• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints M. VINOTH KUMARa,*, V. BALASUBRAMANIANb,1, S. RAJAKUMARb, SHAJU K. ALBERTc

    2015-07-02 06:14:17DeprtmentofMnufturingEngineeringAnnmliUniversityAnnmliNgrTmilNdu608002IndiCenterforMterilsJoiningndReserhCEMAJORDeprtmentofMnufturingEngineeringAnnmliNgrTmilNdu608002IndiMterilsTehnologyDivisionIndirGndhiCentreforAtomiRe
    Defence Technology 2015年3期

    Deprtment of Mnufturing Engineering, Annmli University, Annmli Ngr, Tmil Ndu 608002, IndiCenter for Mterils Joining nd Reserh (CEMAJOR), Deprtment of Mnufturing Engineering, Annmli Ngr, Tmil Ndu 608002, IndiMterils Tehnology Division, Indir Gndhi Centre for Atomi Reserh (IGCAR), Klpkkm, Tmilndu 603102, IndiReeived 13 My 2015; epted 15 My 2015 Aville online 2 July 2015

    Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints M. VINOTH KUMARa,*, V. BALASUBRAMANIANb,1, S. RAJAKUMARb, SHAJU K. ALBERTc

    aDepartment of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, IndiabCenter for Materials Joining and Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai Nagar, Tamil Nadu 608002, India
    cMaterials Technology Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu 603102, India
    Received 13 May 2015; accepted 15 May 2015 Available online 2 July 2015

    Abstract

    Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304H parent metal and gas tungsten arc (GTA) welded joints were studied by constant load tests in 45% boiling MgCl2solution. Stress corrosion cracking resistance of Super 304H stainless steel was deteriorated by GTAwelding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Super 304H; Chloride stress corrosion cracking; Constant load test; Gas tungsten arc welding

    E-mail addresses: vinothmecho@gmail.com (M. VINOTH KUMAR), visvabalu@yahoo.com (V. BALASUBRAMANIAN), srkcemajor@gmail. com (S. RAJAKUMAR), shaju@igcar.gov.in (S.K. ALBERT).

    Peer review under responsibility of China Ordnance Society.

    1Tel.: +91 9443412249 (mobile).

    http://dx.doi.org/10.1016/j.dt.2015.05.009

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Austenitic stainless steels are the desired material for use in high temperatures under highly corrosive environment. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. The efficiency of the power cycle is function of the operating temperature and pressure. Development and selection of materials with required high temperature strength and corrosion resistance is vital in further improvement in efficiency of the power cycle [1,2]. Recently developed Super 304H austenitic stainless steel with excellent creep strength and corrosion resistance is mainly used in heat exchanger tubing of the boiler. The addition of 3 wt.% Cu to Super 304H enhances the precipitation strengthening of the alloy by precipitating out fine, stable and coherent Cu rich particles at elevated temperatures [3].

    Stainless steels resist general corrosion but are susceptible to localized corrosion such as pitting, and stress corrosion cracking (SCC) in chloride environments [4]. SCC is the most likely life limiting failure in boilers with austenitic stainless steel tubing [5]. SCC is caused by the synergic and simultaneous action of tensile stress, environment and susceptible microstructure [6]. The microstructure depends on the chemical composition and manufacturing methods. Welding is considered as the major manufacturing method for pressure equipments in power plants [7]. Welding may alter thefavorable parent metal microstructure and induce residual stresses in the joints. In some cases the residual stress may exceed the tensile stress of the material, resulting in worsening of SCC susceptibility of the material [4,8]. The addition of Nb to the steel and weld metal is beneficial for stabilizing C in the matrix to avoid sensitization, while the effect of nitrogen on SCC in parent metal is considered beneficial, and for the welds it remains complicated due to their inhomogenous dendritic cast structure [9].

    In the absence of analytical approaches to predict SCC, testing becomes vital. In actual conditions, SCC tends occur over long periods of time; hence the SCC tests are accelerated byusinghighly aggressive environments, constantly increasing the load/strain. The results of accelerated tests can be extrapolated to predict the long term service life of the structure [10]. The test methods for SCC are classified as constant load tests, constant strain tests and slow strain rate tests based on mode of specimen loading [11]. Recent works in Refs. [12,13] on SCC of Super 304H using constant strain method revealed the SCC susceptibility of the Super 304H under larger strain and improper heat treatment conditions.

    In this present work, the SCC susceptibility of Super 304H parent metal and gas tungsten arc welded (GTA) joints were studied by recording the“corrosion—elongation curves”during constant load tests in boiling MgCl2solution.

    Table 1Chemical composition (wt.%) of parent metal (PM) and filler metal (FM).

    Table 2Tensile properties of parent metal and weld joint.

    2. Experimental details

    The parent metal used in this investigation was Super 304H austenitic stainless steel with distinct addition of 3 wt% of copper. Super 304H was received in annealed condition (1145°C), in the form of tubes with outer diameter of 57.1 mm and wall thickness of 3.5 mm. For GTAwelding, the joints with single‘V’butt configuration were welded with addition of filler metal. Filler metal composition was suitably modified to achieve delta ferrite free weld metal by increasing the Ni content; the resultant weld metal microstructure was fully austenitic, as preferred in high temperature applications [9]. Mo was added to avoid the risk of hot cracking in the fully austenitic weld metal by modifying the S inclusions and enhance the resistance to pitting corrosion [14,15]. The chemical compositions of the parent metal and filler metal are presented in Table 1. The welding was carried out with average heat input of 0.68 kJ/mm, in which argon was used as the shielding and purging gas.

