• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pulsed current and dual pulse gas metal arc welding of grade AISI: 310S austenitic stainless steel A. MATHIVANANa, A. SENTHILKUMARb, K. DEVAKUMARANc,*

    2015-07-02 06:14:14MehnilEngineeringDeprtmentSRMUniversityRmpurmChenni600089TmilnduIndiShoolofMehnilndBuildingSienesSMBSVITUniversityVellore632014TmilnduIndiWeldingReserhInstituteBhrthHevyEletrilsLimitedBHELTrihy620014TmilnduIndiReeived18De
    Defence Technology 2015年3期

    Mehnil Engineering Deprtment, SRM University, Rmpurm, Chenni 600089, Tmilndu, IndiShool of Mehnil nd Building Sienes (SMBS), VIT University, Vellore 632014, Tmilndu, IndiWelding Reserh Institute, Bhrth Hevy Eletrils Limited (BHEL), Trihy 620014, Tmilndu, IndiReeived 18 Deemer 2014; revised 15 My 2015; epted 27 My 2015 Aville online 21 June 2015

    Pulsed current and dual pulse gas metal arc welding of grade AISI: 310S austenitic stainless steel A. MATHIVANANa, A. SENTHILKUMARb, K. DEVAKUMARANc,*

    aMechanical Engineering Department, SRM University, Ramapuram, Chennai 600089, Tamilnadu, IndiabSchool of Mechanical and Building Sciences (SMBS), VIT University, Vellore 632014, Tamilnadu, IndiacWelding Research Institute, Bharath Heavy Electricals Limited (BHEL), Trichy 620014, Tamilnadu, India
    Received 18 December 2014; revised 15 May 2015; accepted 27 May 2015 Available online 21 June 2015

    Abstract

    The transverse shrinkage, mechanical and metallurgical properties of AISI: 310S ASS weld joints prepared by P-GMAW and DP-GMAW processes were investigated. It was observed that the use of the DP-GMAW process improves the aforementioned characteristics in comparison to that of the P-GMAW process. The enhanced quality of weld joints obtained with DP-GMAW process is primarily due to the combined effect of pulsed current and thermal pulsation (low frequency pulse). During the thermal pulsation period, there is a fluctuation of wire feed rate, which results in the further increase in welding current and the decrease in arc voltage. Because of this synchronization between welding current and arc voltage during the period of low frequency pulse, the DP-GMAW deposit introduces comparatively more thermal shock compared to the P-GMAW deposit, thereby reducing the heat input and improves the properties of weld joints.

    Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    Keywords:Pulsed current; Dual pulse; Weld joint

    E-mail addresses: mathivanana@gmail.com(A. MATHIVANAN), asenthilkumar@vit.ac.in (A. SENTHILKUMAR), devakumaran@bheltry.co. in (K. DEVAKUMARAN).

    Peer review under responsibility of China Ordnance Society.

    http://dx.doi.org/10.1016/j.dt.2015.05.006

    2214-9147/Copyright?2015, China Ordnance Society. Production and hosting by Elsevier B.V. All rights reserved.

    1. Introduction

    The gas metal arc welding (GMAW) process has been widely investigated and reported since 1950s [1]. A number of variants of GMAW have been developed in an attempt to improve the performance and productivity of the process [2]. In this regard, John Norrish et al. [2,3] reported the evolution of the GMAW process starting from standard operating modes, such as surface tension, globular and spray, of metal transfer behavior to waveform control technology up to the various hybrid techniques. From these literatures, it is well understood that the conventional GMAW process can be modified to enhance productivity and quality by manipulating the operating parameters, such as the electrical extension of wire/ polarity, and the improved process control can be achieved by modifying the current waveform. Dual pulse is also introduced in the GMAW process to improve the energy transfer efficiency in comparison to the conventional and pulsed GMAW processes. Praveen et al. [4] reported that the dual pulse GMAW (DP-GMAW) process operates at low heat input. In the DP-GMAW process, the low frequency current pulsation is superimposed on high frequency pulsed current for better control of arc and metal transfer behavior as reported by Anhua Liu et al. [5] in the case of welding of AA5754 aluminum alloy. Celina Leal Mendes da Silva et al. [6] concluded that DP-GMAW technique maintains the capability of porosity minimization in aluminum weldment attributed to the pulsed current GMAW (P-GMAW) technique. The process characteristics of inverter type GMAW process under static and dynamic operating conditions were reported by Devakumaran et al. [7]. It was concluded that the DPGMAW process operates at low heat input compared to theconventional and pulsed GMAW processes, which is in agreement to the earlier work reported by Praveen et al. [4]. From the above literature, it is understood that very little work has been carried out with respect to the process characteristics of DP-GMAW process, but the utilization of DP-GMAW process for various applications is not well known to the users because of the limited understanding of the mechanism of DP-GMAWand its influence on weld joint quality. Hence, it is felt that a systematic understanding of the DP-GMAW process in welding of various ferrous and nonferrous materials are very much important.

