• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes S. ARUNKUMARa, P. RANGARAJANa, K. DEVAKUMARANb, P. SATHIYAa,*

    2015-07-02 06:14:13DeprtmentofProductionEngineeringNtionlInstituteofTechnologyTiruchirpplli620015TmilnduIndiWeldingReserchInstituteBHELTiruchirpplliTmilnduIndiReceived29April2015revised18My2015ccepted27My2015Avilleonline25June2015
    Defence Technology 2015年3期

    Deprtment of Production Engineering, Ntionl Institute of Technology, Tiruchirpplli 620015, Tmilndu, IndiWelding Reserch Institute, BHEL, Tiruchirpplli, Tmilndu, IndiReceived 29 April 2015; revised 18 My 2015; ccepted 27 My 2015 Aville online 25 June 2015

    Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes S. ARUNKUMARa, P. RANGARAJANa, K. DEVAKUMARANb, P. SATHIYAa,*

    aDepartment of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, IndiabWelding Research Institute, BHEL, Tiruchirappalli, Tamilnadu, India
    Received 29 April 2015; revised 18 May 2015; accepted 27 May 2015 Available online 25 June 2015

    Abstract

    Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint. These effects increase with increase in heat input. Thus, special attention was taken to especially thick section welding of AA2219-T87 aluminium alloy. Hence, the present work describes the 25 mm-thick AA2219-T87 aluminium alloy plate butt welded by GTAW and GMAW processes using multi-pass welding procedure in double V groove design. The transverse shrinkage, conventional mechanical and metallurgical properties of both the locations on weld joints were studied. It is observed that the fair copper rich cellular (CRC) network is on Side-A of both the weldments. Further, it is noticed that, the severity of weld thermal cycle near to the fusion line of HAZ is reduced due to low heat input in GTAW process which results in non dissolution of copper rich phase. Based on the mechanical and metallurgical properties it is inferred that GTAW process is used to improve the aforementioned characteristics of weld joints in comparison to GMAW process.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:AA2219; Transverse shrinkage; Microstructure

    E-mail address: psathiya@nitt.edu (P. SATHIYA).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.05.008

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    AA2219 is basically Al—Cu—Mn ternary alloy and has a unique combination of properties such as good weldability and high strength to weight ratio [1]. The alloy is extensively used for fabrication of cryogenic tanks and pressure vessels due to high strength, superior resistance to cracking and corrosion resistance [1]. The AA2219 aluminium alloy contains a major alloying addition of copper and minor additions of manganese, titanium, vanadium and zirconium. Generally, the alloy is producedintheT87tempercondition(solution treatment + 7% cold working + aging) [2]. One of the drawbacks of most of the high strength Al alloys is that they suffer from poor weldability. However, AA2219 is an exception due to the presence of more Cu that helps in healing the cracks by providing extra eutectics. Lots of studies have been carried out in order to assess the effect of copper content and the distribution of second phase intermetallic particles on the properties of AA 2219 alloy [3].

    The preferred welding processes for AA 2219 aluminum alloy are frequently gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) due to their comparatively easier applicability and better economy. The gas tungsten arc welding (GTAW) process for aluminium alloy AA2319 asfiller metal has generally been used [4]. Although the AA2219 alloy has better weldability compared to other grades of precipitation hardenable aluminium alloy, it has inferior weld joint strength than base material [5]. It is well known that the weld strength of the alloy is characterized by the weldment microstructure, which largely depends on the welding processes. Several researchers have investigated the weld strength of the alloy and have confirmed that it has low weld strength after welding [6—8].

    However, it is reported that the electron beam welding (EBW) provides strong and sound welds for AA2219 with high weld efficiency [1,9]. But, the application of EBW is practically difficult for certain weld joints. The observation of the high weld efficiency of the EBW process indicates the possibility of improving weld property through an appropriate process design using gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes and their comparisons have not been studied in detail. In addition, thick section by multi-pass arc welding procedure may generate high shrinkage stresses due to differential contraction under cooling thermal cycle of the welding process. Thus, it needs to study the various properties of the AA2219 weld joints under different welding processes. Hence, the present work describes the comparative studies on transverse shrinkage, mechanical and metallurgical properties of 25 mm-thick AA2219-T87 aluminium alloy weld joints prepared by GTAW and GMAW processes.