    The specimens for transverse tensile test and SCC tests were extracted from the parent metal and weld joints using wire-cut electric discharge machining. The tensile properties of as-received parent metal and weld joints are listed in Table 2. In order to reveal the susceptibility of Super 304H parent metal and weld joint to intergranular corrosion (IGC), the specimens were subjected to oxalic acid etch test as per ASTM A262 practice A. The specimens were probed under light microscope to reveal the level of Super 304H's susceptibility to IGC before and after welding.

    The SCC test was carried out using the smooth tensile specimen (shown in Fig. 1) in a custom-built constant load setup with maximum loading capacity of 10 kN. The applied loads are measured using a load cell with an accuracy of ±10 N. The strain measurements were done using an LVDT with measurable range of±5 mm and an accuracy of <1 μm. The schematic representation of the SCC constant load setup is shown in Fig. 2. The environment for SCC testing of Super 304H was chosen as 45% MgCl2boiling at 155°C, and thetests were conducted in accordance with ASTM G36. The constant load SCC tests were conducted for parent metal and weld joints of Super 304H at stress levels of 100%, 80%, 60% and 40% of the parent metal's yield strength. The specimens for microstructure analysis were polished and etched using Glyceregia. The fracture surfaces of the SCC specimens were ultrasonically cleaned and analyzed using scanning electron microscopy (SEM) to reveal the modes of failure. Energy dispersive spectroscopy (EDS) attached with SEM was used to reveal the elemental composition of interested spots in fracture surface.

    Fig. 1. Schematic representation of the SCC constant load setup.

    Fig. 2. Schematic representation of the SCC constant load setup with boiling MgCl2.

    3. Results

    3.1. Microstructure

    The SEM micrograph of parent metal is shown in Fig. 3, which cons(a)ists of equiaxed austenitic grains with annealing twins and precipitates (marked by arrows). The precipitates in parent metal were chemically extracted from the austenitematrix, and their XRD pattern is shown in Fig. 3(b). The XRD pattern confirmed the presence of Nb(C,N), M23C6carbides in the parent metal. The SEM micrograph of weldmetal in the center of the joint is shown in Fig. 3(c), which reveals fully austenitic grains with cellular morphology and carbides (NbC, M23C6) precipitated along the boundaries. The fusion line (FL) of the weld joint shown in Fig. 3(d) reveals the epitaxial grain growth. The heat affected zone (HAZ) next to the fusion line shows grain coarsening due to the weld thermal cycles, however no liquation of grain boundaries nor sensitization is observed from SEM micrograph.

    The fusion zone of the weld next to fusion line is shown in Fig. 3(e) which shows the mixed morphology (cellular and dendritic) of the austenite in this zone. The white dotted line marks the transition of the austenitic weld from dendrite near the fusion line to cell morphology towards the weld enter. The magnified image of the area marked in Fig. 3(e) is shown in Fig. 3(f). The marked arrow indicates the primary ferrite dendritic core formed by F-A solidification mode and subsequently transformed to secondary austenite by solid state diffusion. This confirms that both A type (cellular) and F-A type of solidification have prevailed in the fusion zone next to fusion line [16].

    Fig. 4. Oxalic acid etched structure of weld metal and HAZ.

    Fig. 5. Typical corrosion elongation curve of Super 304H and its parameters in boiling MgCl2solution.

    3.2. Oxalic acid etch structure

    The oxalic acid etch structure of weld metal is shown in Fig. 4(a), which reveals the end grain pits in austenitic weld metal. The etch structure of HAZ shown in Fig. 4(b) reveals the step structure among the grains (marked as 1), few deep end grain pits (marked as 2) and dual structure in which a single grain is not completely surrounded by the ditches (marked as 3). The etch structures of both weld metal and HAZ were acceptable as per ASTM A262 and show nosusceptibility to intergranular attack associated with chromium carbide precipitation.

    Fig. 6. Corrosion elongation curves for parent metal and weld joints of Super 304H in boiling MgCl2at 100%, 80%, 60% and 40% of the yield strength.

    3.3. Corrosion elongation curves

    The‘corrosion elongation curve’for unwelded parent metal tested at 80% of its yield strength in boiling MgCl2is shown in Fig. 5, and the parameters such as iss, tssand tfwere derived from this curve. The slope of the curve in the secondary region before the time to transition (tss) from secondary region to tertiary region represents the rate of steady state elongation (iss), where the tfrepresents the time to complete fracture. The corrosion elongation curves of parent metal and weld joint for all test conditions are shown in Fig. 6, and the evaluated parameters are listed in Table 3. The corrosion elongation curves provide information about the SCC cracking mechanisms involved in the parent metal and weld joint of Super 304H austenitic stainless steel [17].