    In this context, the present investigation describes the superiority of DP-GMAW process in welding of AISI: 310S austenitic stainless steel in comparison to the conventional PGMAW process. The grade AISI: 310S austenitic stainless steel (ASS) is designed for high temperature service due to excellent high temperature properties and good ductility [8]. It resists oxidation in continuous service at the temperatures up to 1000°C [9]. However, it is reported that the welding of high chromium grade AISI: 310S material is critical since it is susceptible to Intergranular corrosion attack because of chromium depletion near the fusion line of HAZ [10]. It is generally known that the increase of heat input enhances the chromium depletion. Thus, special attention should be taken in welding of grade AISI: 310S ASS material. From the literature review, it is well understood that there is limited published literatures about welding of grade AISI: 310S ASS [11]. Hence, it is felt that the dual pulse GMAW process is one of the welding techniques which may improve the weld joint characteristics of grade AISI: 310S ASS material.

    2. Experimental

    2.1. Welding

    10 mm-thick AISI: 310S austenitic stainless steel (ASS) plate having a chemical composition in Table 1 were used in this investigation. The plate was butt-welded using single V-groove with included angle of 60°. The plates were welded by using 1.2 mm-diameter filler wire in P-GMAW and DPGMAW processes. The chemical compositions of the filler wires used for AISI: 310S ASS materials are also given in Table 1. The shielding gas used for present investigation is commercial pure argon (99.97%) with a gas flow rate of 15 lpm, and the distance between the contact tip and work piece was maintained at 14—16 mm. The welding of the plates was carried out using mechanized torch travel at direct current electrode positive (DCEP) (Kemppi-ProMIG-530). The welding parameters used in the welding of AISI: 310S ASS plate are shown in Table 2. In order to ensure the quality of the weld joints, studies were carried out by keeping the different welding parameters with respect to the wire feed speed, mean current and arc voltage. To maintain the reliability in the study, three weld joints were made for each welding process.

    Table 1Chemical compositions of base and filler materials.

    Table 2Welding parameters used for preparation of weld joints.

    2.2. Studies on the weld joints

    During welding the transverse shrinkage of the weld joint per weld pass was measured using a Vernier caliper having least count of 0.01 mm at a given distance (straining length) of 100 mm from weld centerline (Fig. 1), which was referred to the center of the weld groove. After each pass of welding at a given heat input, the transverse shrinkage of the plate at its initial position was measured.

    The metallurgical characteristics of weld joints prepared by P-GMAW and DP-GMAW processes were studied under optical microscope with respect to the microstructure of weld and heat affected zone (HAZ) as revealed in its metallographic polished and etched transverse section. The mechanical properties such as tensile, Cv impact toughness and hardness of both welds were studied as per ASTM: E8M, ASTM: E23 and ASTM: E384 standards, respectively.

    Fig. 1. Schematic diagram showing the technique of measurement of transverse shrinkage.

    3. Results

    The present section describes the advantage of DP-GMAW process over the P-GMAW process in welding of AISI 310S ASS in reference to the improved mechanical and metallurgical properties of the weld joint.

    3.1. Macrograph of weld joint

    The typical macrographs of the weld as revealed in a transverse section of P-GMAW and DP-GMAW joints are shown in Fig. 2(a) and (b), respectively which depicts the typical multi-pass deposition and desired sidewall fusion with respect to the absence of defect. In addition, it is also observed that the weld pool size per pass by DP-GMAW shows relatively smaller than that by P-GMAW. This may be considered as the advantage of DP-GMAW in reference to the reduction in stress generation of the weld joint.

    3.2. Transverse shrinkage of weld joint

    The effects of P-GMAW and DP-GMAW processes on transverse shrinkage of weld joint observed during welding are shown in Table 3. It can be seen from Table 3 that DP-GMAW process instead of P-GMAW process is used to minimize the transverse shrinkage of weld joint by 40% during welding.

    Fig. 2. Typical macrographs of weld joints. (a) P-GMAW and (b) DP-GMAW.

    Table 3Effects of welding processes on transverse shrinkage generated in weld joint.

    3.3. Microstructures of weld and HAZ

    The microstructure of the multi-pass P-GMAW weld deposit has been found to consist of a mixture of dendrite and fine grain reheat-refined regions in the matrix, as shown in Fig. 3. This may happen due to partial heat treatment of matrix by multi-pass deposition. The typical morphology of dendrite observed in the central part of the weld is shown in Fig. 4. It is observed that the cast structure of P-GMAW deposit is found to be finer primarily due to the variation in thermal shock during solidification through interruption in metal deposition imparted by the pulsed current. However, it is further observed that the microstructure of the weld consists of a primary dendritic phase (brighter area) and secondary inter-dendritic phase (darker area) that is formed during the terminal stage of solidification.