    2. Experimental

    2.1. Welding

    25 mm-thick AA2219 plates were butt-welded by GTAW and GMAW processes. The plates were rigidly fixed to avoid distortion during welding. The welding parameters used for the present investigation are given in Table 1. Double V groove design was used, as shown in Fig. 1. The welding was carried out in automatic mode. The photographic view of the experimental setup is shown in Fig. 2. During welding the welding parameters, such as arc voltage and welding current, were measured using a digital meter fitted in the welding power source. Prior to the welding the plates were cleaned with brush followed by acetone to remove oxide layers and any faying surfaces. In the double V-groove, initially, welding was carried out on Side-B followed by Side-A (Fig. 1).

    2.2. Measurement of transverse shrinkage

    During welding the transverse shrinkage (Δtr) was measured with a given straining length (Ltr) of 60 mm. Change of straining length for each weld layer was measured using digital Vernier caliper with least count of 0.001 mm. The transverse shrinkage was measured in Side-A of double V weld groove (Fig. 1). The schematic diagram of transverse shrinkage measurement is shown in Fig. 3.

    Table 1Welding parameters used for preparation of weld joints.

    2.3. Studies on weld joint characteristics

    After welding, the samples were extracted for various mechanical and metallurgical tests as per the AWS D1.2 standard. A metallography sample was prepared as per thestandard metallographic technique and etched with Weck's reagent (100 mL of water, 4 g of KMnO4and 1 g of NaOH). The scanning electron microscope (SEM) was used to characterize the various features of microstructures of weld joints. The tensile and hardness across the weldment were test as per the ASTM E8M and ASTM E370 standards, respectively. The tensile and hardness tests were carried out at both the locations of weld groove (Fig. 1). After tensile testing, the fractographs of the tensile tested samples were obtained by SEM.

    Fig. 1. Schematic diagram of Side-A and Side-B of double V groove.

    Fig. 2. Photographic view of experimental setup.

    Fig. 3. Schematic diagram of measurement of transverse shrinkage.

    Table 2Effects of welding processes on transverse shrinkage generated during welding.

    3. Results and discussion

    3.1. Study on base metal

    Typical microstructure of base metal is shown in Fig. 4. It is observed from Fig. 4 that the copper rich phase is distributed in the aluminium matrix. The copper rich phase significantly contributes to the increase in ultimate tensile strength (UTS) of around 402 MPa and the reduction in ductility of around 8% in AA2219 aluminium alloy.

    Fig. 4. Base metal microstructure.

    3.2. Studies on weld joints

    3.2.1. Transverse shrinkage

    Effects of welding processes (GTAW and GMAW) on measured transverse shrinkage generated during welding are given in Table 2. The shrinkage occurs during welding due to differential cooling followed by localized application of heating. It is well known that the GTAW process generates low heat input to the work piece than GMAW process. Therefore the use of GTAW process minimizes the transverse shrinkage of around 30% in comparison to that of GMAW process.

    Fig. 5. Typical macrostructures of joints.

    3.2.2. Metallography

    Typical macrographs of transverse sections of weld joints of GMAW and GTAW processes are shown in Fig. 5. It is observed that the macrographs are significantly different from each other due to variation of amount of metal deposition per pass in each welding process.

    Typical changes in microstructures of GMAW and GTAW deposits are shown in Fig. 6 (a) and (b) and Fig. 7 (a) and (b). The microstructures reveal the presence of dendrite and reheat refined regions in the multi-pass weld deposition. Minor variations in microstructure of the multi-pass welds in Side-A and Side-B were observed. However in comparison with GMAW welds, the GTAW welds show finer dendritic microstructure due to low heat input. The light areas represent copper and the dark areas represent aluminium. From Fig. 6 (a) and (b) and Fig. 7 (a) and (b), it is also observed that the partial copper rich cellular (CRC) network is in both the welds for multi-pass welding. However, the Side-A of both the welds shows a fair CRC network. The weld structure contributes to the improvements in yield strength through the absence of aligned CRC networks [10]. The distributed copper rich particles probably act to strengthen the matrix of the weld. The EDS analysis of the weld also indicates the presence of CuAl2phase in an aluminium matrix (Fig. 9 and Table 2). Similar observations in the case of electron beam welding of AA2219 aluminium alloy were reported by Gupta et al. [10].

