• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes S. ARUNKUMARa, P. RANGARAJANa, K. DEVAKUMARANb, P. SATHIYAa,*

    2015-07-02 06:14:13DeprtmentofProductionEngineeringNtionlInstituteofTechnologyTiruchirpplli620015TmilnduIndiWeldingReserchInstituteBHELTiruchirpplliTmilnduIndiReceived29April2015revised18My2015ccepted27My2015Avilleonline25June2015
    Defence Technology 2015年3期

    Deprtment of Production Engineering, Ntionl Institute of Technology, Tiruchirpplli 620015, Tmilndu, IndiWelding Reserch Institute, BHEL, Tiruchirpplli, Tmilndu, IndiReceived 29 April 2015; revised 18 My 2015; ccepted 27 My 2015 Aville online 25 June 2015

    Comparative study on transverse shrinkage, mechanical and metallurgical properties of AA2219 aluminium weld joints prepared by gas tungsten arc and gas metal arc welding processes S. ARUNKUMARa, P. RANGARAJANa, K. DEVAKUMARANb, P. SATHIYAa,*

    aDepartment of Production Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamilnadu, IndiabWelding Research Institute, BHEL, Tiruchirappalli, Tamilnadu, India
    Received 29 April 2015; revised 18 May 2015; accepted 27 May 2015 Available online 25 June 2015

    Abstract

    Aluminium alloy AA2219 is a high strength alloy belonging to 2000 series. It has been widely used for aerospace applications, especially for construction of cryogenic fuel tank. However, arc welding of AA2219 material is very critical. The major problems that arise in arc welding of AA2219 are the adverse development of residual stresses and the re-distribution as well as dissolution of copper rich phase in the weld joint. These effects increase with increase in heat input. Thus, special attention was taken to especially thick section welding of AA2219-T87 aluminium alloy. Hence, the present work describes the 25 mm-thick AA2219-T87 aluminium alloy plate butt welded by GTAW and GMAW processes using multi-pass welding procedure in double V groove design. The transverse shrinkage, conventional mechanical and metallurgical properties of both the locations on weld joints were studied. It is observed that the fair copper rich cellular (CRC) network is on Side-A of both the weldments. Further, it is noticed that, the severity of weld thermal cycle near to the fusion line of HAZ is reduced due to low heat input in GTAW process which results in non dissolution of copper rich phase. Based on the mechanical and metallurgical properties it is inferred that GTAW process is used to improve the aforementioned characteristics of weld joints in comparison to GMAW process.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:AA2219; Transverse shrinkage; Microstructure

    E-mail address: psathiya@nitt.edu (P. SATHIYA).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.05.008

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    AA2219 is basically Al—Cu—Mn ternary alloy and has a unique combination of properties such as good weldability and high strength to weight ratio [1]. The alloy is extensively used for fabrication of cryogenic tanks and pressure vessels due to high strength, superior resistance to cracking and corrosion resistance [1]. The AA2219 aluminium alloy contains a major alloying addition of copper and minor additions of manganese, titanium, vanadium and zirconium. Generally, the alloy is producedintheT87tempercondition(solution treatment + 7% cold working + aging) [2]. One of the drawbacks of most of the high strength Al alloys is that they suffer from poor weldability. However, AA2219 is an exception due to the presence of more Cu that helps in healing the cracks by providing extra eutectics. Lots of studies have been carried out in order to assess the effect of copper content and the distribution of second phase intermetallic particles on the properties of AA 2219 alloy [3].

    The preferred welding processes for AA 2219 aluminum alloy are frequently gas metal arc welding (GMAW) and gas tungsten arc welding (GTAW) due to their comparatively easier applicability and better economy. The gas tungsten arc welding (GTAW) process for aluminium alloy AA2319 asfiller metal has generally been used [4]. Although the AA2219 alloy has better weldability compared to other grades of precipitation hardenable aluminium alloy, it has inferior weld joint strength than base material [5]. It is well known that the weld strength of the alloy is characterized by the weldment microstructure, which largely depends on the welding processes. Several researchers have investigated the weld strength of the alloy and have confirmed that it has low weld strength after welding [6—8].