    Fig. 3. Typical microstructure of multi-pass P-GMA weld deposition.

    The typical microstructure of the heat affected zone (HAZ) of the weld joint prepared using P-GMAW process is shown in Fig. 5. The microstructure of HAZ adjacent to the fusion lineof the P-GMAW weld shows a certain extent of grain coarsening near to fusion line. This may happen primarily due to the considerable effect of weld isotherm arising out of the heat of weld deposition adjacent to the groove wall.

    From Fig. 5, it is further analyzed that the inter-granular attack with respect to grain boundary thickening in HAZ away from the fusion line (0.5 mm) is present in the case of PGMA weld joint. The measured value of thickness is around 5±2 μm which is lesser than those of conventional ASS weld joints reported by Ghosh et al. [12].

    Fig. 5. Typical microstructure of HAZ near to fusion line in P-GMA weld.

    The typical microstructure of the multi-pass DP-GMAW deposit is shown in Fig. 6. As in the case of P-GMAW deposit (Fig. 3) here also it is found to consist of a mixture of dendrite and fine grain reheat-refined regions in the matrix. However, the morphology of DP-GMAW weld is different from that of P-GMAW multi-pass weld deposit. The DP-GMAW deposit primarily shows a considerable refinement of microstructure along with scarcely distributed dendritic structure, whereas the P-GMAW weld (Fig. 3) shows the conventional pulsed behavior of multi-pass weld that significantly consists of both dendritic and reheat refined regions. Such variation of microstructure in DP-GMAW welds is primarily due to the variation in thermal shock during solidification through interruption in metal deposition imparted by the high frequency pulse current and low frequency thermal pulsation along with the usual reheat refinement by the subsequent weld pass. Thus, it is inferred that the use of DP-GMAW significantly reduces the dendritic region in the weld with respect to that observed in P-GMAW.

    Fig. 6. Typical microstructure of multi-pass DP-GMA weld deposition.

    The typical morphology of dendrite observed in central part of the weld deposit produced by DP-GMAW process is shown in Fig. 7. From Fig. 4, here also it is observed that the cast structure of DP-GMAW deposit is found to be finer primarily due to the combined effect of pulse current and thermal pulsation. However, it is further noticed that, because of thermal pulsation, the cast structure of DP-GMAW deposit is finer than that of the P-GMAW deposit.

    The typical microstructure of the HAZ of the weld joint prepared using DP-GMAW process is shown in Fig. 8. Themicrostructure of HAZ adjacent to the fusion line of the DPGMAW weld shows a certain extent of grain coarsening. However, it is observed that DP-GMAW joint has comparatively less grain coarsening compared to P-GMA weld joint. This is due to thermal pulsation by DP-GMAW process as explained earlier.

    Fig. 7. Typical microstructure showing morphology of dendrite in DP-GMA weld.

    Fig. 8. Typical microstructure of HAZ near to the fusion line in DP-GMAW.

    As in the case of P-GMA weldment, here also the intergranular attack with respect to grain boundary thickening in HAZ away from the fusion line (0.5 mm) of DP-GMAW joint was analyzed. The grain boundary thickening is not clearly visible from Fig. 8. Thus, it is understood that the severity of weld thermal cycle produced by DP-GMAW process is less due to dual pulse effect caused by superimposition of thermal pulse in comparison to that of the P-GMAW process.

    3.4. Mechanical properties

    The transverse tensile test of the weld joints prepared by PGMAW and DP-GMAW procedure is given in Table 4. The Cv-impact toughness and hardness of weld metal are also given in Table 4. It is observed that the mechanical properties of DP-GMA weld joint is higher than those of P-GMA weld joint due to thermal pulsation.

    Table 4Mechanical properties of P-GMAW and DP-GMAW joints.

    4. Discussion

    In view of the results discussed above, it is clearly understood that the DP-GMAW process is used to improve the mechanical and metallurgical properties and minimize the transverse shrinkage of AISI: 310 ASS weld joints in comparison to the P-GMAW process. Further, it is noticed that, in the case of AISI: 310S ASS weld joint prepared by DP-GMAW process, the severity of inter-granular attack in the grain boundary of HAZ region of the weld joint is reduced. Such an improved property obtained by using DPGMAW is largely due to the combined effect of pulsed current and thermal pulsation of the process. The thermal pulsation effect primarily obtained in the DP-GMAW by varying wire feed rate (WFR) is shown in Fig. 9. It is observed that DP-GMAW shows the variation of WFR from the given WFR setting in the power source, but such variation is not observed in P-GMAW process. The variation ofWFR in DP-GMAW is to maintain a constant arc length because there is a chance to vary the arc length at a given WFR during the thermal pulsation period. This behavior reflects in the current and voltage waveforms (Figs. 10 and 11). The variation of WFR also confirms the synchronization between high frequency pulse and thermal pulse. This synchronization of pulses stirs the weld pool, reduces the heat input of DP-GMAW process accordingly and improves the properties of weld joints.