    Typical microstructures of HAZs of both the weldments near fusion line are shown in Fig. 8. It is observed that the copper rich phase (CRP) is not dissolved by using GTAW process due to low thermal impact, however such a distributed CRP is not observed in GMAW weldment.

    Fig. 6. Typical microstructures of weld deposits on Side-A of joints.

    Fig. 7. Typical microstructures of weld deposits on Side-B of joints.

    Fig. 8. Typical microstructures of HAZs near to fusion lines of weldments.

    Fig. 9. EDS results of AA2219 weldments.

    The chemical composition of the weld deposits are presented in Table 3.

    Fig. 10 shows the XRD patterns of GTAW and GMAW welds. It is clearly shows that all the peaks are corresponding to the Al and small amount of intermetallic compounds like Al2Cu is observed through the XRD pattern.

    Table 3Chemical composition of weld deposits.

    Fig. 10. XRD analysis of weld metal (GTAW and GMAW).

    Table 4Tensile strength of weld joints.

    3.3. Mechanical properties

    Effects of welding processes (GMAW and GTAW) on ultimate tensile strengths (UTSs) of both Side-A and Side-B of weld joints are given in Table 4. It is observed that UTS of GTAW weld joint is superior compared to that of GMAW weld joint. The UTS is increased by around 11%. The improved property achieved in GTAW process is primarily due to finer dendritic microstructure in the weld deposit as explained earlier. However, from the fractures of weld joints occurred at the weld it can be seen that the weld joint has inferior UTS compared to base metal (around 405 MPa). Typical fractographs of tensile tested samples are shown in Fig. 11. It is observed that comparatively GTAW weld resulted in finer dimples due to the presence of finer dendritic structure than GMAW weld.

    Hardness distribution across the weld joints under different locations of double V-groove is in Fig. 12. It is observed that the hardness value for both the weld deposits are lower than those of base metal and heat affected zone irrespective of change in weld locations due to cast structure. In addition, the precipitation hardening may also contribute to higher hardness in HAZ. However, it is interesting to notice that, because of low heat input in GTAW process, HAZ of GTAW process shown relatively low hardness value with GMAW's HAZ on both the locations.

    Fig. 11. SEM fractograph of tensile tested samples.

    Fig. 12. Hardness distribution across the transverse section of weld joints.

    4. Conclusions

    The following conclusions are drawn from the present investigation:

    1) The transverse shrinkage generated in GTAW weld joint is comparatively lower than that in GMAW weld joint.

    2) From the EDS analysis, it is concluded that the use of GTAW process reduces the severity of weld thermal cycle in weld deposit and HAZ region.

    3) The tensile strength of GTAW weld joint is higher than that of the GMAW weld joint.

    4) The hardness's of GTAWand GMAW welds are lesser than those of the base metal and heat affected zone.

    5) X-ray Diffraction patterns revealed that Al is the major phases, and small amount of Al2Cu was observed.

    6) From SEM fractograph, the finer dimples were observed in GTAW tensile fractured sample.

    Acknowledgement

    We acknowledge Shri P.Sankaravelayutham, Dy. General Manager, MMD/MME, VSSC, ISRO, Thiruvanandhapuram-695022 to provide the base material and WRI, BHEL, Trichy, Tamilnadu to carry out the welding trials.

    References

    [1] Hartman JA, Beil RJ, Hahn GT. Effect of copper rich regions on tensile properties of VPPA weldments of 2219-T87 aluminium. Weld J 1987;66:73s—83s.

    [2] Nair Biju S, Rakesh S, Phanikumar G, Prasad Rao K, Sinha PP. Fracture toughness (J1C) of electron beam welded AA2219 alloy. Mater Des 2010;31(10):4943—50.

    [3] Venkatasubramanian G, Sheik Mideen A, Jha Abhay K. Corrosion behavior of aluminium alloy Aa2219-T87 welded plates in sea water. Indian J Sci Technol 2012;5(11):3578—83.