    However, it is reported that the electron beam welding (EBW) provides strong and sound welds for AA2219 with high weld efficiency [1,9]. But, the application of EBW is practically difficult for certain weld joints. The observation of the high weld efficiency of the EBW process indicates the possibility of improving weld property through an appropriate process design using gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) processes and their comparisons have not been studied in detail. In addition, thick section by multi-pass arc welding procedure may generate high shrinkage stresses due to differential contraction under cooling thermal cycle of the welding process. Thus, it needs to study the various properties of the AA2219 weld joints under different welding processes. Hence, the present work describes the comparative studies on transverse shrinkage, mechanical and metallurgical properties of 25 mm-thick AA2219-T87 aluminium alloy weld joints prepared by GTAW and GMAW processes.

    2. Experimental

    2.1. Welding

    25 mm-thick AA2219 plates were butt-welded by GTAW and GMAW processes. The plates were rigidly fixed to avoid distortion during welding. The welding parameters used for the present investigation are given in Table 1. Double V groove design was used, as shown in Fig. 1. The welding was carried out in automatic mode. The photographic view of the experimental setup is shown in Fig. 2. During welding the welding parameters, such as arc voltage and welding current, were measured using a digital meter fitted in the welding power source. Prior to the welding the plates were cleaned with brush followed by acetone to remove oxide layers and any faying surfaces. In the double V-groove, initially, welding was carried out on Side-B followed by Side-A (Fig. 1).

    2.2. Measurement of transverse shrinkage

    During welding the transverse shrinkage (Δtr) was measured with a given straining length (Ltr) of 60 mm. Change of straining length for each weld layer was measured using digital Vernier caliper with least count of 0.001 mm. The transverse shrinkage was measured in Side-A of double V weld groove (Fig. 1). The schematic diagram of transverse shrinkage measurement is shown in Fig. 3.

    Table 1Welding parameters used for preparation of weld joints.

    2.3. Studies on weld joint characteristics

    After welding, the samples were extracted for various mechanical and metallurgical tests as per the AWS D1.2 standard. A metallography sample was prepared as per thestandard metallographic technique and etched with Weck's reagent (100 mL of water, 4 g of KMnO4and 1 g of NaOH). The scanning electron microscope (SEM) was used to characterize the various features of microstructures of weld joints. The tensile and hardness across the weldment were test as per the ASTM E8M and ASTM E370 standards, respectively. The tensile and hardness tests were carried out at both the locations of weld groove (Fig. 1). After tensile testing, the fractographs of the tensile tested samples were obtained by SEM.

    Fig. 1. Schematic diagram of Side-A and Side-B of double V groove.

    Fig. 2. Photographic view of experimental setup.

    Fig. 3. Schematic diagram of measurement of transverse shrinkage.

    Table 2Effects of welding processes on transverse shrinkage generated during welding.

    3. Results and discussion

    3.1. Study on base metal

    Typical microstructure of base metal is shown in Fig. 4. It is observed from Fig. 4 that the copper rich phase is distributed in the aluminium matrix. The copper rich phase significantly contributes to the increase in ultimate tensile strength (UTS) of around 402 MPa and the reduction in ductility of around 8% in AA2219 aluminium alloy.

    Fig. 4. Base metal microstructure.

    3.2. Studies on weld joints

    3.2.1. Transverse shrinkage

    Effects of welding processes (GTAW and GMAW) on measured transverse shrinkage generated during welding are given in Table 2. The shrinkage occurs during welding due to differential cooling followed by localized application of heating. It is well known that the GTAW process generates low heat input to the work piece than GMAW process. Therefore the use of GTAW process minimizes the transverse shrinkage of around 30% in comparison to that of GMAW process.

    Fig. 5. Typical macrostructures of joints.

    3.2.2. Metallography

    Typical macrographs of transverse sections of weld joints of GMAW and GTAW processes are shown in Fig. 5. It is observed that the macrographs are significantly different from each other due to variation of amount of metal deposition per pass in each welding process.