    Fig. 9. Comparison of WFR between actual and variation observed during DPGMAW.

    Fig. 10. At a given WFR of 4 m/min, typical waveform of DP-GMAW process.

    In order to confirm the variation of WFR during DPGMAW under dynamic operating conditions, the waveforms of welding current and arc voltage were studied. The typical current and voltage waveforms at relatively low and high WFR of 4 and 9 m/min during DP-GMAW are shown in Figs. 10 and 11, respectively. From the figures it is observed that the arc voltage decreases during the thermal pulsation period, but the welding current increases due to the variation of WFR. These behaviors indicate that the DP-GMAW process introduces comparatively more thermal shock in the weld pool in comparison to the P-GMAW process. This is a beneficial effect to improve the characteristics of weld joints.

    Fig. 11. At a given WFR of 9 m/min, typical waveform of DP-GMAW process.

    5. Conclusions

    This study highlights the superiority of DP-GMAW in place of P-GMAW in welding of grade AISI: 310S ASS material. Some of the key observations of the study are as follows.

    1) The transverse shrinkage of AISI: 310S ASS weld joints prepared by DP-GMAW process is comparatively lower than that prepared by P-GMAW process.

    2) The DP-GMAW process improves the mechanical and

    metallurgical properties of AISI: 310S ASS weld joints. 3) In the case of AISI: 310S ASS, the use of the DP-GMAW

    process reduces the susceptibility of inter-granular attack in HAZ.

    4) Superior weld joint properties obtained by DP-GMAW process is primarily due to the fluctuation of WFR during the thermal pulsation period, which reduces the overall heat input and improves the properties of the weld joints accordingly.

    Acknowledgment

    The authors thankfully acknowledge the Welding Research Institute (WRI) Trichy, for carrying out welding trials.

    References

    [1] Welding brazing and solderingASM handbook, vol. 6. Materials Park, OH: ASM International; 2010.

    [2] Cuiuri D, Norrish J, Cook CD. New approaches to controlling unstable gas metal arc welding. Australas Weld 2002;47(3):39—47.

    [3] Norrish John. Process modification in gas metal arc welding for enhanced performance. Aust Weld J 2013;58:33—8.

    [4] Praveen P, Yarlagadda PKDV, Kang MJ. Advancements in pulse gas metal arc welding. J Mater Process Technol 2005;164:1113—9.

    [5] Liu Anhua, Tang Xinhua, Lu Fenggui. Study on welding process and prosperities of AA5754 Al-alloy welded by double pulsed gas metal arc welding. Mater Des 2013;50:149—55.

    [6] Mendes da Silva Celina Leal, Scotti Americo. The influence of double pulse on porosity formation in aluminum GMAW. J Mater Process Technol 2006;171:366—72.

    [7] Devakumaran K, Rajasekaran N, Ghosh PK. Process characteristics of inverter type GMAW power source under static and dynamic operating conditions. Mater Manuf Process 2012;27(12):1450—6.

    [8] Tavares SSM, Moura V, da Costa VC, Ferreira MLR, Pardal JM. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600—800°C. Mater Charact 2009;60:573—8.

    [9] Shah Hosseini H, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact 2011;62:425—31.

    [10] Naffakh H, Shamanian M, Ashrafizadeh F. Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J Mater Process Technol 2009;209:3628—39.

    [11] Kimura M, Ichihara A, Kusaka M, Kaizu K. Joint properties and their improvement of AISI 310S austenitic stainless steel thin walled circular pipe friction welded joint. Mater Des 2012;38:38—46.

    [12] Ghosh PK, Kulkarni SG, Kumar M, Dhiman HK. Pulsed current GMAW for superior weld quality of austenitic stainless steel sheet. ISIJ Int 2007;47(1):138—45.

    * Corresponding author. Tel.: +91 9443689943.