    [4] Ghosh BR, Gupta RK, Biju S, Sinha PP. Modified welding technique of hypo-eutectic Al—Cu alloy for higher mechanical properties. Solid Mech Mater Eng 2007;1(4):469—79.

    [5] Dance GI. Comparative evaluation of mechanical properties of TIG, MIG, EBW and VPPA welded AA2219 aluminium alloy. Weld Metal Fabr 1994;24:216—22.

    [6] Srinivasan PB, Arora KS, Dietzel W, Pandey S, Schaper MK. Characterization of microstructure, mechanical properties and corrosion behaviour of anAA2219frictionstir weldment. J AlloysCompd 2010;492(1):631—7.

    [7] Koteswara Rao SR, Madhusudhana Reddy G, Srinivasa RK, Kamaraj M, Prasad Rao K. Reasons for superior mechanical and corrosion properties of 2219 aluminiumalloy electron beam welds. Mater Charact 2006;40(4—5):236—48.

    [8] Malarvizhi S, Raghukandan K, Viswanathan N. Effect of post weld aging treatment on tensile properties of electron beam welded AA2219 aluminium alloy. Int J Adv Manuf Technol 2008;37(3):294—301.

    [9] Robinson IB, Collins FR, Dowd JD. Welding high strength aluminium alloys. Weld J 1962;42:221s—8s.

    [10] Gupta RK, Ghosh BR, Biju S, Sinha PP. GTAW process design for improvedweldstrengthof AA2219. J Australas WeldJ 2009;54:37—48.

    * Corresponding author. Tel.: +91 431 2503510; fax: +91 431 2500133.