    The relationship between the applied stress and the tffor parent metal and weld joint of Super 304H is shown in Fig. 7, which reveals the significant degradation in SCC resistance of Super 304H subjected to welding, as the tfof weld joint is lower than that of parent metal at their respective stress level. The ratio of tssto tfshown in Table 3 is used to determine the most prominent mode of degradation (corrosive or mechanical) active in their respective test conditions. The typical values of tss/tffor 316 stainless steels in stress corrosion range was reported to be~0.6 [18]. In the case of Super 304H parent metal and weld joint, the value of tss/tftends to increase with the decrease in applied stress typical of N alloyed steels, as reported elsewhere for 0.25% N alloyed austenitic stainless steels [17]. This implies that the time in the tertiary region, i.e. the time for fracture after crack initiation, decreases steadily with the decrease in applied stress level, whereas the steady state elongation rate (iss) decreases with the increase in tfand the decrease in applied stress. Puiggali et al. [18] described the crack growth rate (Vc) as,

    where Sois initial cross section; tpis time for crack propagation after crack initiation (tss);б is initial applied stress; and бris ultimate tensile strength. The crack growth rate in terms of mm2/h was calculated for all the test conditions and listed in Table 3. It was found that, for both parent metal and weld joint, Vcwas higher in the stress dominant region (1.0×YS), while Vcdecreased at 0.8×YS indicating the transition point to SCC dominant region and continues to increase from thereof, till the corrosion dominant region (0.4×YS), where the highest value of Vcwas recorded.

    Table 3Corrosion elongation curve parameters for Super 304H in boiling MgCl2solution.

    Fig. 7. Relationship between applied stress and time to failure.

    Fig. 8. Prediction of time to failure of Super 304H parent metal and weld joint by SCC in boiling MgCl2.

    3.4. Prediction of time to failure

    The calculated corrosion elongation curve parameters shown in Table 3 can be used for prediction of time to failure by extrapolation of time scale. The logarithmic relationship between issand tfis always linear and independent of pH, concentration of ion, temperature and material [17,19]. The Fig. 8 reveals that such a linear relationship also exists between the issand tfof parent metal and weld joints of Super 304H. The mathematically expressed linear relationships iss=-2.08tf-2.11(for parent metal) and iss= -40.66 tf+ 36.37 (for weld joint) can be used for prediction of time to failure.

    Fig. 9. Fracture characteristics of Super 304H parent metal SCC specimens tested in boiling MgCl2solution at different stress levels.

    3.5. Fracture surfaces

    The SCC characteristics in the directions parallel and normal to loading, for the parent metal and weld joint areshown in Figs. 9 and 10 respectively. The cracks are oriented normal to the loading direction, and the number of cracks and crack width decreases with the decrease in applied stress for both parent metal (refer Fig. 9(a)) and weld joint (refer Fig. 10(a)). The fracture surfaces of the parent metal and weld joint at low magnification (refer Figs. 9(b) and 10(b)) reveal brittle mode of failure, with no reduction in cross sectional area. The Figs. 9(c) and 10(c) confirms the transgranular mode of crack propagation for both parent metal and weld joint at all stress levels, with de-cohesion of grains at the grain boundaries.

    Fig. 10. Fracture characteristics of Super 304H GTAW joints SCC specimens tested in boiling MgCl2solution at different stress levels.

    The microstructural characteristic features of SCC in parent metal and weld joint are shown in Fig. 11. In parent metal, the interfacebetweenthematrixandcoarsecarbidesareidentifiedas the sourceof crack initiation, asindicated by arrow in Fig. 11(a). Theothercrackinitiationsitesarethehighnumberofslipstepsat the edges of the specimen, which promotes the formation and growth of corrosion pits in large numbers by anodic dissolution, asshownin Fig.11(c).Theparentmetalwithlesserappliedstress levelprovideslessercrackinitiationsitesbyslipsattheedgesand hence the crack propagates by branching and interconnecting other probable cracks (Fig. 11(e)).

    Fig. 11. Crack propagation characteristics in SCC specimen tested in boiling MgCl2solution at different applied stress levels.

    In the weld joint the cracks initiate and propagate in the HAZ and fusion line/HAZ region, which are more susceptible to SCC, as shown in Fig. 11(b). The weld metal posses better resistance to SCC (refer Fig. 11(e) and (f)), however the presence of carbides results in initiation of the crack and these cracks gets interconnected to the main crack propagating in to the weld metal, as shown in Fig. 11(d).

    The crack propagation micrograph of weld joint tested at lower applied stress is shown in Fig. 11(f), which reveals the initiation of crack in HAZ region and its transgranular propagation into the weld metal. However, no crack is observed in the weld metal of the joint tested at lower applied stress (refer Fig. 11(f)). The EDS spectra of fracture surfaces of parent metal and weld joint are shown in Fig. 12(a) and (b),respectively. The presence of chloride in the fracture surfaces confirms the interaction of chloride environment with the test specimens to cause SCC failure.

    Fig. 12. EDS elemental analysis of fracture surface.

    4. Discussion

    The SCC was transgranular at all the stress levels i.e. SCC-dominated and stress-dominated regions, in parent metal and weld joint, which is characteristic of the higher steady elongation observed [20]. Out of the numerous mechanisms proposed to explain SCC behaviour the anodic path cracking mechanism (APC) belongs to the cracking of austenitic stainless steel in chloride environment [21]. The mechanism proposed by Nishimura for transgranular SCC is also valid for this work, where the entire cracking is based on a cyclic event of passive film formation and rupture, dealt elsewhere in detail [22,4]. The anodic metal dissolution and passive film formation at the crack tip result in dislocation pile-up at the crack tip, resulting in an increase in local stresses higher than the applied local stress at the vicinity of the crack tip. The film ruptures when the local stress exceeds a critical value and a crack propagates by exposing fresh metal to repeat the process. Such event of crack propagation was recorded as noise peaks in corrosion elongation curves until tss, resulting in steady state elongation (refer Fig. 13). The downward arrows indicate the critical stress at which the film ruptures and the upward arrows indicate the applied mean stress.