    Typical changes in microstructures of GMAW and GTAW deposits are shown in Fig. 6 (a) and (b) and Fig. 7 (a) and (b). The microstructures reveal the presence of dendrite and reheat refined regions in the multi-pass weld deposition. Minor variations in microstructure of the multi-pass welds in Side-A and Side-B were observed. However in comparison with GMAW welds, the GTAW welds show finer dendritic microstructure due to low heat input. The light areas represent copper and the dark areas represent aluminium. From Fig. 6 (a) and (b) and Fig. 7 (a) and (b), it is also observed that the partial copper rich cellular (CRC) network is in both the welds for multi-pass welding. However, the Side-A of both the welds shows a fair CRC network. The weld structure contributes to the improvements in yield strength through the absence of aligned CRC networks [10]. The distributed copper rich particles probably act to strengthen the matrix of the weld. The EDS analysis of the weld also indicates the presence of CuAl2phase in an aluminium matrix (Fig. 9 and Table 2). Similar observations in the case of electron beam welding of AA2219 aluminium alloy were reported by Gupta et al. [10].

    Typical microstructures of HAZs of both the weldments near fusion line are shown in Fig. 8. It is observed that the copper rich phase (CRP) is not dissolved by using GTAW process due to low thermal impact, however such a distributed CRP is not observed in GMAW weldment.

    Fig. 6. Typical microstructures of weld deposits on Side-A of joints.

    Fig. 7. Typical microstructures of weld deposits on Side-B of joints.

    Fig. 8. Typical microstructures of HAZs near to fusion lines of weldments.

    Fig. 9. EDS results of AA2219 weldments.

    The chemical composition of the weld deposits are presented in Table 3.

    Fig. 10 shows the XRD patterns of GTAW and GMAW welds. It is clearly shows that all the peaks are corresponding to the Al and small amount of intermetallic compounds like Al2Cu is observed through the XRD pattern.

    Table 3Chemical composition of weld deposits.

    Fig. 10. XRD analysis of weld metal (GTAW and GMAW).

    Table 4Tensile strength of weld joints.

    3.3. Mechanical properties

    Effects of welding processes (GMAW and GTAW) on ultimate tensile strengths (UTSs) of both Side-A and Side-B of weld joints are given in Table 4. It is observed that UTS of GTAW weld joint is superior compared to that of GMAW weld joint. The UTS is increased by around 11%. The improved property achieved in GTAW process is primarily due to finer dendritic microstructure in the weld deposit as explained earlier. However, from the fractures of weld joints occurred at the weld it can be seen that the weld joint has inferior UTS compared to base metal (around 405 MPa). Typical fractographs of tensile tested samples are shown in Fig. 11. It is observed that comparatively GTAW weld resulted in finer dimples due to the presence of finer dendritic structure than GMAW weld.

    Hardness distribution across the weld joints under different locations of double V-groove is in Fig. 12. It is observed that the hardness value for both the weld deposits are lower than those of base metal and heat affected zone irrespective of change in weld locations due to cast structure. In addition, the precipitation hardening may also contribute to higher hardness in HAZ. However, it is interesting to notice that, because of low heat input in GTAW process, HAZ of GTAW process shown relatively low hardness value with GMAW's HAZ on both the locations.

    Fig. 11. SEM fractograph of tensile tested samples.

    Fig. 12. Hardness distribution across the transverse section of weld joints.

    4. Conclusions

    The following conclusions are drawn from the present investigation:

    1) The transverse shrinkage generated in GTAW weld joint is comparatively lower than that in GMAW weld joint.

    2) From the EDS analysis, it is concluded that the use of GTAW process reduces the severity of weld thermal cycle in weld deposit and HAZ region.

    3) The tensile strength of GTAW weld joint is higher than that of the GMAW weld joint.

    4) The hardness's of GTAWand GMAW welds are lesser than those of the base metal and heat affected zone.

    5) X-ray Diffraction patterns revealed that Al is the major phases, and small amount of Al2Cu was observed.

    6) From SEM fractograph, the finer dimples were observed in GTAW tensile fractured sample.

    Acknowledgement

    We acknowledge Shri P.Sankaravelayutham, Dy. General Manager, MMD/MME, VSSC, ISRO, Thiruvanandhapuram-695022 to provide the base material and WRI, BHEL, Trichy, Tamilnadu to carry out the welding trials.

    References

    [1] Hartman JA, Beil RJ, Hahn GT. Effect of copper rich regions on tensile properties of VPPA weldments of 2219-T87 aluminium. Weld J 1987;66:73s—83s.

