these are the parameter combinations for which coating thickness isaround 1.25 mm and the coating width is at the extreme ends of 12 and 16 mm. It may be noted that the torque for these combinations is nearly same (around 6.5 N-m). This implies that axial force has a dominating influence on all the physical and mechanical properties of the coating.

    Table 4 Mechanical properties of the coatings at different parameter combinations.

    Fig. 7. Influence of axial force on coating width and thickness.

    4.2. Mechanical properties

    The dependence of mechanical properties of the coating, namely strength and bend ductility, on the coating width and thickness is observed from the output responses. The output responses are shown in conjunction with the plots in Fig. 10. The maximum strength and bend ductility are observed at the lowest and highest values of coating width and lower thickness (parameter combinations 3 and 6), as shown in Fig. 11.

    4.3. The effects of parameters

    In order to find out the direct effect of individual parameters on the physical characteristics of the coatings and theirinteraction effect, the data have been subjected to Yates ‘a(chǎn)nalysis [15] presented in Table 5. The salient observations from this analysis are that the increase in axial force leads to the wider and thin coatings, and the increase in spindle speed has an opposite effect to that observed in respect of axial force while increasing the table speed leads to the increase in both width and thickness of the coating. Increase in the values of F Vxand N Vxresults in an increase in width and thickness while the increase in FN leads to the decrease in width and thickness of the coating. The increase in F N Vxleads to the higher width and lower thickness of coating.

    Fig. 8. Influence of spindle speed on coating width and thickness.

    Fig. 9. Influence of table speed on coating width and thickness.

    Fig. 10. Mechanical properties of coating width.

    Fig. 11. Mechanical properties of coating thickness.

    Table 5Analysis of direct and interaction effects of parameters on responses.

    Table 6Regression analysis of coating width and thickness.

    4.4. Regression analysis

    To understand the influences of surfacing parameters on the physical dimensions of the coatings, the multiple linear regression analysis was made as per the following regression equation

    Y = b0+ b1X1+ b2X2+ b3X3+ b12X1X2+ b13X1X3

    + b23X2X3+ b123X1X2X3

    where X1is the axial force; X2is spindle speed; X3is table traverse speed; b0, b1, b2and b3are coefficients of response for the respective parameters and their combination; and Y is the response,namely strength, ductility, hardness, width and thickness. Table 6 shows the regression equations for various responses after identifying the most significant factors and interaction effects. The average error for all the responses has been found to be less than 3. The values of the coefficients of the linear regression equation were calculated by the regression method,. All the coefficients were tested for their significance at 95%confidence level. The validity of the regression equations developed is evident from their extremely high coefficients of correlation (r) value for coating width (0.98) and thickness (0.98). It has however been observed that coating thickness trends indicate that process parameters do not exhibit any influence on the thickness of the coating, and hence the standard deviation for this has also been observed to be low.

    5. Conclusions

    1) The influences of process parameters on coating width and thickness in friction surfacing of mild steel with aluminium alloy AA6063 were studied. It has been observed that the physical dimensions of coating were influenced by process parameters.

    2) Heat input calculations revealed that the parameter combinations with heat input in the range of 67.1 and 40.82 J/ mm result in better combination of strength and bend ductility. Either higher heat input or low heat input is not favourable. The coefficient of friction for these parameter combinations is the highest (0.3744)

    3) Analysis of the mechanical properties by Yates’Order revealed that the increase in axial force leads to improved strength as higher axial force results in lower coating thickness.

    4) Individual parameters and their interactive effects have also been observed in respect of physical characteristics of the coatings.

    5) Increase in the values of combination of axial force and table speed leads to higher coating width and thickness.

    6) Increase in the values of three parameter combinations results in the increase in width and the decrease in the thickness of the coating

    7) Maximum strength and ductility were observed at a coating thickness of 1.25—1.3 mm at extreme ends of coating width.

    Acknowledgements

    The authors are indebted to the Defence Metallurgical Research Laboratory (DMRL) for providing the friction surfacing facilities to carry out the experiments. They would also like to place on record the support received from Mr.G.R.Vijay Kumar of DMRL for his help in carrying out friction surfacing experiments and Mr. D.S.K. Murali in carrying out the mechanical testing.

    References

    [1] Hiroshi Tokisue, KazuyoshiKatoh, Structure and mechanical properties of multilayer friction surfaced aluminium alloys, Report of the Research Institute of Industrial Technology, Nihon UniversityNo.78 (2005).

