• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints M. VINOTH KUMARa,*, V. BALASUBRAMANIANb,1, S. RAJAKUMARb, SHAJU K. ALBERTc

    2015-07-02 06:14:17DeprtmentofMnufturingEngineeringAnnmliUniversityAnnmliNgrTmilNdu608002IndiCenterforMterilsJoiningndReserhCEMAJORDeprtmentofMnufturingEngineeringAnnmliNgrTmilNdu608002IndiMterilsTehnologyDivisionIndirGndhiCentreforAtomiRe
    Defence Technology 2015年3期

    Deprtment of Mnufturing Engineering, Annmli University, Annmli Ngr, Tmil Ndu 608002, IndiCenter for Mterils Joining nd Reserh (CEMAJOR), Deprtment of Mnufturing Engineering, Annmli Ngr, Tmil Ndu 608002, IndiMterils Tehnology Division, Indir Gndhi Centre for Atomi Reserh (IGCAR), Klpkkm, Tmilndu 603102, IndiReeived 13 My 2015; epted 15 My 2015 Aville online 2 July 2015

    Stress corrosion cracking behaviour of gas tungsten arc welded super austenitic stainless steel joints M. VINOTH KUMARa,*, V. BALASUBRAMANIANb,1, S. RAJAKUMARb, SHAJU K. ALBERTc

    aDepartment of Manufacturing Engineering, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, IndiabCenter for Materials Joining and Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai Nagar, Tamil Nadu 608002, India
    cMaterials Technology Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamilnadu 603102, India
    Received 13 May 2015; accepted 15 May 2015 Available online 2 July 2015

    Abstract

    Super 304H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304H parent metal and gas tungsten arc (GTA) welded joints were studied by constant load tests in 45% boiling MgCl2solution. Stress corrosion cracking resistance of Super 304H stainless steel was deteriorated by GTAwelding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Super 304H; Chloride stress corrosion cracking; Constant load test; Gas tungsten arc welding

    E-mail addresses: vinothmecho@gmail.com (M. VINOTH KUMAR), visvabalu@yahoo.com (V. BALASUBRAMANIAN), srkcemajor@gmail. com (S. RAJAKUMAR), shaju@igcar.gov.in (S.K. ALBERT).

    Peer review under responsibility of China Ordnance Society.

    1Tel.: +91 9443412249 (mobile).

    http://dx.doi.org/10.1016/j.dt.2015.05.009

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    Austenitic stainless steels are the desired material for use in high temperatures under highly corrosive environment. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. The efficiency of the power cycle is function of the operating temperature and pressure. Development and selection of materials with required high temperature strength and corrosion resistance is vital in further improvement in efficiency of the power cycle [1,2]. Recently developed Super 304H austenitic stainless steel with excellent creep strength and corrosion resistance is mainly used in heat exchanger tubing of the boiler. The addition of 3 wt.% Cu to Super 304H enhances the precipitation strengthening of the alloy by precipitating out fine, stable and coherent Cu rich particles at elevated temperatures [3].

    Stainless steels resist general corrosion but are susceptible to localized corrosion such as pitting, and stress corrosion cracking (SCC) in chloride environments [4]. SCC is the most likely life limiting failure in boilers with austenitic stainless steel tubing [5]. SCC is caused by the synergic and simultaneous action of tensile stress, environment and susceptible microstructure [6]. The microstructure depends on the chemical composition and manufacturing methods. Welding is considered as the major manufacturing method for pressure equipments in power plants [7]. Welding may alter thefavorable parent metal microstructure and induce residual stresses in the joints. In some cases the residual stress may exceed the tensile stress of the material, resulting in worsening of SCC susceptibility of the material [4,8]. The addition of Nb to the steel and weld metal is beneficial for stabilizing C in the matrix to avoid sensitization, while the effect of nitrogen on SCC in parent metal is considered beneficial, and for the welds it remains complicated due to their inhomogenous dendritic cast structure [9].

    In the absence of analytical approaches to predict SCC, testing becomes vital. In actual conditions, SCC tends occur over long periods of time; hence the SCC tests are accelerated byusinghighly aggressive environments, constantly increasing the load/strain. The results of accelerated tests can be extrapolated to predict the long term service life of the structure [10]. The test methods for SCC are classified as constant load tests, constant strain tests and slow strain rate tests based on mode of specimen loading [11]. Recent works in Refs. [12,13] on SCC of Super 304H using constant strain method revealed the SCC susceptibility of the Super 304H under larger strain and improper heat treatment conditions.

    In this present work, the SCC susceptibility of Super 304H parent metal and gas tungsten arc welded (GTA) joints were studied by recording the“corrosion—elongation curves”during constant load tests in boiling MgCl2solution.

    Table 1Chemical composition (wt.%) of parent metal (PM) and filler metal (FM).

    Table 2Tensile properties of parent metal and weld joint.

    2. Experimental details

    The parent metal used in this investigation was Super 304H austenitic stainless steel with distinct addition of 3 wt% of copper. Super 304H was received in annealed condition (1145°C), in the form of tubes with outer diameter of 57.1 mm and wall thickness of 3.5 mm. For GTAwelding, the joints with single‘V’butt configuration were welded with addition of filler metal. Filler metal composition was suitably modified to achieve delta ferrite free weld metal by increasing the Ni content; the resultant weld metal microstructure was fully austenitic, as preferred in high temperature applications [9]. Mo was added to avoid the risk of hot cracking in the fully austenitic weld metal by modifying the S inclusions and enhance the resistance to pitting corrosion [14,15]. The chemical compositions of the parent metal and filler metal are presented in Table 1. The welding was carried out with average heat input of 0.68 kJ/mm, in which argon was used as the shielding and purging gas.