    [2] Nair Biju S, Rakesh S, Phanikumar G, Prasad Rao K, Sinha PP. Fracture toughness (J1C) of electron beam welded AA2219 alloy. Mater Des 2010;31(10):4943—50.

    [3] Venkatasubramanian G, Sheik Mideen A, Jha Abhay K. Corrosion behavior of aluminium alloy Aa2219-T87 welded plates in sea water. Indian J Sci Technol 2012;5(11):3578—83.

    [4] Ghosh BR, Gupta RK, Biju S, Sinha PP. Modified welding technique of hypo-eutectic Al—Cu alloy for higher mechanical properties. Solid Mech Mater Eng 2007;1(4):469—79.

    [5] Dance GI. Comparative evaluation of mechanical properties of TIG, MIG, EBW and VPPA welded AA2219 aluminium alloy. Weld Metal Fabr 1994;24:216—22.

    [6] Srinivasan PB, Arora KS, Dietzel W, Pandey S, Schaper MK. Characterization of microstructure, mechanical properties and corrosion behaviour of anAA2219frictionstir weldment. J AlloysCompd 2010;492(1):631—7.

    [7] Koteswara Rao SR, Madhusudhana Reddy G, Srinivasa RK, Kamaraj M, Prasad Rao K. Reasons for superior mechanical and corrosion properties of 2219 aluminiumalloy electron beam welds. Mater Charact 2006;40(4—5):236—48.

    [8] Malarvizhi S, Raghukandan K, Viswanathan N. Effect of post weld aging treatment on tensile properties of electron beam welded AA2219 aluminium alloy. Int J Adv Manuf Technol 2008;37(3):294—301.

    [9] Robinson IB, Collins FR, Dowd JD. Welding high strength aluminium alloys. Weld J 1962;42:221s—8s.

    [10] Gupta RK, Ghosh BR, Biju S, Sinha PP. GTAW process design for improvedweldstrengthof AA2219. J Australas WeldJ 2009;54:37—48.

    * Corresponding author. Tel.: +91 431 2503510; fax: +91 431 2500133.