    [2] chandrasekaran M, Batchelor AW. Study of the interfacial phenomena during friction surfacing of aluminum with steel. J Mater Process Technol 1997;32:6055—62.

    [3] Li JQ, Shinoda T. Underwater friction surfacing. Surf Eng 2000;16(1):31—5.

    [4] H.Klopstock, A.R. Neelands, Improved method of joining and welding metals, UK Patent No.572 789 (1941).

    [5] Sakihama Hidekazu, Tokisue Hiroshi. Mechanical properties of friction surfaced 5052 aluminium alloy. J Jpn Inst light Met 2002;52(8):346—51.

    [6] shinoda Takeshi, Okamoto Sinya. Deposition of hard coating layer by friction surfacing. J Jpn Weld Soc 1995-08-05;13(3):432—7.

    [7] Madhusudhan Reddy G, Srinivasa Rao K, Mohandas T. Friction surfacing: novel technique for metal matrix composite coating on aluminium-silicon alloy. Surf Eng 2009;25(1).

    [8] Vitanov VI, Voutchkov II. processparameters selection for friction surfacing applications using intelligent decision support. J Mater Process Technol 2005;159:27—32.

    [9] Chandrasekaran M, Batchelor AW. Friction surfacing of metal coatings on steel and aluminiumsubstrate. J Mater Process Technol 1997;72:446—52.

    [10] Batchelor AW, Jana S. The effect of metal type and multi layering on friction surfacing. J Mater Process Technol 1996;57:172—81.

    [11] Harries P, Smith BL. Factorial techniques for weld quality prediction. Met Construction J 1983;15:661—7.

    [12] B. Vijaya Kumar, G. Madhusudhan Reddy and T. Mohandas, Identification of Suitable Process Parameters for Friction Surfacing of Mild Steel with AA6063 Aluminum Alloy, Int J Adv Manufacturing Technology 10.1007/s00170-014-5964-7.

    [13] H. KhalidRafi, GD JanakiRam, G Phanikumar and K Prasad Rao, Frictionsurfacing of Austenitic stainless steel on low carbon steel: Studies on the effect of traverse speed Proceedings of theWorld Congresson Engineering 2010 vol. II, WCE, June 30-July2, 2010,London.

    [14] S.Janakiraman and K. UdayaBhat, formation of composite surface during friction surfacing of steel with aluminium ,Hindawi Publishing Corporation, Advances in Tribology, Volume 2012, ArticleID 6144278.

    [15] Yates Frank, Mather Kenneth.“Ronald Aylmer Fisher”, factorial experiments. 1963. http://dx.doi.org/10.1098/rsbm.1963.0006.

    * Corresponding author. Tel.:+91 9849246850.