    The specimens for transverse tensile test and SCC tests were extracted from the parent metal and weld joints using wire-cut electric discharge machining. The tensile properties of as-received parent metal and weld joints are listed in Table 2. In order to reveal the susceptibility of Super 304H parent metal and weld joint to intergranular corrosion (IGC), the specimens were subjected to oxalic acid etch test as per ASTM A262 practice A. The specimens were probed under light microscope to reveal the level of Super 304H's susceptibility to IGC before and after welding.

    The SCC test was carried out using the smooth tensile specimen (shown in Fig. 1) in a custom-built constant load setup with maximum loading capacity of 10 kN. The applied loads are measured using a load cell with an accuracy of ±10 N. The strain measurements were done using an LVDT with measurable range of±5 mm and an accuracy of <1 μm. The schematic representation of the SCC constant load setup is shown in Fig. 2. The environment for SCC testing of Super 304H was chosen as 45% MgCl2boiling at 155°C, and thetests were conducted in accordance with ASTM G36. The constant load SCC tests were conducted for parent metal and weld joints of Super 304H at stress levels of 100%, 80%, 60% and 40% of the parent metal's yield strength. The specimens for microstructure analysis were polished and etched using Glyceregia. The fracture surfaces of the SCC specimens were ultrasonically cleaned and analyzed using scanning electron microscopy (SEM) to reveal the modes of failure. Energy dispersive spectroscopy (EDS) attached with SEM was used to reveal the elemental composition of interested spots in fracture surface.

    Fig. 1. Schematic representation of the SCC constant load setup.

    Fig. 2. Schematic representation of the SCC constant load setup with boiling MgCl2.

    3. Results

    3.1. Microstructure

    The SEM micrograph of parent metal is shown in Fig. 3, which cons(a)ists of equiaxed austenitic grains with annealing twins and precipitates (marked by arrows). The precipitates in parent metal were chemically extracted from the austenitematrix, and their XRD pattern is shown in Fig. 3(b). The XRD pattern confirmed the presence of Nb(C,N), M23C6carbides in the parent metal. The SEM micrograph of weldmetal in the center of the joint is shown in Fig. 3(c), which reveals fully austenitic grains with cellular morphology and carbides (NbC, M23C6) precipitated along the boundaries. The fusion line (FL) of the weld joint shown in Fig. 3(d) reveals the epitaxial grain growth. The heat affected zone (HAZ) next to the fusion line shows grain coarsening due to the weld thermal cycles, however no liquation of grain boundaries nor sensitization is observed from SEM micrograph.

    The fusion zone of the weld next to fusion line is shown in Fig. 3(e) which shows the mixed morphology (cellular and dendritic) of the austenite in this zone. The white dotted line marks the transition of the austenitic weld from dendrite near the fusion line to cell morphology towards the weld enter. The magnified image of the area marked in Fig. 3(e) is shown in Fig. 3(f). The marked arrow indicates the primary ferrite dendritic core formed by F-A solidification mode and subsequently transformed to secondary austenite by solid state diffusion. This confirms that both A type (cellular) and F-A type of solidification have prevailed in the fusion zone next to fusion line [16].

    Fig. 4. Oxalic acid etched structure of weld metal and HAZ.

    Fig. 5. Typical corrosion elongation curve of Super 304H and its parameters in boiling MgCl2solution.

    3.2. Oxalic acid etch structure

    The oxalic acid etch structure of weld metal is shown in Fig. 4(a), which reveals the end grain pits in austenitic weld metal. The etch structure of HAZ shown in Fig. 4(b) reveals the step structure among the grains (marked as 1), few deep end grain pits (marked as 2) and dual structure in which a single grain is not completely surrounded by the ditches (marked as 3). The etch structures of both weld metal and HAZ were acceptable as per ASTM A262 and show nosusceptibility to intergranular attack associated with chromium carbide precipitation.

    Fig. 6. Corrosion elongation curves for parent metal and weld joints of Super 304H in boiling MgCl2at 100%, 80%, 60% and 40% of the yield strength.

    3.3. Corrosion elongation curves

    The‘corrosion elongation curve’for unwelded parent metal tested at 80% of its yield strength in boiling MgCl2is shown in Fig. 5, and the parameters such as iss, tssand tfwere derived from this curve. The slope of the curve in the secondary region before the time to transition (tss) from secondary region to tertiary region represents the rate of steady state elongation (iss), where the tfrepresents the time to complete fracture. The corrosion elongation curves of parent metal and weld joint for all test conditions are shown in Fig. 6, and the evaluated parameters are listed in Table 3. The corrosion elongation curves provide information about the SCC cracking mechanisms involved in the parent metal and weld joint of Super 304H austenitic stainless steel [17].