    一本大道久久a久久精品| 亚洲av日韩在线播放| 免费高清在线观看视频在线观看| 搡老乐熟女国产| 欧美日韩av久久| 亚洲国产精品国产精品| 亚洲人成77777在线视频| 欧美人与性动交α欧美精品济南到 | 人妻一区二区av| 久久免费观看电影| 国产精品欧美亚洲77777| 春色校园在线视频观看| av在线老鸭窝| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 大香蕉久久网| 精品一区二区三区四区五区乱码 | 秋霞伦理黄片| 大话2 男鬼变身卡| 欧美精品一区二区免费开放| 久久精品国产亚洲av涩爱| 欧美成人精品欧美一级黄| 日韩制服丝袜自拍偷拍| 精品一区二区三卡| 岛国毛片在线播放| 久久免费观看电影| 精品一区二区免费观看| 久久综合国产亚洲精品| 国产精品久久久久久精品电影小说| 中文字幕亚洲精品专区| 午夜视频国产福利| 插逼视频在线观看| 欧美日韩精品成人综合77777| 爱豆传媒免费全集在线观看| 久久影院123| 成人无遮挡网站| 久热久热在线精品观看| 午夜免费观看性视频| 亚洲性久久影院| 人人妻人人澡人人爽人人夜夜| 寂寞人妻少妇视频99o| 久久久久视频综合| 51国产日韩欧美| 日韩一区二区视频免费看| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 熟女人妻精品中文字幕| 人妻 亚洲 视频| 欧美精品一区二区大全| 大片电影免费在线观看免费| videossex国产| av国产久精品久网站免费入址| 一区二区三区精品91| 久久精品国产自在天天线| 国国产精品蜜臀av免费| 国精品久久久久久国模美| 国语对白做爰xxxⅹ性视频网站| 国产亚洲精品久久久com| 水蜜桃什么品种好| 九色成人免费人妻av| 精品少妇内射三级| videossex国产| 欧美xxxx性猛交bbbb| 国产亚洲精品第一综合不卡 | 汤姆久久久久久久影院中文字幕| 99久久中文字幕三级久久日本| 久久人妻熟女aⅴ| 一区二区av电影网| av一本久久久久| 国产在视频线精品| 欧美日韩亚洲高清精品| 秋霞伦理黄片| 国产白丝娇喘喷水9色精品| av网站免费在线观看视频| 亚洲欧洲国产日韩| 成人18禁高潮啪啪吃奶动态图| 美女福利国产在线| 亚洲精品日本国产第一区| 内地一区二区视频在线| 国产精品人妻久久久久久| videosex国产| 又大又黄又爽视频免费| 五月天丁香电影| 免费人成在线观看视频色| 国产永久视频网站| 久久久久久久精品精品| 亚洲国产精品国产精品| 一级片免费观看大全| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| kizo精华| 日韩不卡一区二区三区视频在线| 女性被躁到高潮视频| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 热re99久久国产66热| 精品亚洲成国产av| 日韩av不卡免费在线播放| 国产视频首页在线观看| 九九爱精品视频在线观看| 久久女婷五月综合色啪小说| 啦啦啦在线观看免费高清www| 亚洲欧美中文字幕日韩二区| 久久久久久久久久成人| 亚洲国产精品专区欧美| 老司机影院成人| 久久精品aⅴ一区二区三区四区 | 大香蕉久久成人网| 99久久综合免费| 乱码一卡2卡4卡精品| 欧美xxⅹ黑人| 国产视频首页在线观看| 丝瓜视频免费看黄片| 插逼视频在线观看| 国产精品一区二区在线不卡| 欧美日韩亚洲高清精品| 亚洲国产精品一区二区三区在线| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 狠狠婷婷综合久久久久久88av| 国产男人的电影天堂91| 亚洲成人一二三区av| videosex国产| 黑人猛操日本美女一级片| 免费看av在线观看网站| 亚洲经典国产精华液单| 夫妻午夜视频| 三上悠亚av全集在线观看| 夫妻性生交免费视频一级片| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 狠狠婷婷综合久久久久久88av| √禁漫天堂资源中文www| 国产亚洲一区二区精品| 国产精品.久久久| 亚洲一级一片aⅴ在线观看| 国产在视频线精品| 亚洲性久久影院| 人人妻人人澡人人看| 午夜福利影视在线免费观看| 午夜免费男女啪啪视频观看| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 黄片播放在线免费| 亚洲国产毛片av蜜桃av| av播播在线观看一区| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 国产女主播在线喷水免费视频网站| 欧美另类一区| 国产在线一区二区三区精| 大话2 男鬼变身卡| 国精品久久久久久国模美| 丁香六月天网| 中文欧美无线码| 美女福利国产在线| 少妇被粗大的猛进出69影院 | 九色亚洲精品在线播放| 久久久久久久久久久免费av| 国产成人精品婷婷| 久久久久久久大尺度免费视频| 国产精品.