    色在线成人网| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 一进一出抽搐gif免费好疼| 一级a爱视频在线免费观看| 国产成人精品久久二区二区免费| 国产成人av教育| 成年女人毛片免费观看观看9| 大香蕉久久成人网| 男人的好看免费观看在线视频 | 免费一级毛片在线播放高清视频 | 一级a爱视频在线免费观看| 国产精品亚洲一级av第二区| 麻豆久久精品国产亚洲av| www.自偷自拍.com| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 露出奶头的视频| 青草久久国产| 夜夜夜夜夜久久久久| 亚洲avbb在线观看| 性欧美人与动物交配| 老司机午夜福利在线观看视频| 亚洲天堂国产精品一区在线| 香蕉久久夜色| 欧美日韩瑟瑟在线播放| 欧美日韩精品网址| 一二三四在线观看免费中文在| 午夜精品国产一区二区电影| 日韩精品免费视频一区二区三区| 久久婷婷人人爽人人干人人爱 | 久久影院123| 两性午夜刺激爽爽歪歪视频在线观看 | 麻豆成人av在线观看| 欧美日韩黄片免| 国产精品久久久久久亚洲av鲁大| 色在线成人网| 啦啦啦免费观看视频1| 久久中文看片网| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩无卡精品| 亚洲精品久久成人aⅴ小说| 99re在线观看精品视频| 日韩欧美三级三区| 久久久国产精品麻豆| 欧美老熟妇乱子伦牲交| 日韩大尺度精品在线看网址 | 在线观看www视频免费| 乱人伦中国视频| 亚洲国产看品久久| 久久久久久国产a免费观看| 人成视频在线观看免费观看| 国产色视频综合| 久久伊人香网站| 精品高清国产在线一区| 91大片在线观看| 久久国产精品人妻蜜桃| 色播在线永久视频| 久久国产精品影院| 欧美日本亚洲视频在线播放| av视频免费观看在线观看| 久久人妻熟女aⅴ| 午夜老司机福利片| 制服人妻中文乱码| 9色porny在线观看| 99久久精品国产亚洲精品| 亚洲国产精品久久男人天堂| 日韩欧美国产在线观看| 欧美成人性av电影在线观看| 大型av网站在线播放| 男女之事视频高清在线观看| 搡老妇女老女人老熟妇| 男女之事视频高清在线观看| 亚洲精品久久国产高清桃花| 一级a爱视频在线免费观看| 黄片播放在线免费| 中文字幕高清在线视频| 黄色毛片三级朝国网站| 搞女人的毛片| 亚洲 国产 在线| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 制服丝袜大香蕉在线| 极品教师在线免费播放| 国产黄a三级三级三级人| av电影中文网址| 一级毛片精品| 亚洲中文字幕日韩| 男女下面进入的视频免费午夜 | 成人18禁高潮啪啪吃奶动态图| 91老司机精品| 老司机午夜十八禁免费视频| 国产欧美日韩综合在线一区二区| 国产熟女午夜一区二区三区| 动漫黄色视频在线观看| 老司机靠b影院| 欧美日韩一级在线毛片| 国产av一区在线观看免费| 久久热在线av| 亚洲国产欧美网| 亚洲专区中文字幕在线| 亚洲成人精品中文字幕电影| 一二三四社区在线视频社区8| 黑丝袜美女国产一区| 女警被强在线播放| 两人在一起打扑克的视频| 中文字幕最新亚洲高清| 在线观看舔阴道视频| 每晚都被弄得嗷嗷叫到高潮| 午夜a级毛片| 国产黄a三级三级三级人| 欧美激情极品国产一区二区三区| 欧美激情高清一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 成人三级黄色视频| 丝袜美足系列| 老司机靠b影院| 亚洲视频免费观看视频| 国内毛片毛片毛片毛片毛片| 精品欧美国产一区二区三| 亚洲男人的天堂狠狠| 男男h啪啪无遮挡| 又紧又爽又黄一区二区| 欧美日本亚洲视频在线播放| 亚洲成av片中文字幕在线观看| 啪啪无遮挡十八禁网站| 十分钟在线观看高清视频www| 色综合欧美亚洲国产小说| 国产成人免费无遮挡视频| 国产精品1区2区在线观看.| 欧美亚洲日本最大视频资源| 久久中文看片网| av超薄肉色丝袜交足视频| 中文字幕色久视频| 色播在线永久视频| 欧美乱色亚洲激情| 国产精品98久久久久久宅男小说| 国产精品99久久99久久久不卡| 一级毛片精品| 看黄色毛片网站| 久久久久久久久久久久大奶| 如日韩欧美国产精品一区二区三区| tocl精华| 精品久久久久久久毛片微露脸| 极品教师在线免费播放| 久久久久久久久久久久大奶| 日韩一卡2卡3卡4卡2021年| 91av网站免费观看| 久久精品国产亚洲av高清一级| 丝袜人妻中文字幕| 极品人妻少妇av视频| 欧美日韩亚洲国产一区二区在线观看| 成熟少妇高潮喷水视频| 9色porny在线观看| 亚洲一区二区三区不卡视频| 