    The relationship between the applied stress and the tffor parent metal and weld joint of Super 304H is shown in Fig. 7, which reveals the significant degradation in SCC resistance of Super 304H subjected to welding, as the tfof weld joint is lower than that of parent metal at their respective stress level. The ratio of tssto tfshown in Table 3 is used to determine the most prominent mode of degradation (corrosive or mechanical) active in their respective test conditions. The typical values of tss/tffor 316 stainless steels in stress corrosion range was reported to be~0.6 [18]. In the case of Super 304H parent metal and weld joint, the value of tss/tftends to increase with the decrease in applied stress typical of N alloyed steels, as reported elsewhere for 0.25% N alloyed austenitic stainless steels [17]. This implies that the time in the tertiary region, i.e. the time for fracture after crack initiation, decreases steadily with the decrease in applied stress level, whereas the steady state elongation rate (iss) decreases with the increase in tfand the decrease in applied stress. Puiggali et al. [18] described the crack growth rate (Vc) as,

    where Sois initial cross section; tpis time for crack propagation after crack initiation (tss);б is initial applied stress; and бris ultimate tensile strength. The crack growth rate in terms of mm2/h was calculated for all the test conditions and listed in Table 3. It was found that, for both parent metal and weld joint, Vcwas higher in the stress dominant region (1.0×YS), while Vcdecreased at 0.8×YS indicating the transition point to SCC dominant region and continues to increase from thereof, till the corrosion dominant region (0.4×YS), where the highest value of Vcwas recorded.

    Table 3Corrosion elongation curve parameters for Super 304H in boiling MgCl2solution.

    Fig. 7. Relationship between applied stress and time to failure.

    Fig. 8. Prediction of time to failure of Super 304H parent metal and weld joint by SCC in boiling MgCl2.

    3.4. Prediction of time to failure

    The calculated corrosion elongation curve parameters shown in Table 3 can be used for prediction of time to failure by extrapolation of time scale. The logarithmic relationship between issand tfis always linear and independent of pH, concentration of ion, temperature and material [17,19]. The Fig. 8 reveals that such a linear relationship also exists between the issand tfof parent metal and weld joints of Super 304H. The mathematically expressed linear relationships iss=-2.08tf-2.11(for parent metal) and iss= -40.66 tf+ 36.37 (for weld joint) can be used for prediction of time to failure.

    Fig. 9. Fracture characteristics of Super 304H parent metal SCC specimens tested in boiling MgCl2solution at different stress levels.

    3.5. Fracture surfaces

    The SCC characteristics in the directions parallel and normal to loading, for the parent metal and weld joint areshown in Figs. 9 and 10 respectively. The cracks are oriented normal to the loading direction, and the number of cracks and crack width decreases with the decrease in applied stress for both parent metal (refer Fig. 9(a)) and weld joint (refer Fig. 10(a)). The fracture surfaces of the parent metal and weld joint at low magnification (refer Figs. 9(b) and 10(b)) reveal brittle mode of failure, with no reduction in cross sectional area. The Figs. 9(c) and 10(c) confirms the transgranular mode of crack propagation for both parent metal and weld joint at all stress levels, with de-cohesion of grains at the grain boundaries.

    Fig. 10. Fracture characteristics of Super 304H GTAW joints SCC specimens tested in boiling MgCl2solution at different stress levels.

    The microstructural characteristic features of SCC in parent metal and weld joint are shown in Fig. 11. In parent metal, the interfacebetweenthematrixandcoarsecarbidesareidentifiedas the sourceof crack initiation, asindicated by arrow in Fig. 11(a). Theothercrackinitiationsitesarethehighnumberofslipstepsat the edges of the specimen, which promotes the formation and growth of corrosion pits in large numbers by anodic dissolution, asshownin Fig.11(c).Theparentmetalwithlesserappliedstress levelprovideslessercrackinitiationsitesbyslipsattheedgesand hence the crack propagates by branching and interconnecting other probable cracks (Fig. 11(e)).

    Fig. 11. Crack propagation characteristics in SCC specimen tested in boiling MgCl2solution at different applied stress levels.

    In the weld joint the cracks initiate and propagate in the HAZ and fusion line/HAZ region, which are more susceptible to SCC, as shown in Fig. 11(b). The weld metal posses better resistance to SCC (refer Fig. 11(e) and (f)), however the presence of carbides results in initiation of the crack and these cracks gets interconnected to the main crack propagating in to the weld metal, as shown in Fig. 11(d).

    The crack propagation micrograph of weld joint tested at lower applied stress is shown in Fig. 11(f), which reveals the initiation of crack in HAZ region and its transgranular propagation into the weld metal. However, no crack is observed in the weld metal of the joint tested at lower applied stress (refer Fig. 11(f)). The EDS spectra of fracture surfaces of parent metal and weld joint are shown in Fig. 12(a) and (b),respectively. The presence of chloride in the fracture surfaces confirms the interaction of chloride environment with the test specimens to cause SCC failure.

    Fig. 12. EDS elemental analysis of fracture surface.