    精品国产露脸久久av麻豆| 久久av网站| 亚洲av二区三区四区| 久久久午夜欧美精品| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 亚洲高清免费不卡视频| 久久精品国产亚洲av天美| av专区在线播放| 高清午夜精品一区二区三区| 各种免费的搞黄视频| 久久午夜福利片| 啦啦啦啦在线视频资源| av专区在线播放| 成人毛片60女人毛片免费| 十分钟在线观看高清视频www | 亚洲av.av天堂| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 久久久精品免费免费高清| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡动漫免费视频| 视频中文字幕在线观看| 99热这里只有是精品在线观看| 国产欧美日韩精品一区二区| 国产黄色免费在线视频| 91久久精品国产一区二区三区| 热99国产精品久久久久久7| 欧美高清性xxxxhd video| 看免费成人av毛片| 国产一区二区三区av在线| 亚洲国产欧美在线一区| av国产久精品久网站免费入址| 国产欧美日韩一区二区三区在线 | 国产免费又黄又爽又色| 日韩欧美 国产精品| 777米奇影视久久| 亚洲综合精品二区| 国产亚洲av片在线观看秒播厂| 亚洲国产日韩一区二区| 一区二区av电影网| 中文字幕精品免费在线观看视频 | 亚洲精品乱久久久久久| 久久久久网色| 日韩一区二区视频免费看| 在线看a的网站| 国产一区亚洲一区在线观看| 人妻少妇偷人精品九色| kizo精华| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 亚洲国产毛片av蜜桃av| 制服丝袜香蕉在线| 免费不卡的大黄色大毛片视频在线观看| videossex国产| 久久久久久久久久久丰满| www.av在线官网国产| 婷婷色综合大香蕉| 国产精品久久久久久av不卡| 亚洲不卡免费看| 大香蕉久久网| 十分钟在线观看高清视频www | 99热这里只有是精品在线观看| 97超碰精品成人国产| 婷婷色麻豆天堂久久| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 国产欧美日韩精品一区二区| 国产午夜精品久久久久久一区二区三区| 18禁在线播放成人免费| 中文字幕免费在线视频6| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久av不卡| 久久久久久久亚洲中文字幕| 大话2 男鬼变身卡| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩另类电影网站 | 中文精品一卡2卡3卡4更新| 麻豆成人午夜福利视频| 国产精品不卡视频一区二区| 3wmmmm亚洲av在线观看| 欧美日韩国产mv在线观看视频 | 久久久精品94久久精品| 国产精品久久久久久精品古装| 久久鲁丝午夜福利片| 日韩伦理黄色片| 国产成人免费无遮挡视频| 高清毛片免费看| 女性生殖器流出的白浆| 久久久久视频综合| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看 | 精品亚洲成国产av| 精品人妻偷拍中文字幕| 国产黄片视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 欧美区成人在线视频| 十分钟在线观看高清视频www | 一级av片app| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 99热6这里只有精品| 尾随美女入室| 日本av免费视频播放| 嫩草影院新地址| 中文字幕制服av| 网址你懂的国产日韩在线| 日韩制服骚丝袜av| 国产片特级美女逼逼视频| 80岁老熟妇乱子伦牲交| 美女主播在线视频| 天天躁日日操中文字幕| 国产一区有黄有色的免费视频| 我的老师免费观看完整版| 色哟哟·www| 99热全是精品| 亚洲av二区三区四区| 国产精品国产三级国产av玫瑰| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | av专区在线播放| 欧美亚洲 丝袜 人妻 在线| 免费大片18禁| 老女人水多毛片| 纵有疾风起免费观看全集完整版| 色视频在线一区二区三区| 久久久久久久大尺度免费视频| .