久久久| 欧美精品国产亚洲| 美女视频免费永久观看网站| 大话2 男鬼变身卡| 久久热在线av| 欧美精品高潮呻吟av久久| 亚洲精品乱码久久久久久按摩| 日日爽夜夜爽网站| av视频免费观看在线观看| 哪个播放器可以免费观看大片| 美女内射精品一级片tv| 久久毛片免费看一区二区三区| 精品国产乱码久久久久久小说| 欧美 亚洲 国产 日韩一| 少妇被粗大的猛进出69影院 | 久久久精品区二区三区| 欧美xxⅹ黑人| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 两性夫妻黄色片 | 久久鲁丝午夜福利片| 最近最新中文字幕免费大全7| 色婷婷久久久亚洲欧美| 老女人水多毛片| 一区二区日韩欧美中文字幕 | 精品99又大又爽又粗少妇毛片| 国产乱人偷精品视频| 大陆偷拍与自拍| 成人国产av品久久久| 99热网站在线观看| 最近2019中文字幕mv第一页| 国产av精品麻豆| 欧美国产精品一级二级三级| videos熟女内射| 男女边摸边吃奶| 国产成人av激情在线播放| 亚洲少妇的诱惑av| 国产 一区精品| 亚洲av免费高清在线观看| 亚洲国产精品999| 最近最新中文字幕免费大全7| 人妻系列 视频| 国产高清不卡午夜福利| 久久久久久久精品精品| 赤兔流量卡办理| 亚洲av成人精品一二三区| 最近2019中文字幕mv第一页| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| 人妻 亚洲 视频| 精品一区二区三区四区五区乱码 | 亚洲国产精品一区二区三区在线| 嫩草影院入口| 欧美激情 高清一区二区三区| 亚洲伊人久久精品综合| 婷婷成人精品国产| 这个男人来自地球电影免费观看 | 亚洲 欧美一区二区三区| 夜夜爽夜夜爽视频| 国产 一区精品| 成年人午夜在线观看视频| www.av在线官网国产| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 边亲边吃奶的免费视频| 国语对白做爰xxxⅹ性视频网站| 尾随美女入室| 亚洲欧洲日产国产| 天天影视国产精品| 国产精品秋霞免费鲁丝片| 一二三四在线观看免费中文在 | 最近中文字幕高清免费大全6| 免费少妇av软件| 波多野结衣一区麻豆| 五月天丁香电影| 国产一区二区激情短视频 | 欧美成人午夜精品| 欧美精品一区二区大全| 亚洲精品国产av成人精品| 欧美激情国产日韩精品一区| 男女高潮啪啪啪动态图| 青春草视频在线免费观看| 亚洲美女视频黄频| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 中文字幕av电影在线播放| 久热这里只有精品99| 亚洲国产av影院在线观看| 99热全是精品| 亚洲av欧美aⅴ国产| 美女福利国产在线| 日韩,欧美,国产一区二区三区| 日韩av免费高清视频| 成年av动漫网址| 欧美亚洲 丝袜 人妻 在线| 中文字幕精品免费在线观看视频 | 我要看黄色一级片免费的| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级| 亚洲国产看品久久| 各种免费的搞黄视频| 女人被躁到高潮嗷嗷叫费观| 汤姆久久久久久久影院中文字幕| 男人爽女人下面视频在线观看| 亚洲中文av在线| 成人影院久久| 少妇精品久久久久久久| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看 | 日韩一本色道免费dvd| 美国免费a级毛片| 欧美日本中文国产一区发布| 亚洲欧洲日产国产| 丁香六月天网| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 亚洲精品,欧美精品| 性色avwww在线观看| 捣出白浆h1v1| 免费av中文字幕在线| 久久久a久久爽久久v久久| 波多野结衣一区麻豆| 在线免费观看不下载黄p国产| 国产免费现黄频在线看| 精品一区在线观看国产| 秋霞伦理黄片| 大码成人一级视频| 午夜影院在线不卡| 亚洲伊人久久精品综合| 亚洲伊人色综图| 哪个播放器可以免费观看大片| 免费黄色在线免费观看| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 大香蕉97超碰在线| 成年美女黄网站色视频大全免费| 精品少妇内射三级| videosex国产| 嫩草影院入口| 