    Inweldjoints,HAZisthemostsusceptibleregionto SCCdue to the metallurgical changes caused by weld thermal cycles. The oxalic acid etch test reveals a dual structure in the HAZ, confirming the deterioration in the corrosion resistance of the zone. Intheworstcase,theweldingresidualstresscanbesuperimposed and may be as high as yield strength of the material [15,4]. The microstructure examination of the SCC weld joints reveals that the failure occurred between the weld interface and HAZ, indicating the susceptibility of the zone to SCC. At lower applied stress(0.4×YS),thecracksare found toinitiate inthe HAZ and propagate in to the weld metal. The crack initiation sites are not observedintheweldmetalatlowerstress(referFig.11(f)),which confirms the enhanced pitting resistance of weld metal by Mo addition [15]. The cracks initiated in the weld metal at higher stress (refer Fig. 11(d)) are attributed to the local strain field around the interface of matrix and precipitates, caused by the misfit between matrix and precipitates.

    Fig. 13. Magnified view of serrations observed in corrosion elongation curves of constant load SCC specimens tested in boiling MgCl2solution.

    5. Conclusions

    1) The SCC resistance of Super 304H stainless steel is deteriorated by GTA welding due to the detrimental microstructural changes in the HAZ of the joint and the residual stresses caused by the weld thermal cycles.

    2) Linear relationships are derived from the elongation rate and time to failure, from which it is possible to extrapolate and predict the time to failure from the corrosion elongation curves.

    3) The stress corrosion cracking is transgranular in nature under all the test conditions, and the cracking mechanism is found to be anodic path cracking.

    4) Molybdenum is found to improve the stress corrosion cracking resistance of weldmetal due to its enhanced resistance for pitting corrosion.

    Acknowledgements

    The authors wish to express their sincere thanks to M/s Mailam India Ltd, Pondicherry, India for providing the funds to carry out this research work through Mailam India Research (MIR) Fellowship, M/s Salzgitter Mannesmann Stainless Tubes Italia Srl, Italy for supplying the Super 304H tubes and Department of Science and Technology (DST-SERB), Government of India, for providing the stress corrosion cracking setup wide project no. SB/FTP/ETA-281/2012.

    References

    [1] Viswanathan R, Bakker W. Materials for ultra supercritical coal power plants—boiler materials: Part 1. J Mater Eng Perform 2001;10:81—95.

    [2] Viswanathan R, Sarver J, Tanzosh JM. Boiler materials for ultrasupercritical coal power plants—steamside oxidation. J Mater Eng Perform 2006;15:255—74.

    [3] Li Xin-mei, Zou Yong, Zhang Zhong Wen, Zou Zeng-da. Microstructure evolution of a novel Super304H steel aged at high temperatures. J Mater Trans 2010;51:305—9.

    [4] Lu BT, Chen ZK, Luo JL, Patchett BM, Xu ZH. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. J ElectrochimActa 2005;50:1391—403.

    [5] SaadAbouelazm A, El Mahallawi I, Abdel karim R, Rashad R. Failure investigation of secondary super-heater tubes in a power boiler. J Eng Fail Anal 2009;16:433—48.

    [6] Antunes PD, Correa EO, Barbosa RP, Silva EM, Padilha AF, Guimaraes PM. Effect of weld metal chemistry on stress corrosion cracking behavior of AISI 444 ferritic stainless steel weldments in boiling chloride solution. J Mater Corros 2013;64:415—21.

    [7] Pettersson CO, Boellinghaus T, Kannengiesser T. Corrosion testing of welds a review of methods. J Weld World 2007;51:79—106.

    [8] Schvartzman Monica Maria de Abreu Mendonca, Quinan Marco Antonio Dutra, Campos Wagner Reis da Costa, Lima Luciana Iglesias Lourenco.Stress corrosion cracking of the AISI 316L stainless steel HAZ in a PWR nuclear reactor environment. J Weld Int 2011;25:15—23.

    [9] Nage Deepashri D, Raja VS. Effect of nitrogen addition on the stress corrosion cracking behavior of 904 L stainless steel welds in 288°C deaerated water. J Corros Sci 2006;48:2317—31.

    [10] Dietzel Wolfgang. Rising displacement stress corrosion cracking testing. J Metall Mater Trans A 2011;42:365—72.

    [11] Gnanamoorthy JB. Corrosion of austenitic stainless steels in aqueous environments. Proc Indian Acad Sci—Chem Sci 1986;97:495—511.

    [12] Prabha B, Sundaramoorthy P, Suresh S, Manimozhi S, Ravishankar B. Studies on stress corrosion cracking of Super 304H austenitic stainless steel. J Mater Eng Perform 2009;18:1294—9.

    [13] Gao Yan, Zhang Chunlei, Xiong Xiahua, Zheng Zhijun, Zhu Min. Intergranular corrosion susceptibility of a novel Super 304H stainless steel. J Eng Fail Anal 2012;24:26—32.

    [14] Lauro A, Mandina M. Welding and weldability of the super austenitic and super martensitic stainless steels. J Weld Int 2003;17:710—20.

    [15] Kaneko M. Stress corrosion cracking of stainless steels. J Weld Int 2007;21:95—9.

    [16] Suutala N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. J Metall Trans A 1982;13A:1982—2121.