国产精品久久| 亚洲精品色激情综合| 国产 精品1| 日本黄色片子视频| 亚洲经典国产精华液单| 成人特级av手机在线观看| 韩国高清视频一区二区三区| 成人免费观看视频高清| 精品久久久久久久久av| 久久精品久久久久久久性| 看免费成人av毛片| 各种免费的搞黄视频| 狂野欧美白嫩少妇大欣赏| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| 能在线免费看毛片的网站| 免费人成在线观看视频色| 欧美精品人与动牲交sv欧美| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 精品熟女少妇av免费看| 在线观看美女被高潮喷水网站| 久久精品国产亚洲av天美| 高清黄色对白视频在线免费看 | 日韩 亚洲 欧美在线| 中国美白少妇内射xxxbb| 美女主播在线视频| 国产 精品1| 精品少妇黑人巨大在线播放| 啦啦啦在线观看免费高清www| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 亚洲av.av天堂| 最近2019中文字幕mv第一页| 人人妻人人澡人人爽人人夜夜| 亚洲精品乱久久久久久| 国产中年淑女户外野战色| 免费大片黄手机在线观看| 中国三级夫妇交换| 免费看av在线观看网站| 纵有疾风起免费观看全集完整版| 美女福利国产在线 | 草草在线视频免费看| 日本欧美国产在线视频| 国产成人freesex在线| 日本vs欧美在线观看视频 | 欧美变态另类bdsm刘玥| 精品久久久久久电影网| 免费黄色在线免费观看| 全区人妻精品视频| 日本爱情动作片www.在线观看| 久久久久久久久久久丰满| av网站免费在线观看视频| 超碰av人人做人人爽久久| 久久精品国产a三级三级三级| 身体一侧抽搐| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 亚洲av免费高清在线观看| kizo精华| 欧美精品国产亚洲| 久热久热在线精品观看| 天天躁夜夜躁狠狠久久av| 亚洲色图综合在线观看| 亚洲人成网站在线观看播放| 97超视频在线观看视频| 欧美 日韩 精品 国产| 欧美xxⅹ黑人| 国产成人a∨麻豆精品| 免费人成在线观看视频色| 日本色播在线视频| 51国产日韩欧美| 五月开心婷婷网| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品古装| 国产精品久久久久久久电影| 久久97久久精品| 国产成人a区在线观看| 亚洲欧美日韩无卡精品| 在现免费观看毛片| 一个人看的www免费观看视频| 日本猛色少妇xxxxx猛交久久| 特大巨黑吊av在线直播| 亚洲精品aⅴ在线观看| 日本av手机在线免费观看| 丝袜喷水一区| 亚洲欧美成人综合另类久久久| 在线 av 中文字幕| 免费av不卡在线播放| 激情五月婷婷亚洲| 国产乱人偷精品视频| freevideosex欧美| av不卡在线播放| 国产精品99久久久久久久久| 一级a做视频免费观看| 国产爽快片一区二区三区| 22中文网久久字幕| 在线观看免费高清a一片| 成人一区二区视频在线观看| 最近最新中文字幕免费大全7| 麻豆精品久久久久久蜜桃| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 精品人妻一区二区三区麻豆| 日韩中字成人| 美女高潮的动态| 欧美日韩一区二区视频在线观看视频在线| 女人十人毛片免费观看3o分钟| 午夜日本视频在线| 久久6这里有精品| 午夜免费观看性视频| 哪个播放器可以免费观看大片| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 欧美性感艳星| 秋霞伦理黄片| 18禁裸乳无遮挡动漫免费视频| 干丝袜人妻中文字幕| 日本-黄色视频高清免费观看| 超碰av人人做人人爽久久| 欧美97在线视频| 国产一区二区在线观看日韩| 韩国av在线不卡| 欧美三级亚洲精品| av国产久精品久网站免费入址| 91狼人影院| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 午夜激情福利司机影院| 男女免费视频国产| 国产成人a∨麻豆精品| 欧美老熟妇乱子伦牲交| 免费av中文字幕在线| 亚洲精品一区蜜桃| 自拍偷自拍亚洲精品老妇| 女性被躁到高潮视频| 国产成人精品福利久久| 午夜免费鲁丝| 日韩在线高清观看一区二区三区| 免费久久久久久久精品成人欧美视频 | 国产乱人偷精品视频| 黄片无遮挡物在线观看| 下体分泌物呈黄色| 天堂中文最新版在线下载| 一二三四中文在线观看免费高清| 伦精品一区二区三区| 有码 亚洲区| 精品亚洲成国产av| 久久久久久伊人网av| 欧美成人精品欧美一级黄| 午夜日本视频在线| 国产黄色视频一区二区在线观看| 91久久精品电影网| 日韩亚洲欧美综合| 亚洲第一区二区三区不卡| 久久97久久精品| 在线播放无遮挡| 久久久国产一区二区| 男的添女的下面高潮视频| 女人十人毛片免费观看3o分钟| 欧美日本视频| 激情五月婷婷亚洲| 久久久精品免费免费高清| 亚州av有码| 欧美区成人在线视频| 亚洲精品国产成人久久av| 国产成人a区在线观看| 亚洲国产av新网站| 91精品国产九色| 亚洲av国产av综合av卡| 国产精品嫩草影院av在线观看| 久久女婷五月综合色啪小说| 天天躁日日操中文字幕| 亚洲内射少妇av| 婷婷色av中文字幕| 免费高清在线观看视频在线观看| 韩国av在线不卡| av网站免费在线观看视频| 2021少妇久久久久久久久久久| .