亚洲人成77777在线视频| av在线播放精品| 亚洲国产精品999| 欧美另类一区| 国产精品国产av在线观看| 精品久久蜜臀av无| 一个人免费看片子| 七月丁香在线播放| 97在线人人人人妻| 七月丁香在线播放| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产毛片av蜜桃av| 亚洲成国产人片在线观看| 久久久久久人妻| 波多野结衣一区麻豆| 99热这里只有是精品在线观看| 伊人亚洲综合成人网| 最近手机中文字幕大全| 一级毛片黄色毛片免费观看视频| 人妻人人澡人人爽人人| 你懂的网址亚洲精品在线观看| 亚洲婷婷狠狠爱综合网| 黑丝袜美女国产一区| 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 亚洲精品色激情综合| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 伊人久久国产一区二区| 99久久中文字幕三级久久日本| 99久久人妻综合| 欧美bdsm另类| 九九爱精品视频在线观看| av福利片在线| 日韩制服丝袜自拍偷拍| 少妇人妻久久综合中文| 亚洲少妇的诱惑av| 蜜臀久久99精品久久宅男| 欧美日韩国产mv在线观看视频| 男人添女人高潮全过程视频| 亚洲精品,欧美精品| 午夜福利影视在线免费观看| 亚洲人成网站在线观看播放| 国产国语露脸激情在线看| 成人无遮挡网站| 国产又色又爽无遮挡免| 一区在线观看完整版| 高清欧美精品videossex| 人妻 亚洲 视频| 久久久久精品久久久久真实原创| 一区二区三区乱码不卡18| 蜜桃在线观看..| 99热国产这里只有精品6| 五月天丁香电影| 日本黄色日本黄色录像| 五月玫瑰六月丁香| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 国产精品三级大全| 黄色 视频免费看| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 肉色欧美久久久久久久蜜桃| 久久久久网色| 日韩人妻精品一区2区三区| 国产精品一区www在线观看| 亚洲av欧美aⅴ国产| 欧美日韩av久久| av网站免费在线观看视频| 下体分泌物呈黄色| 这个男人来自地球电影免费观看 | 国产精品嫩草影院av在线观看| 亚洲国产精品一区二区三区在线| 熟女人妻精品中文字幕| 蜜臀久久99精品久久宅男| 黄网站色视频无遮挡免费观看| 蜜臀久久99精品久久宅男| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 欧美3d第一页| 日韩伦理黄色片| 国产爽快片一区二区三区| 少妇人妻 视频| av线在线观看网站| 一本色道久久久久久精品综合| 久久久久久久亚洲中文字幕| 九色成人免费人妻av| 两个人免费观看高清视频| √禁漫天堂资源中文www| 另类亚洲欧美激情| 校园人妻丝袜中文字幕| 亚洲成色77777| 午夜老司机福利剧场| 国产有黄有色有爽视频| 久久久久网色| 免费高清在线观看视频在线观看| 国产精品久久久久久久久免| 精品一区二区免费观看| 夜夜爽夜夜爽视频| 成人影院久久| 久久鲁丝午夜福利片| 91精品国产国语对白视频| 国产白丝娇喘喷水9色精品| 欧美日韩国产mv在线观看视频| 中文字幕人妻丝袜制服| 男人爽女人下面视频在线观看| 国产永久视频网站| 另类精品久久| 亚洲美女视频黄频| 午夜影院在线不卡| 国产片内射在线| 少妇的逼水好多| 日韩av免费高清视频| 丰满饥渴人妻一区二区三| 下体分泌物呈黄色| 久久亚洲国产成人精品v| 一区二区av电影网| 天堂俺去俺来也www色官网| 亚洲欧美一区二区三区黑人 | 久久精品国产综合久久久 | 亚洲欧洲精品一区二区精品久久久 | tube8黄色片| 成人18禁高潮啪啪吃奶动态图| 精品国产一区二区三区四区第35| 成人国产麻豆网| 啦啦啦啦在线视频资源| 一级,二级,三级黄色视频| av不卡在线播放| 免费av不卡在线播放| 91在线精品国自产拍蜜月| 国产不卡av网站在线观看| 久久久久视频综合| 欧美成人午夜免费资源| 男人操女人黄网站| 国产日韩欧美视频二区| 大话2 男鬼变身卡| 亚洲综合精品二区| 久久精品人人爽人人爽视色| 久久99热这里只频精品6学生| 97超碰精品成人国产| 一边亲一边摸免费视频| 新久久久久国产一级毛片| 亚洲av福利一区| 成年女人在线观看亚洲视频| 综合色丁香网| 人体艺术视频欧美日本| 九色亚洲精品在线播放| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 国产精品三级大全| 国产在线视频一区二区| 婷婷色综合www| 久久免费观看电影| 