    国产色婷婷99| 国产精品人妻久久久久久| 久久久久久久精品精品| 亚洲精品乱码久久久久久按摩| 人妻夜夜爽99麻豆av| 黑丝袜美女国产一区| 国产毛片在线视频| 国产成人a区在线观看| 国产在线一区二区三区精| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影小说 | 寂寞人妻少妇视频99o| 岛国毛片在线播放| 久久久a久久爽久久v久久| 草草在线视频免费看| 成年美女黄网站色视频大全免费 | 色婷婷久久久亚洲欧美| 免费不卡的大黄色大毛片视频在线观看| 日韩中字成人| 91aial.com中文字幕在线观看| 国产精品福利在线免费观看| 日本黄大片高清| 亚洲av二区三区四区| 色综合色国产| 黄色配什么色好看| 黄色配什么色好看| 看十八女毛片水多多多| 中文资源天堂在线| 久久亚洲国产成人精品v| 国产探花极品一区二区| 人人妻人人爽人人添夜夜欢视频 | 在线亚洲精品国产二区图片欧美 | 亚洲av.av天堂| 亚洲伊人久久精品综合| 亚洲欧美成人综合另类久久久| 成人国产麻豆网| 成人国产av品久久久| 国产男人的电影天堂91| 国产精品一及| 91久久精品国产一区二区三区| www.色视频.com| 99久久中文字幕三级久久日本| 我的女老师完整版在线观看| 国产精品一及| 久久久久久伊人网av| 最近最新中文字幕免费大全7| www.色视频.com| 在线观看一区二区三区| 黄片wwwwww| 搡女人真爽免费视频火全软件| 亚洲av.av天堂| 免费不卡的大黄色大毛片视频在线观看| 各种免费的搞黄视频| 九色成人免费人妻av| 国产亚洲欧美精品永久| av一本久久久久| 少妇裸体淫交视频免费看高清| 观看美女的网站| 91精品国产国语对白视频| 毛片一级片免费看久久久久| 日韩成人av中文字幕在线观看| 日韩成人av中文字幕在线观看| 美女福利国产在线 | 亚洲人成网站在线播| 国产久久久一区二区三区| 精品亚洲成a人片在线观看 | 3wmmmm亚洲av在线观看| 爱豆传媒免费全集在线观看| 色哟哟·www| 日本爱情动作片www.在线观看| 最后的刺客免费高清国语| 亚洲国产色片| 99热这里只有是精品在线观看| 欧美成人午夜免费资源| 中文字幕久久专区| 午夜免费观看性视频| 91狼人影院| h日本视频在线播放| 欧美精品一区二区大全| 麻豆国产97在线/欧美| 亚洲综合色惰| 国产亚洲欧美精品永久| 久久人人爽人人爽人人片va| 97在线视频观看| 搡老乐熟女国产| av国产精品久久久久影院| 18禁在线无遮挡免费观看视频| 日本一二三区视频观看| 亚洲欧美中文字幕日韩二区| 婷婷色av中文字幕| 久久精品国产鲁丝片午夜精品| 国产乱人偷精品视频| 久久国产精品男人的天堂亚洲 | 国产精品.久久久| 免费观看在线日韩| freevideosex欧美| 免费人妻精品一区二区三区视频| 哪个播放器可以免费观看大片| 看非洲黑人一级黄片| 91久久精品电影网| 在线免费观看不下载黄p国产| 亚洲精品国产色婷婷电影| 免费人成在线观看视频色| av专区在线播放| 日日摸夜夜添夜夜添av毛片| 亚洲色图av天堂| 亚洲精品aⅴ在线观看| 亚洲精品,欧美精品| 亚洲欧美成人综合另类久久久| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 午夜老司机福利剧场| 少妇 在线观看| 嘟嘟电影网在线观看| 亚洲人成网站高清观看| 国产精品不卡视频一区二区| 色5月婷婷丁香| 国产熟女欧美一区二区| 成人毛片a级毛片在线播放| 亚洲精品久久久久久婷婷小说| 免费观看a级毛片全部| 一区二区av电影网| 一本色道久久久久久精品综合| 国产精品一及| 狂野欧美激情性xxxx在线观看| 国产高清有码在线观看视频| 最后的刺客免费高清国语| 99久国产av精品国产电影| 少妇 在线观看| 国产久久久一区二区三区| kizo精华| 欧美日韩综合久久久久久| 欧美日韩视频精品一区| 久久99精品国语久久久| 日日撸夜夜添| 亚洲自偷自拍三级| 欧美国产精品一级二级三级 | 精品人妻偷拍中文字幕| av免费观看日本| 亚州av有码| 天堂8中文在线网| 久久国内精品自在自线图片| 水蜜桃什么品种好| 中文字幕制服av| 精品一区二区三卡| 十八禁网站网址无遮挡 | 日本免费在线观看一区| 成人毛片a级毛片在线播放| 五月伊人婷婷丁香| 午夜激情久久久久久久| 黄色怎么调成土黄色| 一本一本综合久久| 免费看av在线观看网站| 成人美女网站在线观看视频| 欧美+日韩+精品| 国产有黄有色有爽视频| 