    4. Discussion

    The SCC was transgranular at all the stress levels i.e. SCC-dominated and stress-dominated regions, in parent metal and weld joint, which is characteristic of the higher steady elongation observed [20]. Out of the numerous mechanisms proposed to explain SCC behaviour the anodic path cracking mechanism (APC) belongs to the cracking of austenitic stainless steel in chloride environment [21]. The mechanism proposed by Nishimura for transgranular SCC is also valid for this work, where the entire cracking is based on a cyclic event of passive film formation and rupture, dealt elsewhere in detail [22,4]. The anodic metal dissolution and passive film formation at the crack tip result in dislocation pile-up at the crack tip, resulting in an increase in local stresses higher than the applied local stress at the vicinity of the crack tip. The film ruptures when the local stress exceeds a critical value and a crack propagates by exposing fresh metal to repeat the process. Such event of crack propagation was recorded as noise peaks in corrosion elongation curves until tss, resulting in steady state elongation (refer Fig. 13). The downward arrows indicate the critical stress at which the film ruptures and the upward arrows indicate the applied mean stress.

    Inweldjoints,HAZisthemostsusceptibleregionto SCCdue to the metallurgical changes caused by weld thermal cycles. The oxalic acid etch test reveals a dual structure in the HAZ, confirming the deterioration in the corrosion resistance of the zone. Intheworstcase,theweldingresidualstresscanbesuperimposed and may be as high as yield strength of the material [15,4]. The microstructure examination of the SCC weld joints reveals that the failure occurred between the weld interface and HAZ, indicating the susceptibility of the zone to SCC. At lower applied stress(0.4×YS),thecracksare found toinitiate inthe HAZ and propagate in to the weld metal. The crack initiation sites are not observedintheweldmetalatlowerstress(referFig.11(f)),which confirms the enhanced pitting resistance of weld metal by Mo addition [15]. The cracks initiated in the weld metal at higher stress (refer Fig. 11(d)) are attributed to the local strain field around the interface of matrix and precipitates, caused by the misfit between matrix and precipitates.

    Fig. 13. Magnified view of serrations observed in corrosion elongation curves of constant load SCC specimens tested in boiling MgCl2solution.

    5. Conclusions

    1) The SCC resistance of Super 304H stainless steel is deteriorated by GTA welding due to the detrimental microstructural changes in the HAZ of the joint and the residual stresses caused by the weld thermal cycles.

    2) Linear relationships are derived from the elongation rate and time to failure, from which it is possible to extrapolate and predict the time to failure from the corrosion elongation curves.

    3) The stress corrosion cracking is transgranular in nature under all the test conditions, and the cracking mechanism is found to be anodic path cracking.

    4) Molybdenum is found to improve the stress corrosion cracking resistance of weldmetal due to its enhanced resistance for pitting corrosion.

    Acknowledgements

    The authors wish to express their sincere thanks to M/s Mailam India Ltd, Pondicherry, India for providing the funds to carry out this research work through Mailam India Research (MIR) Fellowship, M/s Salzgitter Mannesmann Stainless Tubes Italia Srl, Italy for supplying the Super 304H tubes and Department of Science and Technology (DST-SERB), Government of India, for providing the stress corrosion cracking setup wide project no. SB/FTP/ETA-281/2012.

    References

    [1] Viswanathan R, Bakker W. Materials for ultra supercritical coal power plants—boiler materials: Part 1. J Mater Eng Perform 2001;10:81—95.

    [2] Viswanathan R, Sarver J, Tanzosh JM. Boiler materials for ultrasupercritical coal power plants—steamside oxidation. J Mater Eng Perform 2006;15:255—74.

    [3] Li Xin-mei, Zou Yong, Zhang Zhong Wen, Zou Zeng-da. Microstructure evolution of a novel Super304H steel aged at high temperatures. J Mater Trans 2010;51:305—9.

    [4] Lu BT, Chen ZK, Luo JL, Patchett BM, Xu ZH. Pitting and stress corrosion cracking behavior in welded austenitic stainless steel. J ElectrochimActa 2005;50:1391—403.

    [5] SaadAbouelazm A, El Mahallawi I, Abdel karim R, Rashad R. Failure investigation of secondary super-heater tubes in a power boiler. J Eng Fail Anal 2009;16:433—48.

    [6] Antunes PD, Correa EO, Barbosa RP, Silva EM, Padilha AF, Guimaraes PM. Effect of weld metal chemistry on stress corrosion cracking behavior of AISI 444 ferritic stainless steel weldments in boiling chloride solution. J Mater Corros 2013;64:415—21.

    [7] Pettersson CO, Boellinghaus T, Kannengiesser T. Corrosion testing of welds a review of methods. J Weld World 2007;51:79—106.

    [8] Schvartzman Monica Maria de Abreu Mendonca, Quinan Marco Antonio Dutra, Campos Wagner Reis da Costa, Lima Luciana Iglesias Lourenco.Stress corrosion cracking of the AISI 316L stainless steel HAZ in a PWR nuclear reactor environment. J Weld Int 2011;25:15—23.

    [9] Nage Deepashri D, Raja VS. Effect of nitrogen addition on the stress corrosion cracking behavior of 904 L stainless steel welds in 288°C deaerated water. J Corros Sci 2006;48:2317—31.

    [10] Dietzel Wolfgang. Rising displacement stress corrosion cracking testing. J Metall Mater Trans A 2011;42:365—72.

    [11] Gnanamoorthy JB. Corrosion of austenitic stainless steels in aqueous environments. Proc Indian Acad Sci—Chem Sci 1986;97:495—511.

    [12] Prabha B, Sundaramoorthy P, Suresh S, Manimozhi S, Ravishankar B. Studies on stress corrosion cracking of Super 304H austenitic stainless steel. J Mater Eng Perform 2009;18:1294—9.