国产精品蜜桃在线观看| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 国产av码专区亚洲av| 亚洲精品日本国产第一区| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久 | 国产精品女同一区二区软件| 国产成人精品在线电影| 曰老女人黄片| 男人操女人黄网站| 一个人免费看片子| 久久午夜综合久久蜜桃| 免费av不卡在线播放| 美女国产高潮福利片在线看| 亚洲美女黄色视频免费看| 亚洲美女搞黄在线观看| 欧美精品国产亚洲| 久久久久久久久久成人| 国语对白做爰xxxⅹ性视频网站| 精品人妻偷拍中文字幕| 三上悠亚av全集在线观看| 久久久久视频综合| 亚洲,欧美精品.| 在线观看免费高清a一片| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 视频区图区小说| 夜夜爽夜夜爽视频| 黄色怎么调成土黄色| 精品国产露脸久久av麻豆| 午夜激情av网站| 免费观看a级毛片全部| 免费黄频网站在线观看国产| 久久影院123| 国产成人精品在线电影| 欧美亚洲 丝袜 人妻 在线| 成人漫画全彩无遮挡| 久久99热这里只频精品6学生| 热99久久久久精品小说推荐| 久久久久人妻精品一区果冻| 亚洲国产精品999| 亚洲欧洲精品一区二区精品久久久 | av在线app专区| 日本vs欧美在线观看视频| 999精品在线视频| 日产精品乱码卡一卡2卡三| 999精品在线视频| 亚洲天堂av无毛| 丝袜在线中文字幕| 99热国产这里只有精品6| 十八禁高潮呻吟视频| 国产一区亚洲一区在线观看| 九九爱精品视频在线观看| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 美女主播在线视频| 国产精品久久久久久精品古装| 男女边摸边吃奶| 国产老妇伦熟女老妇高清| 精品熟女少妇av免费看| 一级,二级,三级黄色视频| 久久99热这里只频精品6学生| 国产精品国产av在线观看| 精品一区二区三卡| 亚洲欧美一区二区三区黑人 | 久久久久久久精品精品| 欧美人与善性xxx| 久久午夜综合久久蜜桃| 国产伦理片在线播放av一区| 欧美精品av麻豆av| 亚洲欧美成人精品一区二区| 精品第一国产精品| 在线精品无人区一区二区三| 久久99热这里只频精品6学生| 成年人免费黄色播放视频| 久久韩国三级中文字幕| 欧美最新免费一区二区三区| 欧美日韩国产mv在线观看视频| 精品熟女少妇av免费看| a级毛片黄视频| 一级,二级,三级黄色视频| 欧美成人午夜精品| 香蕉国产在线看| 纯流量卡能插随身wifi吗| 亚洲欧洲国产日韩| videos熟女内射| 777米奇影视久久| 人妻 亚洲 视频| 欧美性感艳星| 久久久久精品人妻al黑| 精品少妇内射三级| 亚洲第一区二区三区不卡| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 久久精品久久久久久久性| 欧美日韩精品成人综合77777| 亚洲伊人色综图| 久久人人爽人人爽人人片va| 国产又色又爽无遮挡免| 午夜免费鲁丝| 女性生殖器流出的白浆| 一级毛片我不卡| 天天操日日干夜夜撸| 欧美成人午夜精品| 国产精品一国产av| 狠狠精品人妻久久久久久综合| 亚洲av成人精品一二三区| 久久久a久久爽久久v久久| 校园人妻丝袜中文字幕| 男的添女的下面高潮视频| 久久精品国产a三级三级三级| 中国国产av一级| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 夫妻午夜视频| 99国产综合亚洲精品| a级毛色黄片| 日韩三级伦理在线观看| 大香蕉久久网| 韩国av在线不卡| 最近最新中文字幕免费大全7| 欧美人与善性xxx| 亚洲国产精品成人久久小说| 日韩制服骚丝袜av| 熟女av电影| www日本在线高清视频| 视频区图区小说| 熟女av电影| 在线 av 中文字幕| 日韩不卡一区二区三区视频在线| 18+在线观看网站| 日韩免费高清中文字幕av| 香蕉国产在线看| 成年女人在线观看亚洲视频| 热re99久久国产66热| freevideosex欧美| 欧美精品高潮呻吟av久久| 一区二区三区四区激情视频| 日韩av不卡免费在线播放| 国产日韩欧美亚洲二区| 男女国产视频网站| 久久久国产精品麻豆| 国产亚洲精品久久久com| 亚洲av中文av极速乱| 内地一区二区视频在线| 大码成人一级视频| 中国美白少妇内射xxxbb| 国产精品久久久久成人av| 最新中文字幕久久久久| 18禁国产床啪视频网站| 国产精品嫩草影院av在线观看| 精品国产一区二区久久| 欧美激情 高清一区二区三区| 五月天丁香电影| 亚洲国产精品专区欧美|