欧美乱码精品一区二区三区| 欧美性长视频在线观看| 精品电影一区二区在线| 午夜a级毛片| 变态另类丝袜制服| 久久香蕉国产精品| 女性生殖器流出的白浆| 99国产精品一区二区蜜桃av| 午夜免费激情av| 亚洲一卡2卡3卡4卡5卡精品中文| 两人在一起打扑克的视频| 亚洲男人的天堂狠狠| 国产成人av激情在线播放| 黄色毛片三级朝国网站| 一区二区三区激情视频| 亚洲第一av免费看| 精品国产美女av久久久久小说| 男女之事视频高清在线观看| x7x7x7水蜜桃| 久久人人爽av亚洲精品天堂| 亚洲精品av麻豆狂野| 老司机在亚洲福利影院| 黑人巨大精品欧美一区二区mp4| 色在线成人网| 成人亚洲精品一区在线观看| 欧美乱妇无乱码| 首页视频小说图片口味搜索| 脱女人内裤的视频| 黄网站色视频无遮挡免费观看| 国产主播在线观看一区二区| 18禁美女被吸乳视频| 法律面前人人平等表现在哪些方面| 亚洲一区二区三区色噜噜| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 国产亚洲精品综合一区在线观看 | 老司机深夜福利视频在线观看| 亚洲第一青青草原| 欧美一级毛片孕妇| 国产精品综合久久久久久久免费 | 美女扒开内裤让男人捅视频| 在线播放国产精品三级| 欧美成人性av电影在线观看| 久9热在线精品视频| 无人区码免费观看不卡| 91精品三级在线观看| 国产国语露脸激情在线看| 九色国产91popny在线| 国产亚洲精品久久久久久毛片| 久久天堂一区二区三区四区| 又大又爽又粗| 窝窝影院91人妻| 天天躁夜夜躁狠狠躁躁| 久久精品人人爽人人爽视色| 久久精品91无色码中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产高清videossex| 久久精品亚洲精品国产色婷小说| 精品电影一区二区在线| 一进一出好大好爽视频| 啪啪无遮挡十八禁网站| 日韩高清综合在线| 黄片大片在线免费观看| 桃色一区二区三区在线观看| 可以在线观看毛片的网站| 神马国产精品三级电影在线观看 | 久久 成人 亚洲| 波多野结衣高清无吗| 狠狠狠狠99中文字幕| svipshipincom国产片| 曰老女人黄片| 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 国产精品影院久久| 国产精品免费一区二区三区在线| 中国美女看黄片| 99久久综合精品五月天人人| 超碰成人久久| 国产成人系列免费观看| 淫秽高清视频在线观看| 最近最新中文字幕大全免费视频| 男人操女人黄网站| 日韩一卡2卡3卡4卡2021年| 精品国内亚洲2022精品成人| 亚洲午夜精品一区,二区,三区| 天天躁夜夜躁狠狠躁躁| 亚洲国产精品sss在线观看| 99国产综合亚洲精品| 桃色一区二区三区在线观看| 一区二区三区高清视频在线| 国产精品久久视频播放| 国产精品乱码一区二三区的特点 | √禁漫天堂资源中文www| 老熟妇乱子伦视频在线观看| 国产成+人综合+亚洲专区| 久久青草综合色| 欧美日韩黄片免| 精品人妻1区二区| av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 脱女人内裤的视频| 国产成人欧美| 亚洲男人天堂网一区| 亚洲人成电影免费在线| 真人做人爱边吃奶动态| 身体一侧抽搐| videosex国产| 国内精品久久久久久久电影| 制服人妻中文乱码| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 国产成人精品在线电影| tocl精华| 一区二区三区国产精品乱码| 亚洲专区国产一区二区| 美女免费视频网站| 成人免费观看视频高清| 亚洲色图 男人天堂 中文字幕| 成人18禁高潮啪啪吃奶动态图| 午夜激情av网站| 一级a爱片免费观看的视频| 男女之事视频高清在线观看| 国产av一区在线观看免费| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 在线十欧美十亚洲十日本专区| av有码第一页| 日韩欧美国产在线观看| 亚洲欧美日韩无卡精品| 美女 人体艺术 gogo| 女同久久另类99精品国产91| 亚洲av熟女| 一级毛片高清免费大全| 亚洲成av片中文字幕在线观看| 国产亚洲欧美98| 亚洲电影在线观看av| 精品久久久久久久毛片微露脸| 免费在线观看日本一区| 国产成年人精品一区二区| 亚洲国产中文字幕在线视频| 男人舔女人下体高潮全视频| 精品久久蜜臀av无| 亚洲成人精品中文字幕电影| 久久久精品国产亚洲av高清涩受| 日韩精品青青久久久久久| 久9热在线精品视频| 亚洲成人免费电影在线观看| 大香蕉久久成人网| 精品国产超薄肉色丝袜足j| 