    [13] Gao Yan, Zhang Chunlei, Xiong Xiahua, Zheng Zhijun, Zhu Min. Intergranular corrosion susceptibility of a novel Super 304H stainless steel. J Eng Fail Anal 2012;24:26—32.

    [14] Lauro A, Mandina M. Welding and weldability of the super austenitic and super martensitic stainless steels. J Weld Int 2003;17:710—20.

    [15] Kaneko M. Stress corrosion cracking of stainless steels. J Weld Int 2007;21:95—9.

    [16] Suutala N. Effect of manganese and nitrogen on the solidification mode in austenitic stainless steel welds. J Metall Trans A 1982;13A:1982—2121.

    [17] Vehovar L, Vehovar A, MetikosHukovic M, Tandler M. Investigation into the stress corrosion cracking of stainless steels alloyed with nitrogen. J Mater Corros 2002;53:316—27.

    [18] Puiggali M, Desjardins D, Ajana L. A critical study of stress corrosion cracking testing methods for stainless steels in hot chloride media. J Corros Sci 1987;27:585—94.

    [19] Nishimura R, Kudo K. Stress corrosion cracking of AISI 304 and AISI 316 austenitic stainless steels in HCl and H2SO4solutions prediction of time-to-failure and criterion for assessment of SCC susceptibility. J Corros 1989;45:308.

    [20] Alyousif Osama M, Nishimura R. The stress corrosion cracking behavior of austenitic stainless steels in boiling magnesium chloride solutions. J Corros Sci 2007;49:3040—51.

    [21] Lu BT, Qiao LJ, Luo JL, Gao KW. Role of hydrogen in stress corrosion cracking of austenitic stainless steels. J Philos Mag 2011;91:208—28.

    [22] Nishimura Rokuro, Sulaiman Achmad, Maeda Yasuaki. Stress corrosion cracking susceptibility of sensitized type 316 stainless steel in sulphuric acid solution. J CorrosSci 2003;45:465—84.

    * Corresponding author. Tel.: +91 9751014430 (mobile).