    [17] Vehovar L, Vehovar A, MetikosHukovic M, Tandler M. Investigation into the stress corrosion cracking of stainless steels alloyed with nitrogen. J Mater Corros 2002;53:316—27.

    [18] Puiggali M, Desjardins D, Ajana L. A critical study of stress corrosion cracking testing methods for stainless steels in hot chloride media. J Corros Sci 1987;27:585—94.

    [19] Nishimura R, Kudo K. Stress corrosion cracking of AISI 304 and AISI 316 austenitic stainless steels in HCl and H2SO4solutions prediction of time-to-failure and criterion for assessment of SCC susceptibility. J Corros 1989;45:308.

    [20] Alyousif Osama M, Nishimura R. The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions. J Corros Sci 2007;49:3040—51.

    [21] Lu BT, Qiao LJ, Luo JL, Gao KW. Role of hydrogen in stress corrosion cracking of austenitic stainless steels. J Philos Mag 2011;91:208—28.

    [22] Nishimura Rokuro, Sulaiman Achmad, Maeda Yasuaki. Stress corrosion cracking susceptibility of sensitized type 316 stainless steel in sulphuric acid solution. J CorrosSci 2003;45:465—84.

    * Corresponding author. Tel.: +91 9751014430 (mobile).

    亚洲精品影视一区二区三区av| 十八禁网站免费在线| 欧美不卡视频在线免费观看| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩卡通动漫| avwww免费| 黄色配什么色好看| 久久国产精品人妻蜜桃| 在现免费观看毛片| 琪琪午夜伦伦电影理论片6080| 91久久精品电影网| 久久久久久久久中文| 欧美日韩亚洲国产一区二区在线观看| 性色avwww在线观看| 少妇的逼好多水| 日韩欧美国产一区二区入口| 看免费成人av毛片| 国产色爽女视频免费观看| 成人av在线播放网站| 欧美性感艳星| 久久久久久伊人网av| 人人妻,人人澡人人爽秒播| 91狼人影院| 精品人妻一区二区三区麻豆 | 天堂网av新在线| 日本一本二区三区精品| 夜夜看夜夜爽夜夜摸| 啦啦啦韩国在线观看视频| 啦啦啦啦在线视频资源| 午夜免费激情av| av在线天堂中文字幕| 国产亚洲91精品色在线| 亚洲美女黄片视频| 亚洲av中文字字幕乱码综合| 内地一区二区视频在线| 乱系列少妇在线播放| 免费搜索国产男女视频| 淫秽高清视频在线观看| 亚洲国产精品sss在线观看| 我的老师免费观看完整版| 成人国产综合亚洲| 日韩大尺度精品在线看网址| 亚洲久久久久久中文字幕| 麻豆国产av国片精品| 日韩欧美精品免费久久| 日韩强制内射视频| 久久中文看片网| 日本与韩国留学比较| 在线国产一区二区在线| 精品人妻一区二区三区麻豆 | 成人国产麻豆网| 一区二区三区高清视频在线| 黄色日韩在线| 麻豆一二三区av精品| 亚洲国产色片| 狠狠狠狠99中文字幕| 久久精品影院6| av中文乱码字幕在线| 超碰av人人做人人爽久久| 日韩欧美一区二区三区在线观看| 国产男靠女视频免费网站| 国产一区二区三区视频了| 国产一区二区三区视频了| 天堂av国产一区二区熟女人妻| 久久久久久国产a免费观看| 婷婷亚洲欧美| 直男gayav资源| 午夜精品在线福利| 成人特级av手机在线观看| 亚洲av.av天堂| 村上凉子中文字幕在线| 国产一区二区三区视频了| 免费av不卡在线播放| 久久久久免费精品人妻一区二区| 大又大粗又爽又黄少妇毛片口| 日韩欧美在线二视频| 中文字幕精品亚洲无线码一区| 亚洲精品久久国产高清桃花| 欧美日韩乱码在线| 久久久久久国产a免费观看| 深夜精品福利| avwww免费| 亚洲成人中文字幕在线播放| 亚洲第一区二区三区不卡| 天天躁日日操中文字幕| 少妇高潮的动态图| 亚洲欧美日韩高清在线视频| 免费在线观看成人毛片| 国产精品久久视频播放| 九九热线精品视视频播放| 