黄片无遮挡物在线观看| av又黄又爽大尺度在线免费看| 日本av手机在线免费观看| 2021少妇久久久久久久久久久| 妹子高潮喷水视频| 在线观看一区二区三区激情| 欧美人与善性xxx| 久久人妻熟女aⅴ| 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 国产亚洲午夜精品一区二区久久| 久久人人爽av亚洲精品天堂 | 国产精品不卡视频一区二区| 色网站视频免费| 男人舔奶头视频| 亚洲欧美成人综合另类久久久| 成人影院久久| 亚洲高清免费不卡视频| 日本欧美国产在线视频| 人妻少妇偷人精品九色| 99热6这里只有精品| 亚洲精品一区蜜桃| 80岁老熟妇乱子伦牲交| 卡戴珊不雅视频在线播放| 一级毛片 在线播放| 日日爽夜夜爽网站| 9热在线视频观看99| 999精品在线视频| 国产免费又黄又爽又色| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 国产97色在线日韩免费| 成人18禁高潮啪啪吃奶动态图| 亚洲精品国产av成人精品| 亚洲国产欧美日韩在线播放| 国产免费又黄又爽又色| 久久精品人人爽人人爽视色| 后天国语完整版免费观看| 在线av久久热| √禁漫天堂资源中文www| 男男h啪啪无遮挡| 丰满饥渴人妻一区二区三| 日韩电影二区| 波野结衣二区三区在线| 免费人妻精品一区二区三区视频| 国产麻豆69| 欧美日韩视频高清一区二区三区二| 国产精品免费视频内射| 欧美日韩亚洲高清精品| 美女扒开内裤让男人捅视频| 咕卡用的链子| 国产爽快片一区二区三区| 久久久国产精品麻豆| 亚洲精品一卡2卡三卡4卡5卡 | 欧美成狂野欧美在线观看| 亚洲欧美精品综合一区二区三区| 国产一级毛片在线| 日本欧美视频一区| 成人亚洲欧美一区二区av| 后天国语完整版免费观看| 男女高潮啪啪啪动态图| 日韩免费高清中文字幕av| 黄网站色视频无遮挡免费观看| 久久久久久久国产电影| 宅男免费午夜| av网站免费在线观看视频| 可以免费在线观看a视频的电影网站| 久久精品国产综合久久久| 久久久久久人人人人人| 尾随美女入室| 亚洲激情五月婷婷啪啪| 亚洲人成电影免费在线| xxxhd国产人妻xxx| 欧美精品亚洲一区二区| 国产免费又黄又爽又色| 国产亚洲精品久久久久5区| 国产成人免费观看mmmm| 好男人视频免费观看在线| 老熟女久久久| 日本欧美视频一区| 免费在线观看完整版高清| 99国产精品一区二区蜜桃av | 女人被躁到高潮嗷嗷叫费观| 亚洲欧美一区二区三区国产| 久久精品国产a三级三级三级| 1024香蕉在线观看| 亚洲国产欧美一区二区综合| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 欧美日韩亚洲高清精品| 午夜免费男女啪啪视频观看| 一级片免费观看大全| 国产精品亚洲av一区麻豆| 亚洲欧美一区二区三区久久| 亚洲国产欧美日韩在线播放| 宅男免费午夜| 国产精品 国内视频| 日韩av免费高清视频| 日韩免费高清中文字幕av| 精品亚洲乱码少妇综合久久| 亚洲av日韩精品久久久久久密 | 精品一区二区三区av网在线观看 | 九草在线视频观看| 亚洲天堂av无毛| 国产成人av激情在线播放| 黄色 视频免费看| 亚洲精品美女久久久久99蜜臀 | 日韩 亚洲 欧美在线| 日韩 欧美 亚洲 中文字幕| 亚洲欧美精品自产自拍| 777米奇影视久久| 老司机影院成人| 亚洲欧美色中文字幕在线| 国产精品九九99| bbb黄色大片| 国产免费视频播放在线视频| 少妇 在线观看| 赤兔流量卡办理| 你懂的网址亚洲精品在线观看| 亚洲成国产人片在线观看| 亚洲国产欧美网| 亚洲av在线观看美女高潮| 免费高清在线观看日韩| 精品久久久久久电影网| 精品少妇内射三级| 老熟女久久久| 国产成人精品在线电影| 老司机午夜十八禁免费视频| 啦啦啦在线免费观看视频4| 久久久久久久大尺度免费视频| 国产三级黄色录像| 99热国产这里只有精品6| 国精品久久久久久国模美| 男人舔女人的私密视频| 国产一区二区激情短视频 | 亚洲欧美精品综合一区二区三区| 丝袜在线中文字幕| 捣出白浆h1v1| 免费观看a级毛片全部| av国产精品久久久久影院| 好男人电影高清在线观看| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 人人澡人人妻人| 亚洲精品中文字幕在线视频| 亚洲国产日韩一区二区| 成人手机av| 99国产精品99久久久久| 精品亚洲乱码少妇综合久久| 免费观看人在逋| 日韩av免费高清视频| 