国产精品久久| 亚洲色图综合在线观看| 看免费成人av毛片| 亚洲,一卡二卡三卡| 久久av网站| 亚洲精品国产成人久久av| 青春草视频在线免费观看| 日本vs欧美在线观看视频 | 女性生殖器流出的白浆| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 深爱激情五月婷婷| 人妻一区二区av| 国产精品爽爽va在线观看网站| 联通29元200g的流量卡| 欧美精品国产亚洲| 成人一区二区视频在线观看| 国产男女内射视频| 一级毛片aaaaaa免费看小| 我的女老师完整版在线观看| 老女人水多毛片| 亚洲伊人久久精品综合| 丝瓜视频免费看黄片| 少妇被粗大猛烈的视频| 亚洲国产成人一精品久久久| 日韩中字成人| 免费黄网站久久成人精品| 精华霜和精华液先用哪个| 三级国产精品片| 久久精品人妻少妇| 亚洲欧美日韩另类电影网站 | 毛片女人毛片| 亚洲欧美一区二区三区黑人 | 成人美女网站在线观看视频| 亚洲av男天堂| 又黄又爽又刺激的免费视频.| 99久久精品热视频| 久久精品国产鲁丝片午夜精品| 亚洲av成人精品一二三区| 亚洲精品国产av蜜桃| 亚洲精品日韩av片在线观看| 纯流量卡能插随身wifi吗| 日本av免费视频播放| 啦啦啦啦在线视频资源| 日本与韩国留学比较| 免费黄色在线免费观看| 免费人妻精品一区二区三区视频| 亚洲成人一二三区av| 国产精品国产三级专区第一集| 狂野欧美白嫩少妇大欣赏| 在线观看av片永久免费下载| 午夜激情福利司机影院| 国产黄频视频在线观看| 热re99久久精品国产66热6| 久久99蜜桃精品久久| 亚洲精品成人av观看孕妇| 天天躁夜夜躁狠狠久久av| 欧美精品亚洲一区二区| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 日本与韩国留学比较| 成年免费大片在线观看| 成人黄色视频免费在线看| 国产v大片淫在线免费观看| av免费观看日本| 极品教师在线视频| 日韩伦理黄色片| 久久久久久人妻| 一区二区av电影网| 久久久a久久爽久久v久久| 一本—道久久a久久精品蜜桃钙片| 97在线人人人人妻| 国产精品一及| 欧美97在线视频| 精品久久久久久久久av| 97超碰精品成人国产| 成人漫画全彩无遮挡| 国产成人一区二区在线| 欧美zozozo另类| 五月开心婷婷网| 大片免费播放器 马上看| 国产男女超爽视频在线观看| 一本久久精品| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 2022亚洲国产成人精品| 啦啦啦啦在线视频资源| 亚洲精品日韩av片在线观看| 丝瓜视频免费看黄片| 久久久久久久精品精品| 亚洲无线观看免费| 久久6这里有精品| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 国产高清不卡午夜福利| 亚洲综合精品二区| 成年美女黄网站色视频大全免费 | av国产久精品久网站免费入址| 99精国产麻豆久久婷婷| 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 性色av一级| av国产免费在线观看| 纯流量卡能插随身wifi吗| 九九久久精品国产亚洲av麻豆| 久久精品国产a三级三级三级| 国产精品一及| 亚洲丝袜综合中文字幕| 青春草亚洲视频在线观看| 99re6热这里在线精品视频| 日本av手机在线免费观看| 色综合色国产| 日本一二三区视频观看| 久久久亚洲精品成人影院| 免费在线观看成人毛片| 婷婷色综合大香蕉| 中文字幕人妻熟人妻熟丝袜美| 精品午夜福利在线看| a级一级毛片免费在线观看| 在线观看国产h片| 免费看光身美女| 午夜福利视频精品| 午夜福利在线观看免费完整高清在| 老司机影院成人| 国产乱人视频| 亚洲精品中文字幕在线视频 | 国产亚洲欧美精品永久| 欧美老熟妇乱子伦牲交| 国产免费视频播放在线视频| 精品熟女少妇av免费看| 国产中年淑女户外野战色| 欧美日韩视频精品一区| 亚洲人成网站在线播| 少妇人妻久久综合中文| 青春草视频在线免费观看| 国国产精品蜜臀av免费| 久久久久久久久久成人| 欧美成人一区二区免费高清观看| 激情 狠狠 欧美| 国产欧美亚洲国产| 97热精品久久久久久| 免费观看av网站的网址| 老司机影院成人| 亚洲精品视频女| 国产69精品久久久久777片| 最新中文字幕久久久久| 久久久久久久亚洲中文字幕| 国产精品一区二区在线不卡| 国产精品.