国产蜜桃级精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 网址你懂的国产日韩在线| 午夜免费男女啪啪视频观看 | 日本撒尿小便嘘嘘汇集6| 最近中文字幕高清免费大全6 | 在线观看美女被高潮喷水网站| 日韩欧美三级三区| av国产免费在线观看| 国产高清视频在线播放一区| 又黄又爽又免费观看的视频| 国产精品野战在线观看| 高清在线国产一区| 久久99热6这里只有精品| www.www免费av| 观看美女的网站| a级毛片a级免费在线| 国产一区二区三区av在线 | 亚洲成人精品中文字幕电影| 国产精品国产高清国产av| 精品久久久久久久人妻蜜臀av| 色尼玛亚洲综合影院| 亚洲人与动物交配视频| 中国美女看黄片| 免费看美女性在线毛片视频| 久久久久久久午夜电影| 久久久久久久精品吃奶| 国产中年淑女户外野战色| av在线老鸭窝| 精品久久久噜噜| 午夜久久久久精精品| 精品久久久久久成人av| 成人一区二区视频在线观看| 99热精品在线国产| 日韩,欧美,国产一区二区三区 | 黄片wwwwww| 日韩精品青青久久久久久| 国产一级毛片七仙女欲春2| 国产精品98久久久久久宅男小说| 白带黄色成豆腐渣| 少妇熟女aⅴ在线视频| 精品一区二区三区av网在线观看| 国产亚洲欧美98| 少妇裸体淫交视频免费看高清| 99久久中文字幕三级久久日本| 久久久久久九九精品二区国产| 日本熟妇午夜| 亚洲国产日韩欧美精品在线观看| 久久久久久久久中文| a级一级毛片免费在线观看| 精品人妻一区二区三区麻豆 | 老师上课跳d突然被开到最大视频| 好男人在线观看高清免费视频| 亚洲精华国产精华精| 午夜亚洲福利在线播放| 听说在线观看完整版免费高清| 岛国在线免费视频观看| 久久久久久伊人网av| 精品人妻视频免费看| 嫩草影视91久久| 成年女人看的毛片在线观看| 中文亚洲av片在线观看爽| 日本成人三级电影网站| 少妇熟女aⅴ在线视频| 亚洲无线观看免费| 亚洲三级黄色毛片| .国产精品久久| 男女下面进入的视频免费午夜| 九九在线视频观看精品| 搡老熟女国产l中国老女人| 99热精品在线国产| 成熟少妇高潮喷水视频| 亚洲人成伊人成综合网2020| 亚洲欧美精品综合久久99| 精品欧美国产一区二区三| 91久久精品国产一区二区成人| 欧美性猛交黑人性爽| 欧美bdsm另类| 婷婷六月久久综合丁香| 亚洲一区二区三区色噜噜| 日本一本二区三区精品| 精品国内亚洲2022精品成人| 亚洲天堂国产精品一区在线| 亚洲图色成人| 欧美日韩亚洲国产一区二区在线观看| 久久久久国内视频| 桃红色精品国产亚洲av| 欧美性猛交黑人性爽| 香蕉av资源在线| 美女大奶头视频| 不卡视频在线观看欧美| 99热这里只有是精品50| 久久精品国产99精品国产亚洲性色| 搡老妇女老女人老熟妇| 亚洲熟妇中文字幕五十中出| 欧美一区二区国产精品久久精品| 俄罗斯特黄特色一大片| 色吧在线观看| 午夜影院日韩av| 一a级毛片在线观看| 欧美精品啪啪一区二区三区| 国产探花在线观看一区二区| 国产综合懂色| 联通29元200g的流量卡| 啦啦啦观看免费观看视频高清| 欧美一级a爱片免费观看看| 老司机深夜福利视频在线观看| 中文资源天堂在线| 内地一区二区视频在线| 人妻少妇偷人精品九色| 观看美女的网站| 亚洲av日韩精品久久久久久密| 国产91精品成人一区二区三区| 亚洲美女黄片视频| 亚洲一区二区三区色噜噜| 精品不卡国产一区二区三区| 亚洲色图av天堂| 国产精品野战在线观看| 国产亚洲av嫩草精品影院| 最后的刺客免费高清国语| 哪里可以看免费的av片| 亚洲欧美日韩卡通动漫| 亚洲国产精品成人综合色| 琪琪午夜伦伦电影理论片6080| 我的女老师完整版在线观看| 亚洲av.av天堂| 香蕉av资源在线| 一区二区三区高清视频在线| 一个人看的www免费观看视频| 欧美潮喷喷水| 日韩大尺度精品在线看网址| 国产av不卡久久| 日韩强制内射视频| www日本黄色视频网| 深夜a级毛片| 神马国产精品三级电影在线观看| 午夜福利在线观看免费完整高清在 | 美女高潮喷水抽搐中文字幕| 国产精品亚洲一级av第二区| 日韩欧美在线乱码| 亚洲成av人片在线播放无| 老熟妇乱子伦视频在线观看| 中国美白少妇内射xxxbb| 十八禁国产超污无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 又爽又黄无遮挡网站| 久久久国产成人精品二区| 又黄又爽又刺激的免费视频.