母亲3免费完整高清在线观看| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 亚洲欧美日韩高清在线视频| av天堂在线播放| 美女午夜性视频免费| 男女做爰动态图高潮gif福利片 | 中国美女看黄片| 国产av一区在线观看免费| 国产激情久久老熟女| 国产精品一区二区精品视频观看| 亚洲激情在线av| 国产熟女午夜一区二区三区| 欧美另类亚洲清纯唯美| 夜夜看夜夜爽夜夜摸| 久久香蕉国产精品| 免费久久久久久久精品成人欧美视频| 啦啦啦免费观看视频1| 国产区一区二久久| 国产亚洲精品第一综合不卡| 国产区一区二久久| 波多野结衣av一区二区av| 国内精品久久久久久久电影| 男女午夜视频在线观看| 俄罗斯特黄特色一大片| 亚洲国产中文字幕在线视频| 99精品在免费线老司机午夜| 一区二区三区国产精品乱码| 国产av一区二区精品久久| 国产精品美女特级片免费视频播放器 | 免费女性裸体啪啪无遮挡网站| 在线av久久热| 亚洲五月色婷婷综合| 亚洲精品粉嫩美女一区| 亚洲人成电影观看| 黄色a级毛片大全视频| 少妇粗大呻吟视频| 亚洲性夜色夜夜综合| 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲| 国产免费av片在线观看野外av| 亚洲人成电影免费在线| 91精品国产国语对白视频| 在线观看www视频免费| 色综合亚洲欧美另类图片| 国产色视频综合| av电影中文网址| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 999精品在线视频| 久久香蕉国产精品| 免费在线观看亚洲国产| 91大片在线观看| 成人国产一区最新在线观看| 男女做爰动态图高潮gif福利片 | 免费观看精品视频网站| 美女大奶头视频| 亚洲无线在线观看| 国产区一区二久久| 女人爽到高潮嗷嗷叫在线视频| av视频免费观看在线观看| 国产欧美日韩一区二区精品| 亚洲色图av天堂| 亚洲狠狠婷婷综合久久图片| 国产色视频综合| 国产高清有码在线观看视频 | 久久国产精品人妻蜜桃| av中文乱码字幕在线| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 午夜福利高清视频| 日韩欧美免费精品| 久久精品成人免费网站| 国产成人精品久久二区二区免费| 亚洲熟妇中文字幕五十中出| 国产成人啪精品午夜网站| 91成人精品电影| 国产国语露脸激情在线看| 国产亚洲av高清不卡| 国产高清有码在线观看视频 | 久久亚洲精品不卡| 精品无人区乱码1区二区| 精品不卡国产一区二区三区| 大型av网站在线播放| 国产亚洲精品av在线| 成人亚洲精品一区在线观看| 国产精品电影一区二区三区| 99国产精品免费福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久人人精品亚洲av| 男人操女人黄网站| 精品国产亚洲在线| 久久久久久久久久久久大奶| 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| 欧美大码av| 日本欧美视频一区| 少妇的丰满在线观看| 午夜福利18| 午夜老司机福利片| 一进一出抽搐gif免费好疼| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 久久精品91无色码中文字幕| 欧美日韩精品网址| 丰满的人妻完整版| 亚洲成国产人片在线观看| 12—13女人毛片做爰片一| 亚洲人成电影观看| 欧美乱色亚洲激情| 搡老熟女国产l中国老女人| 男女午夜视频在线观看| 国产色视频综合| 一二三四在线观看免费中文在| 黄色视频,在线免费观看| 一级毛片女人18水好多| 久久精品aⅴ一区二区三区四区| 国产亚洲欧美98| 成人av一区二区三区在线看| av网站免费在线观看视频| 中文字幕久久专区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久久久人妻精品电影| 岛国在线观看网站| 高清黄色对白视频在线免费看| 免费无遮挡裸体视频| 麻豆av在线久日| 欧美日韩黄片免| 三级毛片av免费| 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 免费在线观看完整版高清| 中文字幕av电影在线播放| 国产av精品麻豆| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 窝窝影院91人妻| 亚洲九九香蕉| 国产精品1区2区在线观看.