    亚洲人成网站在线播放欧美日韩| av视频在线观看入口| avwww免费| 久久欧美精品欧美久久欧美| 国产精品乱码一区二三区的特点| 男女那种视频在线观看| 校园春色视频在线观看| 久久九九热精品免费| 69人妻影院| 亚洲国产欧美人成| 一区福利在线观看| 五月伊人婷婷丁香| 日本五十路高清| 日本黄色视频三级网站网址| 亚洲人成网站在线观看播放| 波多野结衣巨乳人妻| 成人欧美大片| 精品久久久噜噜| 精品久久久噜噜| 亚洲三级黄色毛片| 国产aⅴ精品一区二区三区波| 国产麻豆成人av免费视频| 欧美zozozo另类| 国国产精品蜜臀av免费| 久久精品国产亚洲av香蕉五月| 亚洲精品亚洲一区二区| 成人av一区二区三区在线看| 又黄又爽又免费观看的视频| 91在线观看av| 91在线观看av| 赤兔流量卡办理| 国产精品不卡视频一区二区| 日日摸夜夜添夜夜添小说| 天堂网av新在线| 真人做人爱边吃奶动态| 在线播放无遮挡| 国产精品人妻久久久久久| 在线国产一区二区在线| 天堂网av新在线| 国产在线男女| 日日摸夜夜添夜夜添av毛片| 大又大粗又爽又黄少妇毛片口| 淫妇啪啪啪对白视频| 欧美另类亚洲清纯唯美| 麻豆乱淫一区二区| 女的被弄到高潮叫床怎么办| 欧美成人免费av一区二区三区| 女人被狂操c到高潮| 在线免费十八禁| 国产成人aa在线观看| 中文字幕精品亚洲无线码一区| 国产麻豆成人av免费视频| 精品人妻熟女av久视频| 99热这里只有是精品在线观看| 日本撒尿小便嘘嘘汇集6| 麻豆乱淫一区二区| 欧美成人免费av一区二区三区| 干丝袜人妻中文字幕| 久久精品国产99精品国产亚洲性色| 少妇人妻精品综合一区二区 | 国产白丝娇喘喷水9色精品| 亚洲人成网站在线观看播放| 中文资源天堂在线| 91狼人影院| 国产精品不卡视频一区二区| av在线亚洲专区| 日韩国内少妇激情av| 国产精品乱码一区二三区的特点| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| av在线观看视频网站免费| 无遮挡黄片免费观看| 久久精品国产自在天天线| 免费av毛片视频| 午夜a级毛片| 欧美日韩一区二区视频在线观看视频在线 | 一本一本综合久久| 午夜老司机福利剧场| 国产成人影院久久av| 亚洲最大成人手机在线| 国产精品嫩草影院av在线观看| 一区二区三区四区激情视频 | 日韩强制内射视频| 搡老妇女老女人老熟妇| 狂野欧美激情性xxxx在线观看| 麻豆国产97在线/欧美| 女生性感内裤真人,穿戴方法视频| 97超视频在线观看视频| 国产私拍福利视频在线观看| 天堂动漫精品| 最新中文字幕久久久久| 男女做爰动态图高潮gif福利片| 成人国产麻豆网| 一进一出好大好爽视频| 国产成人91sexporn| 国产精品一区二区三区四区久久| 亚洲成人中文字幕在线播放| 五月伊人婷婷丁香| 99久久中文字幕三级久久日本| 日韩中字成人| 丰满的人妻完整版| 九九久久精品国产亚洲av麻豆| 少妇人妻一区二区三区视频| 精品久久久久久久久亚洲| 亚洲av免费在线观看| 国产精品三级大全| 噜噜噜噜噜久久久久久91| 校园人妻丝袜中文字幕| 97热精品久久久久久| 一级黄片播放器| 三级毛片av免费| 三级毛片av免费| 国产单亲对白刺激| 美女高潮的动态| 久久草成人影院| 九九热线精品视视频播放| 国国产精品蜜臀av免费| 免费高清视频大片| 亚洲美女视频黄频| 高清日韩中文字幕在线| 免费高清视频大片| 久久精品影院6| 免费电影在线观看免费观看| 床上黄色一级片| 国产精品女同一区二区软件| 激情 狠狠 欧美| 中文字幕熟女人妻在线| 我要看日韩黄色一级片| а√天堂www在线а√下载| 露出奶头的视频| АⅤ资源中文在线天堂| 亚洲精品国产成人久久av| 校园人妻丝袜中文字幕| 丝袜美腿在线中文| 18禁在线无遮挡免费观看视频 | 国产探花在线观看一区二区| 99久久精品一区二区三区| 久久亚洲国产成人精品v| 日韩精品中文字幕看吧| 黄色配什么色好看| av福利片在线观看| 国产高清视频在线播放一区| 国内精品美女久久久久久| 国产免费一级a男人的天堂| 精品一区二区三区人妻视频| 老熟妇仑乱视频hdxx| 国产精品亚洲一级av第二区| 亚洲成人av在线免费| 日韩一本色道免费dvd| 色噜噜av男人的天堂激情| 精品一区二区免费观看| 美女黄网站色视频| 淫秽高清视频在线观看| 国产黄色小视频在线观看| 欧美在线一区亚洲| 老司机影院成人| 给我免费播放毛片高清在线观看| 男人的好看免费观看在线视频| 久久国内精品自在自线图片| 日韩 亚洲 欧美在线| 性欧美人与动物交配| 欧美成人免费av一区二区三区| 精品久久久久久久久久免费视频| 一级毛片aaaaaa免费看小| 国产免费男女视频| 内射极品少妇av片p| 成人高潮视频无遮挡免费网站| 又黄又爽又免费观看的视频| 老熟妇乱子伦视频在线观看| 国产毛片a区久久久久| 插逼视频在线观看| 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 亚洲国产欧洲综合997久久,| 观看美女的网站| 最近在线观看免费完整版| 国产v大片淫在线免费观看| 又黄又爽又刺激的免费视频.| 成人美女网站在线观看视频| 成人永久免费在线观看视频| 国产精品国产高清国产av| 亚洲国产高清在线一区二区三| 久久精品人妻少妇| 日韩欧美精品v在线| 久久中文看片网| 男女边吃奶边做爰视频| 搡老妇女老女人老熟妇| 国产欧美日韩一区二区精品| 国产美女午夜福利| 直男gayav资源| 中文字幕av在线有码专区| 网址你懂的国产日韩在线| 国产老妇女一区| 男女啪啪激烈高潮av片| 国产精品一及| 中文字幕熟女人妻在线| 高清毛片免费观看视频网站| 秋霞在线观看毛片| 尤物成人国产欧美一区二区三区| 人妻丰满熟妇av一区二区三区| 免费av观看视频| 婷婷精品国产亚洲av| 精品熟女少妇av免费看| 亚洲av中文av极速乱| 成人国产麻豆网| 久久久久久国产a免费观看| 最后的刺客免费高清国语| 午夜激情福利司机影院| 精品人妻一区二区三区麻豆 | 三级男女做爰猛烈吃奶摸视频| 