| 亚洲av成人精品一区久久| 成人欧美大片| a级一级毛片免费在线观看| 国产综合懂色| 国产在视频线在精品| 女人被狂操c到高潮| 国产69精品久久久久777片| 成人二区视频| 亚洲不卡免费看| 麻豆一二三区av精品| 伦精品一区二区三区| 国产成人一区二区在线| 又爽又黄a免费视频| 韩国av在线不卡| 久久午夜亚洲精品久久| 亚洲欧美日韩高清专用| 美女 人体艺术 gogo| 91麻豆av在线| 国产探花在线观看一区二区| 久久久久免费精品人妻一区二区| 真实男女啪啪啪动态图| 村上凉子中文字幕在线| 亚州av有码| 久久精品综合一区二区三区| 中国美女看黄片| 免费看av在线观看网站| 午夜免费男女啪啪视频观看 | 午夜久久久久精精品| 精品久久久噜噜| 欧美日本视频| 特大巨黑吊av在线直播| 久久草成人影院| 人妻丰满熟妇av一区二区三区| 国产av麻豆久久久久久久| 精品久久久久久久人妻蜜臀av| 日韩欧美在线乱码| 极品教师在线视频| 国产av一区在线观看免费| 国产欧美日韩精品一区二区| 亚洲三级黄色毛片| 在线国产一区二区在线| 日韩国内少妇激情av| 亚洲va日本ⅴa欧美va伊人久久| 尾随美女入室| 国产精品电影一区二区三区| 中文字幕av在线有码专区| 欧美3d第一页| 久久精品国产亚洲网站| 校园春色视频在线观看| 天堂影院成人在线观看| 韩国av一区二区三区四区| 看十八女毛片水多多多| 夜夜看夜夜爽夜夜摸| 国产老妇女一区| 国产一级毛片七仙女欲春2| 久久欧美精品欧美久久欧美| 国产 一区精品| 一区福利在线观看| 国产精品国产三级国产av玫瑰| 有码 亚洲区| 99国产精品一区二区蜜桃av| 99久久精品国产国产毛片| 三级毛片av免费| 国产单亲对白刺激| 一本精品99久久精品77| 亚洲在线观看片| 小蜜桃在线观看免费完整版高清| 成人一区二区视频在线观看| av在线亚洲专区| h日本视频在线播放| 午夜福利18| 美女高潮喷水抽搐中文字幕| 偷拍熟女少妇极品色| 欧美成人一区二区免费高清观看| 成人av在线播放网站| 麻豆精品久久久久久蜜桃| 欧美国产日韩亚洲一区| 特级一级黄色大片| 欧美+日韩+精品| 国产熟女欧美一区二区| 色在线成人网| 色吧在线观看| 欧美日韩中文字幕国产精品一区二区三区| 国产精品精品国产色婷婷| 91久久精品国产一区二区成人| 国产真实乱freesex| 婷婷丁香在线五月| 精品久久久久久成人av| 搡女人真爽免费视频火全软件 | 久久国产精品人妻蜜桃| 国产精品电影一区二区三区| 少妇熟女aⅴ在线视频| 在线观看av片永久免费下载| 精品久久久久久久久亚洲 | 国产精品伦人一区二区| 欧美潮喷喷水| av.在线天堂| 99热只有精品国产| 成人午夜高清在线视频| 国产人妻一区二区三区在| 亚洲精品456在线播放app | 欧美日韩黄片免| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 国产精品免费一区二区三区在线| 欧美黑人欧美精品刺激| 嫩草影院新地址| 欧美色视频一区免费| 最近最新中文字幕大全电影3| av在线亚洲专区| 在线a可以看的网站| 日韩中字成人| 一区二区三区四区激情视频 | 啦啦啦啦在线视频资源| 又黄又爽又刺激的免费视频.| 日韩欧美在线乱码| 99视频精品全部免费 在线| 三级国产精品欧美在线观看| 亚洲成人精品中文字幕电影| av在线天堂中文字幕| 男人和女人高潮做爰伦理| a级一级毛片免费在线观看| 亚洲专区国产一区二区| 久久这里只有精品中国| 嫁个100分男人电影在线观看| 亚洲成a人片在线一区二区| 欧美最新免费一区二区三区| 99久久久亚洲精品蜜臀av| 欧美bdsm另类| 成年女人永久免费观看视频| 少妇猛男粗大的猛烈进出视频 | 人人妻人人看人人澡| 不卡一级毛片| 日本与韩国留学比较| 免费电影在线观看免费观看| 免费大片18禁| 麻豆精品久久久久久蜜桃| 精品国内亚洲2022精品成人| 在线观看免费视频日本深夜| 亚洲av.av天堂| videossex国产| 极品教师在线视频| 国产精品人妻久久久久久| 中文亚洲av片在线观看爽| 亚洲精品一区av在线观看| 99热网站在线观看| 国产高清有码在线观看视频| 亚洲va在线va天堂va国产| 国产69精品久久久久777片| 中文字幕高清在线视频| 全区人妻精品视频| 少妇丰满av| a级毛片a级免费在线| 午夜精品在线福利| 中文字幕久久专区| 男女啪啪激烈高潮av片| 亚洲精品国产成人久久av| 午夜激情欧美在线| 亚洲在线自拍视频| 又紧又爽又黄一区二区| av天堂在线播放| 最近中文字幕高清免费大全6 | 中文字幕精品亚洲无线码一区| 亚洲精品456在线播放app | 日本五十路高清| 国产私拍福利视频在线观看| 一个人观看的视频www高清免费观看| 国产精品伦人一区二区| 国产伦精品一区二区三区四那| 黄色配什么色好看| 一级a爱片免费观看的视频| 国产精品精品国产色婷婷| 成年女人毛片免费观看观看9| 伊人久久精品亚洲午夜| 亚洲精品日韩av片在线观看| 少妇的逼好多水| 99热这里只有是精品在线观看| 免费av观看视频| 永久网站在线| 亚洲自偷自拍三级| 性插视频无遮挡在线免费观看| 女人被狂操c到高潮| 熟妇人妻久久中文字幕3abv| 精品人妻1区二区| 国产成人福利小说| 18禁裸乳无遮挡免费网站照片| 99热这里只有精品一区| 亚洲性久久影院| 免费在线观看影片大全网站| 久久精品久久久久久噜噜老黄 | 波野结衣二区三区在线| 亚洲乱码一区二区免费版| 综合色av麻豆| 人妻少妇偷人精品九色| 亚洲在线自拍视频| 亚洲人成网站在线播放欧美日韩| 亚洲一级一片aⅴ在线观看| 69av精品久久久久久| 亚洲久久久久久中文字幕| 亚洲欧美日韩东京热| av中文乱码字幕在线| 日韩强制内射视频| 精品无人区乱码1区二区| 国产久久久一区二区三区| 一区二区三区高清视频在线| 97超视频在线观看视频| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| 