亚洲熟女毛片儿| 亚洲精品美女久久久久99蜜臀 | 国产成人免费无遮挡视频| 亚洲专区中文字幕在线| 夫妻性生交免费视频一级片| 一级毛片 在线播放| 亚洲av片天天在线观看| 精品亚洲成a人片在线观看| 亚洲黑人精品在线| 久久久久久久久免费视频了| 每晚都被弄得嗷嗷叫到高潮| 亚洲一区中文字幕在线| 男男h啪啪无遮挡| 十八禁高潮呻吟视频| 成年美女黄网站色视频大全免费| 黄色片一级片一级黄色片| 最近中文字幕2019免费版| 成人国产av品久久久| 侵犯人妻中文字幕一二三四区| 免费看不卡的av| 久久99精品国语久久久| 国产精品一区二区免费欧美 | 嫩草影视91久久| 波野结衣二区三区在线| 99香蕉大伊视频| 中文字幕高清在线视频| 午夜影院在线不卡| 亚洲七黄色美女视频| 大片电影免费在线观看免费| 97人妻天天添夜夜摸| kizo精华| 一级片免费观看大全| 国产一区二区 视频在线| 午夜视频精品福利| 精品国产一区二区三区久久久樱花| 成人国语在线视频| 一级a爱视频在线免费观看| 国产91精品成人一区二区三区 | 日本五十路高清| 交换朋友夫妻互换小说| 欧美日韩亚洲国产一区二区在线观看 | 日韩熟女老妇一区二区性免费视频| 十分钟在线观看高清视频www| 老司机亚洲免费影院| 久久精品aⅴ一区二区三区四区| 亚洲精品自拍成人| 久久久久久久久免费视频了| 中文字幕亚洲精品专区| 国产亚洲精品久久久久5区| 国产片内射在线| 悠悠久久av| 大话2 男鬼变身卡| 欧美日韩视频高清一区二区三区二| 男女午夜视频在线观看| 免费观看av网站的网址| 成人三级做爰电影| 一边摸一边做爽爽视频免费| 国产精品.久久久| 日本vs欧美在线观看视频| 男人爽女人下面视频在线观看| 国产av一区二区精品久久| av福利片在线| 婷婷色综合www| 人妻一区二区av| 日本vs欧美在线观看视频| 少妇 在线观看| 夫妻性生交免费视频一级片| 777米奇影视久久| 欧美精品亚洲一区二区| 欧美老熟妇乱子伦牲交| 一区二区av电影网| 丰满少妇做爰视频| 久久狼人影院| 日本av免费视频播放| 精品久久久精品久久久| 午夜免费男女啪啪视频观看| 69精品国产乱码久久久| 日本欧美国产在线视频| 两个人免费观看高清视频| 后天国语完整版免费观看| 一级毛片我不卡| 国产午夜精品一二区理论片| 99香蕉大伊视频| 99国产精品一区二区三区| 黄片小视频在线播放| 午夜老司机福利片| 中文字幕精品免费在线观看视频| 黄片小视频在线播放| 国产精品秋霞免费鲁丝片| 老司机在亚洲福利影院| 亚洲第一青青草原| 亚洲欧洲国产日韩| 一级a爱视频在线免费观看| 女性生殖器流出的白浆| 一边亲一边摸免费视频| 久久久久久免费高清国产稀缺| 欧美日韩综合久久久久久| 欧美国产精品一级二级三级| 国产爽快片一区二区三区| 人成视频在线观看免费观看| 日日摸夜夜添夜夜爱| 成年动漫av网址| 久9热在线精品视频| 亚洲精品国产av成人精品| 免费黄频网站在线观看国产| 久久99精品国语久久久| 欧美乱码精品一区二区三区| 久久天堂一区二区三区四区| bbb黄色大片| 日韩 亚洲 欧美在线| 久久精品人人爽人人爽视色| 国产成人啪精品午夜网站| 好男人电影高清在线观看| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 一区福利在线观看| 免费在线观看黄色视频的| www日本在线高清视频| 尾随美女入室| 爱豆传媒免费全集在线观看| 一边摸一边抽搐一进一出视频| 国产又爽黄色视频| 欧美人与性动交α欧美精品济南到| 在线 av 中文字幕| 国产三级黄色录像| 男女高潮啪啪啪动态图| 午夜免费成人在线视频| 在线观看免费日韩欧美大片| 亚洲欧美清纯卡通| 欧美人与善性xxx| 国产精品三级大全| 午夜免费成人在线视频| 免费人妻精品一区二区三区视频| 欧美人与性动交α欧美软件| 亚洲久久久国产精品| 日韩av免费高清视频| www.