成人亚洲欧美一区二区av| 日本黄大片高清| 国产三级在线视频| 男人舔女人下体高潮全视频| 日韩在线高清观看一区二区三区| 国产三级中文精品| 久久久欧美国产精品| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| 国产不卡一卡二| 日韩制服骚丝袜av| 国产黄色小视频在线观看| 精品人妻熟女av久视频| 亚洲不卡免费看| 国产av一区在线观看免费| 少妇人妻精品综合一区二区 | 久久综合国产亚洲精品| 欧美一区二区亚洲| 亚洲va在线va天堂va国产| 最近中文字幕高清免费大全6| 男女视频在线观看网站免费| 最近2019中文字幕mv第一页| 美女 人体艺术 gogo| 久久久久精品国产欧美久久久| 亚洲三级黄色毛片| 伊人久久精品亚洲午夜| 全区人妻精品视频| 最新中文字幕久久久久| 18禁在线播放成人免费| 非洲黑人性xxxx精品又粗又长| 又黄又爽又刺激的免费视频.| 成人一区二区视频在线观看| 少妇熟女欧美另类| 色播亚洲综合网| 日本撒尿小便嘘嘘汇集6| 啦啦啦韩国在线观看视频| 蜜臀久久99精品久久宅男| 国产男人的电影天堂91| 69人妻影院| 久久久国产成人免费| 99热这里只有精品一区| 看免费成人av毛片| 日韩欧美精品v在线| 国国产精品蜜臀av免费| 99久国产av精品国产电影| 淫妇啪啪啪对白视频| 黄色日韩在线| 亚洲真实伦在线观看| 久久婷婷人人爽人人干人人爱| 听说在线观看完整版免费高清| 亚洲欧美中文字幕日韩二区| 黄色欧美视频在线观看| 免费无遮挡裸体视频| 亚洲欧美成人综合另类久久久 | 97人妻精品一区二区三区麻豆| 免费高清视频大片| 午夜福利视频1000在线观看| 免费观看精品视频网站| 欧美日韩综合久久久久久| 亚洲av免费在线观看| 久久午夜亚洲精品久久| 亚洲第一电影网av| 色综合色国产| 免费av毛片视频| 亚洲婷婷狠狠爱综合网| 亚洲成a人片在线一区二区| 国产又黄又爽又无遮挡在线| 熟女电影av网| 亚洲av美国av| 老司机影院成人| 99精品在免费线老司机午夜| 久久精品91蜜桃| 亚洲av美国av| 午夜福利在线观看吧| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱 | 国产av在哪里看| av在线天堂中文字幕| 啦啦啦啦在线视频资源| 一个人看视频在线观看www免费| 此物有八面人人有两片| 成人漫画全彩无遮挡| 免费看日本二区| 国产成人freesex在线 | 麻豆乱淫一区二区| 成人高潮视频无遮挡免费网站| 午夜影院日韩av| 五月玫瑰六月丁香| 国产片特级美女逼逼视频| 天堂网av新在线| 亚洲一区二区三区色噜噜| 国产av不卡久久| 久久人人爽人人片av| 天天一区二区日本电影三级| 亚洲美女视频黄频| 最近手机中文字幕大全| 国产av麻豆久久久久久久| 国产三级中文精品| 一夜夜www| 久99久视频精品免费| 99久久精品一区二区三区| 1000部很黄的大片| 美女xxoo啪啪120秒动态图| 成人鲁丝片一二三区免费| 免费看光身美女| 国内揄拍国产精品人妻在线| 免费人成视频x8x8入口观看| 蜜桃久久精品国产亚洲av| 伦理电影大哥的女人| 国产成人福利小说| 97超级碰碰碰精品色视频在线观看| 国产伦在线观看视频一区| 亚洲精品成人久久久久久| videossex国产| 国产在线精品亚洲第一网站| 久久鲁丝午夜福利片| 婷婷六月久久综合丁香| 男女视频在线观看网站免费| 老司机福利观看| 国产v大片淫在线免费观看| 精品福利观看| www.色视频.com| 亚洲精品国产av成人精品 | 亚洲精品日韩av片在线观看| 少妇猛男粗大的猛烈进出视频 | 我要搜黄色片| 99热这里只有精品一区| 成年女人看的毛片在线观看| 99在线人妻在线中文字幕| 国产成人aa在线观看| 精品人妻一区二区三区麻豆 | 91av网一区二区| 国产高清有码在线观看视频| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜 | 成人毛片a级毛片在线播放| 噜噜噜噜噜久久久久久91| 秋霞在线观看毛片| 少妇的逼水好多| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 亚洲av熟女| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 九九在线视频观看精品| 菩萨蛮人人尽说江南好唐韦庄 | 久久草成人影院| 中国美白少妇内射xxxbb| 精品乱码久久久久久99久播| 在线免费观看不下载黄p国产| 国产精品1区2区在线观看.| 精品一区二区免费观看| 毛片女人毛片| 亚洲欧美成人精品一区二区| 欧美日韩在线观看h| 亚洲国产精品成人综合色| 乱码一卡2卡4卡精品| 国产一级毛片七仙女欲春2| a级毛片免费高清观看在线播放| 午夜爱爱视频在线播放| 亚洲精华国产精华液的使用体验 | 国产亚洲精品久久久久久毛片| 午夜a级毛片| 精品免费久久久久久久清纯| 日本在线视频免费播放| av天堂在线播放| videossex国产| 国产精品不卡视频一区二区| 国内揄拍国产精品人妻在线| 欧美xxxx黑人xx丫x性爽| 99热精品在线国产| 午夜福利18| 色播亚洲综合网| 亚洲丝袜综合中文字幕| 美女免费视频网站| 最近在线观看免费完整版| 国产探花极品一区二区| 亚洲熟妇熟女久久| 男插女下体视频免费在线播放| 亚洲在线观看片| 成人三级黄色视频| 亚洲va在线va天堂va国产| 在线国产一区二区在线| 18禁黄网站禁片免费观看直播| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影 | av在线蜜桃| 欧美一区二区亚洲| 欧美极品一区二区三区四区| 在线观看免费视频日本深夜| 少妇的逼好多水| 成人二区视频| 免费观看在线日韩| 狂野欧美激情性xxxx在线观看| 麻豆av噜噜一区二区三区| 国产一级毛片七仙女欲春2| 成人漫画全彩无遮挡| 精品久久久久久久久久久久久| 成年女人看的毛片在线观看| 少妇的逼好多水| 老司机福利观看| 