看片在线看免费视频| 成年女人看的毛片在线观看| 国产精品av视频在线免费观看| 日本免费a在线| 在线观看美女被高潮喷水网站| 午夜福利视频1000在线观看| 色尼玛亚洲综合影院| 波野结衣二区三区在线| 久久久久久伊人网av| 亚洲精品影视一区二区三区av| 成人一区二区视频在线观看| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 偷拍熟女少妇极品色| 国产精品女同一区二区软件 | 在线观看舔阴道视频| www日本黄色视频网| 午夜免费激情av| av专区在线播放| 18禁黄网站禁片免费观看直播| 久久欧美精品欧美久久欧美| 亚洲中文日韩欧美视频| 亚洲av中文av极速乱 | 人妻少妇偷人精品九色| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| av在线蜜桃| 亚洲国产欧美人成| 嫁个100分男人电影在线观看| 国产亚洲精品av在线| 亚洲av免费在线观看| 18禁黄网站禁片午夜丰满| 日本一本二区三区精品| 成人毛片a级毛片在线播放| 日本免费a在线| 国内久久婷婷六月综合欲色啪| 最后的刺客免费高清国语| 99riav亚洲国产免费| 亚洲国产精品合色在线| 久久久久免费精品人妻一区二区| 97碰自拍视频| 午夜老司机福利剧场| 国产欧美日韩精品一区二区| 欧美又色又爽又黄视频| 久久婷婷人人爽人人干人人爱| 天堂动漫精品| 99久久久亚洲精品蜜臀av| 国产视频内射| 亚洲美女搞黄在线观看 | 免费高清视频大片| 欧美日本亚洲视频在线播放| 一进一出抽搐gif免费好疼| 日日撸夜夜添| 天堂√8在线中文| 国产成人一区二区在线| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 成人国产一区最新在线观看| 女生性感内裤真人,穿戴方法视频| 无遮挡黄片免费观看| 九九在线视频观看精品| 黄色一级大片看看| 亚洲成av人片在线播放无| 看十八女毛片水多多多| 中文亚洲av片在线观看爽| 久久久久久久久中文| 欧美不卡视频在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 老熟妇乱子伦视频在线观看| 欧美日韩综合久久久久久 | x7x7x7水蜜桃| 国产精品伦人一区二区| 精品国内亚洲2022精品成人| 中国美白少妇内射xxxbb| 久久香蕉精品热| 欧美激情在线99| 亚洲国产精品久久男人天堂| 欧美三级亚洲精品| 99热网站在线观看| 嫁个100分男人电影在线观看| 亚洲国产日韩欧美精品在线观看| 日本一本二区三区精品| 久久久久久久久久成人| 久久99热6这里只有精品| 91久久精品国产一区二区三区| 国产又黄又爽又无遮挡在线| 免费观看人在逋| 午夜免费激情av| a级一级毛片免费在线观看| 国产亚洲精品av在线| 国产成人a区在线观看| 看十八女毛片水多多多| 精品乱码久久久久久99久播| 一个人免费在线观看电影| 我要搜黄色片| 中文字幕精品亚洲无线码一区| 久久久久精品国产欧美久久久| 国产单亲对白刺激| 在线播放国产精品三级| 国产人妻一区二区三区在| 国产男人的电影天堂91| 舔av片在线| 99久久中文字幕三级久久日本| 露出奶头的视频| 国产真实乱freesex| 乱码一卡2卡4卡精品| 欧美区成人在线视频| 国产精品无大码| 少妇的逼好多水| 欧美成人a在线观看| 一进一出抽搐动态| 大又大粗又爽又黄少妇毛片口| 国产在视频线在精品| 国产综合懂色| 欧美日韩瑟瑟在线播放| 午夜福利高清视频| 日韩欧美国产一区二区入口| 国产高清视频在线观看网站| 精品乱码久久久久久99久播| 在线观看午夜福利视频| 日本在线视频免费播放| 日韩欧美三级三区| 日本一本二区三区精品| 我的女老师完整版在线观看| 男女那种视频在线观看| 日韩中字成人| 国产av麻豆久久久久久久| 久久中文看片网| 中文资源天堂在线| 国产精品女同一区二区软件 | 一个人看的www免费观看视频| 久久人妻av系列| 永久网站在线| 亚洲最大成人av| 欧美日韩亚洲国产一区二区在线观看| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 免费在线观看成人毛片| 国产毛片a区久久久久| 99热只有精品国产| 可以在线观看的亚洲视频| 熟妇人妻久久中文字幕3abv| 男女做爰动态图高潮gif福利片| 一本一本综合久久| 特级一级黄色大片| 亚洲av.av天堂| 亚洲成a人片在线一区二区| 黄色一级大片看看| 国产国拍精品亚洲av在线观看| 久久精品国产99精品国产亚洲性色| 免费av不卡在线播放| 国产一区二区激情短视频| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 亚洲精品一区av在线观看| 国产男靠女视频免费网站| 成年女人永久免费观看视频| 99国产精品一区二区蜜桃av| 久久久久久久久久久丰满 | 一级a爱片免费观看的视频| 露出奶头的视频| 免费在线观看成人毛片| 国产精品人妻久久久久久| 欧美潮喷喷水| 亚洲在线自拍视频| 免费观看在线日韩| ponron亚洲| 日韩欧美精品v在线| 亚洲av一区综合|