| 久久九九热精品免费| 伊人久久大香线蕉亚洲五| 国产单亲对白刺激| 国产一卡二卡三卡精品| 中文字幕高清在线视频| 两个人视频免费观看高清| av免费在线观看网站| 如日韩欧美国产精品一区二区三区| 亚洲 国产 在线| 可以免费在线观看a视频的电影网站| 久久婷婷人人爽人人干人人爱 | 久久中文字幕一级| 国产精品98久久久久久宅男小说| 69精品国产乱码久久久| 欧美日本亚洲视频在线播放| 欧美国产日韩亚洲一区| 一二三四社区在线视频社区8| 亚洲午夜理论影院| 啪啪无遮挡十八禁网站| 一区二区三区高清视频在线| 精品久久蜜臀av无| 99热只有精品国产| 国产激情欧美一区二区| 精品免费久久久久久久清纯| 欧美成人午夜精品| 国产成人av教育| 99re在线观看精品视频| 制服人妻中文乱码| 天天添夜夜摸| 侵犯人妻中文字幕一二三四区| 欧美日韩一级在线毛片| 久久人人精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 18禁国产床啪视频网站| 亚洲中文日韩欧美视频| 久久久久久久久久久久大奶| 一进一出抽搐gif免费好疼| 欧美中文日本在线观看视频| 亚洲,欧美精品.| 亚洲av成人一区二区三| 国产精品久久视频播放| 自线自在国产av| 欧美日韩亚洲国产一区二区在线观看| 免费高清视频大片| 亚洲va日本ⅴa欧美va伊人久久| 色播亚洲综合网| 久久婷婷成人综合色麻豆| 欧美黄色淫秽网站| 免费在线观看完整版高清| netflix在线观看网站| 日本 欧美在线| 亚洲人成网站在线播放欧美日韩| 18禁裸乳无遮挡免费网站照片 | 久久久久久久午夜电影| 亚洲av熟女| 国产单亲对白刺激| 一区二区三区高清视频在线| 中文字幕人妻熟女乱码| 好男人电影高清在线观看| aaaaa片日本免费| 最好的美女福利视频网| 精品欧美一区二区三区在线| 国产一区在线观看成人免费| 欧美中文综合在线视频| 国产精品免费一区二区三区在线| 久久久久久久久免费视频了| 午夜福利,免费看| 久久伊人香网站| 两个人免费观看高清视频| 欧美日韩亚洲国产一区二区在线观看| 色在线成人网| 桃色一区二区三区在线观看| 亚洲 国产 在线| 亚洲人成电影免费在线| 亚洲专区中文字幕在线| 精品国产一区二区久久| 日本五十路高清| 操美女的视频在线观看| 日韩成人在线观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 无遮挡黄片免费观看| 婷婷丁香在线五月| 精品国产美女av久久久久小说| 国产成人精品久久二区二区免费| 欧美成人一区二区免费高清观看 | 69精品国产乱码久久久| 国产精品香港三级国产av潘金莲| 丁香六月欧美| 色播亚洲综合网| 精品电影一区二区在线| 国产成人啪精品午夜网站| videosex国产| 一边摸一边做爽爽视频免费| 在线av久久热| АⅤ资源中文在线天堂| 欧美不卡视频在线免费观看 | 好男人在线观看高清免费视频 | a级毛片在线看网站| 女人被躁到高潮嗷嗷叫费观| 亚洲avbb在线观看| 亚洲中文av在线| 精品福利观看| 精品无人区乱码1区二区| 久久精品国产清高在天天线| 国产成+人综合+亚洲专区| 成年人黄色毛片网站| 99re在线观看精品视频| 看片在线看免费视频| 日本 欧美在线| 黑人巨大精品欧美一区二区蜜桃| 国产精品永久免费网站| 久久中文字幕人妻熟女| 亚洲一区二区三区色噜噜| 人妻久久中文字幕网| 欧美激情极品国产一区二区三区| 黄色成人免费大全| 操美女的视频在线观看| 99国产精品免费福利视频| 色老头精品视频在线观看| 国产麻豆成人av免费视频| 午夜免费观看网址| 99国产精品99久久久久| 国产高清有码在线观看视频 | 一级黄色大片毛片| 两性夫妻黄色片| 亚洲精品在线观看二区| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三| 可以在线观看毛片的网站| 国产精品精品国产色婷婷| 又黄又爽又免费观看的视频| 久久精品91无色码中文字幕| 99久久久亚洲精品蜜臀av| 女人被狂操c到高潮| 国产一卡二卡三卡精品| 高潮久久久久久久久久久不卡| 亚洲中文av在线| 亚洲国产精品合色在线| 国产亚洲av嫩草精品影院| 精品人妻1区二区| 欧美国产日韩亚洲一区| 变态另类丝袜制服| 无限看片的www在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久性| 国产97色在线日韩免费| 少妇被粗大的猛进出69影院| 日韩大尺度精品在线看网址 | 99久久99久久久精品蜜桃| cao死你这个sao货| 国产99白浆流出| e午夜精品久久久久久久| 两个人免费观看高清视频| 欧美最黄视频在线播放免费| 免费观看人在逋| 中文亚洲av片在线观看爽| 可以在线观看的亚洲视频| 久久国产精品男人的天堂亚洲| 欧美久久黑人一区二区| or卡值多少钱| 亚洲色图av天堂| 制服诱惑二区| 无遮挡黄片免费观看|