亚洲av五月六月丁香网| 亚洲国产精品久久男人天堂| 一区二区三区高清视频在线| 亚洲国产欧美人成| 欧洲精品卡2卡3卡4卡5卡区| 亚洲人成网站在线播放欧美日韩| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| 日韩国内少妇激情av| 在线观看一区二区三区| 中国美女看黄片| 91在线观看av| 九九久久精品国产亚洲av麻豆| 亚洲av免费高清在线观看| 看黄色毛片网站| 欧美日韩精品成人综合77777| 久久午夜福利片| 小蜜桃在线观看免费完整版高清| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 91在线观看av| 黑人高潮一二区| 欧美中文日本在线观看视频| 日韩精品中文字幕看吧| av免费在线看不卡| 秋霞在线观看毛片| 国产熟女欧美一区二区| 我要看日韩黄色一级片| 国产又黄又爽又无遮挡在线| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 精品少妇黑人巨大在线播放 | 简卡轻食公司| 国语自产精品视频在线第100页| 丰满人妻一区二区三区视频av| aaaaa片日本免费| 午夜福利在线观看免费完整高清在 | 成人精品一区二区免费| av中文乱码字幕在线| 久久韩国三级中文字幕| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 成人亚洲欧美一区二区av| 观看美女的网站| 国产综合懂色| 1000部很黄的大片| 18禁裸乳无遮挡免费网站照片| 十八禁国产超污无遮挡网站| 91av网一区二区| 99热6这里只有精品| 精品熟女少妇av免费看| 国产熟女欧美一区二区| 床上黄色一级片| 中文在线观看免费www的网站| 成人毛片a级毛片在线播放| 性色avwww在线观看| 一个人看视频在线观看www免费| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 国产高清视频在线播放一区| 午夜福利在线观看吧| 亚洲无线观看免费| 久久久久久久午夜电影| 国产在线精品亚洲第一网站| 午夜福利18| 99热全是精品| 22中文网久久字幕| 在现免费观看毛片| 小说图片视频综合网站| 我要看日韩黄色一级片| 国产av麻豆久久久久久久| av免费在线看不卡| 免费黄网站久久成人精品| 成人三级黄色视频| 狂野欧美白嫩少妇大欣赏| 欧美三级亚洲精品| 18禁在线无遮挡免费观看视频 | 国产成人福利小说| 老女人水多毛片| 日本 av在线| 日本黄色片子视频| 久久欧美精品欧美久久欧美| 欧美成人一区二区免费高清观看| 不卡视频在线观看欧美| 久久久久久大精品| 精品久久久久久久久久免费视频| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 国产精品免费一区二区三区在线| 欧美中文日本在线观看视频| 国产av在哪里看| 免费在线观看成人毛片| 嫩草影视91久久| 秋霞在线观看毛片| 国产精品福利在线免费观看| 精品无人区乱码1区二区| av在线蜜桃| 久久国内精品自在自线图片| 插逼视频在线观看| 男插女下体视频免费在线播放| 国产黄片美女视频| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 久久久久久久久久黄片| 天堂影院成人在线观看| 18禁黄网站禁片免费观看直播| 久久人人爽人人片av| 99国产极品粉嫩在线观看| 亚洲欧美中文字幕日韩二区| 一进一出抽搐gif免费好疼| 久久国内精品自在自线图片| 成人特级黄色片久久久久久久| 嫩草影院入口| 看十八女毛片水多多多| 99久久无色码亚洲精品果冻| 伦理电影大哥的女人| av在线播放精品| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 国产午夜精品论理片| 天美传媒精品一区二区| 国产免费男女视频| 亚洲最大成人av| 中文字幕av在线有码专区| 丰满乱子伦码专区| 赤兔流量卡办理| av在线天堂中文字幕| 特级一级黄色大片| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 综合色丁香网| 欧美绝顶高潮抽搐喷水| 日日干狠狠操夜夜爽| 国产探花极品一区二区| 69人妻影院| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 亚洲av中文字字幕乱码综合| 亚洲精品国产成人久久av| 国产精品人妻久久久久久| 中国国产av一级| 国产免费男女视频| 免费看美女性在线毛片视频| 一个人看视频在线观看www免费| 成人漫画全彩无遮挡| 搡老熟女国产l中国老女人| 欧美性猛交黑人性爽| 成人精品一区二区免费| 变态另类丝袜制服| 成人一区二区视频在线观看| 欧美性猛交黑人性爽| 在线播放无遮挡| 狠狠狠狠99中文字幕| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 中文字幕久久专区| 色综合站精品国产| 中文字幕av在线有码专区| 俄罗斯特黄特色一大片| 免费av观看视频| 精品免费久久久久久久清纯| 亚洲欧美日韩东京热| 精品免费久久久久久久清纯| 搞女人的毛片| 夜夜爽天天搞| 国产高清不卡午夜福利| 毛片女人毛片| 久久热精品热| a级毛色黄片| 一a级毛片在线观看| 国产91av在线免费观看| 久久中文看片网| 成人美女网站在线观看视频| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 男女视频在线观看网站免费| 成年女人看的毛片在线观看| 亚洲人与动物交配视频| 日韩欧美精品v在线| 久久精品国产亚洲av天美| 91麻豆精品激情在线观看国产| 国产 一区 欧美 日韩| 99在线人妻在线中文字幕| 免费一级毛片在线播放高清视频| 亚洲熟妇中文字幕五十中出| 日韩欧美在线乱码| 国产黄色小视频在线观看| 一级黄色大片毛片| 一本一本综合久久| 久久精品人妻少妇| 中出人妻视频一区二区| 在线观看一区二区三区|