自偷自拍.com| 亚洲精品自拍成人| 丝袜美足系列| 国产91精品成人一区二区三区 | 亚洲成人免费av在线播放| 如日韩欧美国产精品一区二区三区| 中文乱码字字幕精品一区二区三区| 男女边吃奶边做爰视频| 老鸭窝网址在线观看| 中文字幕高清在线视频| 午夜福利,免费看| 国产成人欧美在线观看 | 国产日韩欧美亚洲二区| 大香蕉久久成人网| 在线 av 中文字幕| 午夜福利在线免费观看网站| 国产一区二区 视频在线| 午夜福利乱码中文字幕| 国产97色在线日韩免费| 国产成人欧美| 丝袜人妻中文字幕| 老司机影院成人| 成人亚洲精品一区在线观看| 黄色怎么调成土黄色| 国产又色又爽无遮挡免| 性少妇av在线| 妹子高潮喷水视频| 色精品久久人妻99蜜桃| 日本欧美国产在线视频| 亚洲中文av在线| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡 | 久久热在线av| 久久国产精品影院| 巨乳人妻的诱惑在线观看| 精品福利永久在线观看| 男女国产视频网站| 亚洲精品在线美女| av有码第一页| 99久久精品国产亚洲精品| 2021少妇久久久久久久久久久| 久久国产精品男人的天堂亚洲| 国产精品久久久久久人妻精品电影 | 免费高清在线观看视频在线观看| 久久综合国产亚洲精品| 午夜视频精品福利| 女性生殖器流出的白浆| 女人精品久久久久毛片| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 电影成人av| 久久99热这里只频精品6学生| 久久精品国产a三级三级三级| 亚洲九九香蕉| 国产麻豆69| 热99国产精品久久久久久7| 成人午夜精彩视频在线观看| 超色免费av| 啦啦啦在线免费观看视频4| 国产精品久久久人人做人人爽| 在线av久久热| 99久久人妻综合| 国产精品一国产av| 国产日韩欧美视频二区| 99国产精品一区二区蜜桃av | 老司机亚洲免费影院| 最近中文字幕2019免费版| 亚洲精品av麻豆狂野| 深夜精品福利| 搡老乐熟女国产| 少妇被粗大的猛进出69影院| 亚洲综合色网址| 国产一区有黄有色的免费视频| 亚洲av男天堂| 亚洲伊人色综图| 99香蕉大伊视频| 每晚都被弄得嗷嗷叫到高潮| 后天国语完整版免费观看| 国产精品国产三级国产专区5o| a级毛片在线看网站| 久久久久网色| 黄频高清免费视频| 天天躁日日躁夜夜躁夜夜| 高清视频免费观看一区二区| 成人国语在线视频| 婷婷色av中文字幕| 51午夜福利影视在线观看| 久久影院123| 乱人伦中国视频| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 久久久久网色| 热99久久久久精品小说推荐| 成人手机av| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 中文字幕亚洲精品专区| 男的添女的下面高潮视频| 成年人午夜在线观看视频| 免费女性裸体啪啪无遮挡网站| 一级毛片我不卡| 国产高清不卡午夜福利| 午夜日韩欧美国产| 亚洲成色77777| 国产成人精品久久二区二区免费| 亚洲国产日韩一区二区| 久久青草综合色| 精品人妻熟女毛片av久久网站| 亚洲精品久久午夜乱码| 亚洲久久久国产精品| 黄色怎么调成土黄色| 19禁男女啪啪无遮挡网站| xxxhd国产人妻xxx| 九草在线视频观看| 国产成人a∨麻豆精品| 久久久国产精品麻豆| 精品少妇内射三级| 午夜福利在线免费观看网站| 大片免费播放器 马上看| 亚洲人成77777在线视频| 久久国产亚洲av麻豆专区| 五月开心婷婷网| 亚洲中文日韩欧美视频| 大陆偷拍与自拍| 中文字幕精品免费在线观看视频| 免费观看av网站的网址| 欧美精品啪啪一区二区三区 | 欧美97在线视频| 国产一区亚洲一区在线观看| 久久狼人影院| 国产激情久久老熟女| 午夜福利一区二区在线看| 成人影院久久| 熟女av电影| 久久久久精品国产欧美久久久 | 性少妇av在线| 国产av国产精品国产| 国产在线视频一区二区| 丁香六月欧美| 久久久国产精品麻豆| 欧美国产精品va在线观看不卡| a级毛片在线看网站| 免费看av在线观看网站| 亚洲av成人精品一二三区| 丝袜喷水一区| 日本猛色少妇xxxxx猛交久久| kizo精华| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 久久天躁狠狠躁夜夜2o2o | 欧美黄色片欧美黄色片| 亚洲美女黄色视频免费看| 亚洲欧美日韩高清在线视频 | 国产一区二区在线观看av| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 午夜日韩欧美国产| 精品人妻熟女毛片av久久网站| 激情五月婷婷亚洲| 日本欧美视频一区| 亚洲国产av新网站| 亚洲av综合色区一区| 色精品久久人妻99蜜桃| av不卡在线播放| 久久精品人人爽人人爽视色| 人人澡人人妻人| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 十八禁高潮呻吟视频| 操出白浆在线播放| 热re99久久精品国产66热6| 久久天躁狠狠躁夜夜2o2o |