久久久| 性色avwww在线观看| 欧美精品一区二区大全| 妹子高潮喷水视频| 一区二区av电影网| 美女中出高潮动态图| 国产视频首页在线观看| 女性生殖器流出的白浆| 亚洲精品日本国产第一区| 午夜福利在线在线| 欧美高清性xxxxhd video| 国产黄色免费在线视频| 久久久久久人妻| 日韩中文字幕视频在线看片 | 在线观看免费高清a一片| 免费观看在线日韩| 国产精品国产三级国产专区5o| 黄片wwwwww| 精品亚洲成a人片在线观看 | 大香蕉久久网| 国产精品嫩草影院av在线观看| 汤姆久久久久久久影院中文字幕| 欧美极品一区二区三区四区| 777米奇影视久久| 熟女av电影| 嫩草影院入口| 久久热精品热| 久久久久久久国产电影| 国产男人的电影天堂91| 日韩一区二区视频免费看| 观看美女的网站| 久久国产精品大桥未久av | 午夜免费观看性视频| 日本爱情动作片www.在线观看| 国产av码专区亚洲av| 狂野欧美激情性bbbbbb| 国内揄拍国产精品人妻在线| 亚洲三级黄色毛片| 国产黄片视频在线免费观看| 午夜福利在线观看免费完整高清在| 99热全是精品| 少妇人妻久久综合中文| 国产精品国产av在线观看| 国产精品女同一区二区软件| 黑丝袜美女国产一区| 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 成人综合一区亚洲| 免费观看性生交大片5| 国产有黄有色有爽视频| 免费在线观看成人毛片| www.色视频.com| 国产欧美日韩精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 男女免费视频国产| 久热久热在线精品观看| 亚洲国产欧美在线一区| 国产在线视频一区二区| 五月天丁香电影| 91aial.com中文字幕在线观看| 国产大屁股一区二区在线视频| 精品一区在线观看国产| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 国内揄拍国产精品人妻在线| 国产伦精品一区二区三区四那| 国产黄片视频在线免费观看| av在线蜜桃| 男人狂女人下面高潮的视频| 在线观看三级黄色| 亚洲国产日韩一区二区| 亚洲国产精品成人久久小说| 久久精品久久久久久噜噜老黄| 成年女人在线观看亚洲视频| 亚洲aⅴ乱码一区二区在线播放| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 久久人人爽人人爽人人片va| 黄色一级大片看看| 黄色视频在线播放观看不卡| 欧美bdsm另类| 国产av一区二区精品久久 | 国产探花极品一区二区| 男人和女人高潮做爰伦理| 国产一区二区三区av在线| 亚洲av成人精品一区久久| 观看美女的网站| 日本黄大片高清| 一级av片app| 啦啦啦在线观看免费高清www| 亚洲最大成人中文| 亚洲国产色片| 欧美bdsm另类| 国产在线男女| 精品久久久精品久久久| 亚洲真实伦在线观看| 国产大屁股一区二区在线视频| 深爱激情五月婷婷| 国产成人精品久久久久久| 婷婷色av中文字幕| 国产亚洲欧美精品永久| 性高湖久久久久久久久免费观看| 乱系列少妇在线播放| 日本wwww免费看| 97超碰精品成人国产| 日韩免费高清中文字幕av| 中文欧美无线码| 黄色欧美视频在线观看| 啦啦啦视频在线资源免费观看| 国产乱人视频| 中文字幕人妻熟人妻熟丝袜美| 超碰av人人做人人爽久久| 身体一侧抽搐| 久久久久久人妻| 日韩强制内射视频| 国产有黄有色有爽视频| 蜜桃亚洲精品一区二区三区| 国产男女内射视频| 免费av不卡在线播放| 建设人人有责人人尽责人人享有的 | av国产久精品久网站免费入址| av在线观看视频网站免费| 又黄又爽又刺激的免费视频.| 91在线精品国自产拍蜜月| 成人毛片60女人毛片免费| 成年av动漫网址| 搡老乐熟女国产| 人体艺术视频欧美日本| 嘟嘟电影网在线观看| 多毛熟女@视频| 九九在线视频观看精品| 国产精品久久久久久精品古装| 亚洲内射少妇av| 黑丝袜美女国产一区| 欧美3d第一页| 麻豆国产97在线/欧美| .国产精品久久| 欧美3d第一页| 色哟哟·www| 插逼视频在线观看| 91精品国产九色| a级毛片免费高清观看在线播放| 熟女电影av网| 亚洲国产成人一精品久久久| 亚洲精品国产成人久久av| av.在线天堂| 在线亚洲精品国产二区图片欧美 | 国产国拍精品亚洲av在线观看| 久久久久久久久久久免费av| 韩国高清视频一区二区三区| 一边亲一边摸免费视频| 亚洲成人av在线免费| 男人狂女人下面高潮的视频| 黑人猛操日本美女一级片| 日本免费在线观看一区| 国产欧美日韩一区二区三区在线 | 有码 亚洲区| 国产熟女欧美一区二区|